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Electron-positron pair production in relativistic heavy-ion collisions
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First-order Born cross sections for electron-positron pair production in relativistic heavy-ion col-
lisions are calculated. Sommerfeld-Maue wave functions are employed to describe the continuum state
of the emitted electron and positron in the field of the heavy target nucleus. Double-differential, single-
differential, and total cross sections are presented in a wide energy regime from 1 GeV/u up to 20
TeV/u. We compare our results with first-Born calculations using a partial-wave expansion and with
lowest-order QED calculations. The target-charge dependence is investigated.

I. INTRODUCTION

The electromagnetic production of electron-positron
pairs in collisions of relativistic heavy ions is a field of
growing interest [1]. At increasing relativistic energies,
cross sections for pair production become very large.
Pair production has therefore important practical impli-
cations for the planned Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC), where
fixed-target energies of 23 TeV/u (Au) and 34 000 TeV/u
(Pb) are envisioned [2]. In such extreme relativistic
heavy-ion collisions, electron-positron pairs of elec-
tromagnetic origin might possibly mask signals from the
formation and the decay of the quark-gluon plasma [3].
The pair-production mechanism also contributes to the
electromagnetic stopping power for the heavy-particle
component of cosmic rays [4] and might allow the mea-
surement of the energy of cosmic rays by counting the
pairs produced in emulsions [5]. It has also been pro-
posed to use pair production in relativistic heavy-ion col-
lisions as a real-time nondestructive luminometer [6].

Calculations of cross sections for pair production by
fast charged particles have a long history. They have ei-
ther been based on a lowest-order quantum-electro-
dynamical (QED) treatment [7,3] or on the equivalent-
photon or Weizsacker-Williams method [8] where the
pair-production cross section may be determined by using
the already known photon-nucleus pair-production cross
section [9,4, 10,5]. The equivalent-photon method is best
suited for very high collision energies but suffers from an
undetermined parameter, which corresponds to the
minimum impact parameter assumed. These inadequa-
cies are avoided in the lowest-order (QED) calculations.
Here electrons and positrons are treated as free particles
interacting with the colliding nuclei via one-photon ex-
change. Pair production is thus represented by two-
photon diagrams, which have recently been evaluated ex-
actly [3].

Lowest-order perturbation theory, however, is believed
to give an incomplete description of pair production in
heavy-ion collisions [3,5]. The parameter aZ is compara-
ble with unity so that higher-order terms in the target or
projectile charge might possibly give important contribu-
tions even at very high collision energies.

A more complete description of the pair-production
process has been given in the work of Becker, Grun, and
Scheid [11]. Here, the lowest-order matrix element in the
Furry picture is evaluated, which includes the target in-
teraction to all orders. Only the projectile interaction is
assumed to be small and treated in first-order perturba-
tion theory, which can be expected to be a good approxi-
mation for very fast collisions. Becker, Grun, and Scheid
expand the projectile interaction in multipoles and use
exact Dirac continuum states for the description of elec-
tron and positron wave functions. This approach, how-
ever, is restricted to projectile energies below 10 GeV/u
due to numerical difficulties in the evaluation of mul-
tipole sums with high angular momentum and has not
been extended to energies in the TeV/u region. These
problems at high energies can be solved by using
Sommerfeld-Maue wave functions [12] for the description
of the continuum states of the electron and positron. In
this way a multipole expansion is avoided and pair-
production cross sections can be obtained for very high
collision energies which are of utmost interest.

Calculations employing Sommerfeld-Maue wave func-
tions have been performed by Nikishov and Pichkurov
[13]and by Bertulani and Baur [14],who deduced analyt-
ical expressions for differential and total cross sections as-
suming high projectile energies. Although these calcula-
tions give important insights into the physical processes
of pair production, they rely on specific assumptions re-
garding the energy of the emitted electron-positron pair.
Furthermore, approximations are introduced to make the
analytical evaluation of transverse momentum, energy,
and angular integrations feasible.

In this paper, we present the results of an exact numer-
ical calculation of double-differential, single-differential,
and total cross sections for pair production within the
first-order Born approximation. In accordance with Ref.
[12] we use Sommerfeld-Maue wave functions for the
description of electron and positron continuum states.
The integration over the transverse momentum and the
integrations over the energy and angular distribution of
the emitted electron-positron pair are performed numeri-
cally. No approximations are introduced and no restric-
tions with respect to the collision energy are made. The
paper is organized as follows. In Sec. II we establish the
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notation and give a brief outline of the theory together
with a description of the numerical procedure. Subse-
quently, in Sec. III detailed results are presented and dis-
cussed. In Sec. IV some concluding remarks are added.
Atomic units are used throughout the paper unless ex-
plicitly stated otherwise.

II. THEORY

Let us consider a relativistic projectile ion (charge Z~)
colliding with a target ion of nuclear charge ZT. At rela-
tivistic velocities, it is a very good approximation to as-
sume a classical straight-line trajectory R=1+vt for the
projectile motion where v is the projectile velocity and b
is the impact parameter. Associated with the two inertial
frames, we have two sets of space-time coordinates.
While rT and t measure the space-time position of the
electron-positron pair from the target nucleus, the coor-
dinates rp and t' refer to the space-time position of the
pair as seen from the projectile nucleus. Both sets of
coordinates are connected by the Lorentz transformation

here. From (2) we derive the differential cross section for
electron-positron pair production as

k, kpEeE~' ', ' ' fdbl~„(b) '.
(4)

Here E„E,Q„A, k„, and k denote the energy,
solid angle, and momentum of the emitted electron and
positron, respectively. The spin projections are indicated
by p, and pz. In order to evaluate the amplitude 2,
defined in Eq. (2), we rewrite the electron and positron
continuum states as

—iE, t
P, (rT, t ) =y, (rT )e

iE t
P (rT, t)=y (rT)e

With the aid of appropriate Fourier transforms, we now
can move space-time dependence to the exponent and ex-
ecute the space-time integrations in Eq. (2). As a result,
we obtain

r~ =rT+vzT(y —1) vyt —b, —

t'=y(t —vzT/c ),
Zp H(q~, (E, +E )/u)

q~+[(E, +E )/(Uy)]
(6)

where P=U/c, y=(1 —P ) '~, and c = 137.036 a.u. is
the velocity of light. The quantity is a unit vector in
the direction of the projectile velocity v. The first-order
transition amplitude for electron-positron pair produc-
tion in the laboratory (target) frame is given by

= —i f dt fdrTgt(rT, t)y(1 —Pa, )

where

H(p)= f y, (rr)(1 —Pa, )p (rT)e dr& . (7)

We have decomposed the vector q into a transverse
and a longitudinal part as q=(q&, q, ). Using the con-
tinuity equation, we now cast the matrix element (8) in
the following form [14]:

Zp
X — Pp(rT, t) .

I'p
(2) H(p)=; y, (rT)q„(rT)e drT

i p.rT

We have denoted by f, the electron continuum state and
by g the positron continuum state, which satisfy the
time-dependent Dirac equation

ZT 2+c y4i g= ica V ——
at (3)

where a„, a, a„and y4 are the Dirac matrices [15]. A
derivation of the transition amplitude (2) using second
quantization is given in Ref. [1] and shall not be repeated

I

P'c+
e p

where a&.p& =a p +e~p~. This transformation, valid
for exact solutions of Eq. (3), is essential in order to avoid
spurious contributions to the matrix element when ap-
proximate wave functions are used [16].

The integration over the impact parameter in (4) can
now be carried out and yields the result

k, k E,E Zt, lH(qq, (E, +E )/U)l

dE~dE dQ dQ c~ U2~2 Iq~~+[(E +E )/(Uy)]2}2
(9)

As we have pointed out in the Introduction, the usage
of exact Dirac wave functions is restricted to projectile
energies below 10 GeV/u due to numerical difficulties in
the evaluation of high multipole contributions with ( & 10
[11]. The aim of the present paper is to calculate cross
sections for pair production at high projectile energies.
Therefore, in the following, we use approximate electron
and positron continuum wave functions and, consequent-
ly, avoid the partial-wave analysis. These wave functions,

denoted as Sommerfeld-Maue or Furry wave functions,
have been widely applied in the literature and for the
electron can be written as [12]

e

X,F, ( iv„l, —i(k,—rr+k, rT))u, , (10)
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with N, = exp(mv, /2)l (1+iv, ), v, =ZTE, /(c k, ), and

u, denotes the free electron spinor
I /2

u, =(2m)
2E,

XJM
X

[c /(E, +c ) ](o"k, )y
(11)

The positron wave function is given by [12]

X,F, ( iu,—l, i(k~rT+k~ rT))u~, (12)

with N = exp( ~v~/2—)I (1+iv~), v~=ZTE~/(c k~),
and U denotes the free positron spinor

1/2

u =(2m)
2E

where q=p —k, —k and

F'=,F, (iv„l,i(k, rT+k, rT)),
F=,F, ( i—vp, l, i(k~rT+k~ rT))

(20)

(21)

The integrals ( 17)—(19) are given in Ref. [12] and shall
not be repeated here. The further evaluation of the tran-
sition amplitude is straightforward but the resulting ex-
pressions are too lengthy to be presented here. We mere-
ly note that the final expression for the difFerential cross
section can be expressed as a one-dimensional integral
over the transverse momentum qb. The computation of
total cross sections, therefore, requires the numerical
evaluation of a seven-dimensional integral. The integra-
tions were evaluated by the Monte Carlo technique [17].
By comparing various steps in the iteration procedure we
estimate the accuracy of the total cross section to be
better than 10%. The accuracy of double- and single-
di6'erential cross sections presented in this paper is better
than 1%.

[cl(E +c )](cr k~)y.„P (13)
III. RESULTS AND DISCUSSIQN

The Pauli spinors y„are given by y, =(1,0) and
yt, =(0, 1).

The Sommerfeld-Maue wave functions are a very good
approximation to the exact Dirac continuum wave func-
tions for angular momenta 1))ZT/137 [12] and can be
used for the calculation of processes where angular mo-
menta 1=1 are not important. A detailed analysis for
bremsstrahlung and photon-nucleus pair production
shows that high l values become important when the
electron-positron energy is large, which holds for all
charges ZT [12]. The validity of the Sommerfeld-Maue
approximation for pair production in relativistic heavy-
ion collisions is discussed in Sec. III.

After inserting the wave functions (10) and (12) into the
matrix element (8) and neglecting in the product of p
with y, the term of the order 1/(E, E~ ) we obtain

Using the formulation of Sec. II, we have calculated
double-differential cross sections d cr/(dE, dE ), single-
difFerential cross sections do. /dE, and total cross sec-
tions o. for pair production in relativistic heavy-ion col-
lisions. The cross sections have been obtained from Eq.
(9) by exact numerical integration over the transverse
momentum qb, the solid angles 0, and Q, and the elec-
tron and positron energies E, and E . We note that
first-order perturbation theory has a projectile charge
dependence like Z~ [cf. Eq. (9)]. All results presented in
this section can therefore be scaled to get cross sections
for arbitrary projectile charges.

1 2c
H(p) =N,*N I, + Ib (14)

where

I, =u, u~I&+ u, (a I2)u + u,t(a I3)u2' ' ~ 2E,
(15)

Ib =u, (a„pb )u~I, + u, (ab.pb )(a 12)u~2E

and

lC
u, (a I3)(ab pb)u~,

e I I

1 5 10 20 30
E&{units of rnc )

2

(

40 50

I, = fF'Fe drT,

I2= fF'(VF)e drT,

I3= f (VF')Fe drT

(17)

(18)

(19)

FIG. 1. Double-differential cross sections for the creation of
free electron-positron pairs in proton-uranium collisions as a
function of the positron energy E~ for various Lorentz factors
@=10, 100, and 1000, respectively. The electron energy is

E, =10mc .
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A. Doub1e-difT'erential cross sections

In Fig. 1 we show double-differential cross sections
d cr/(dE, dE ) for a collision of a proton and a uranium
nucleus as a function of the positron energy E . The
electron energy is fixed at E, = 10mc . The projectile en-

ergy is 8.4, 92.2, and 930.6 GeV/u, which corresponds to
Lorentz factors y of 10, 100, and 1000, respectively. It is
seen from Fig. 1 that the positrons are preferably emitted
with energies E =3 —Smc . The cross section decreases
slowly with increasing positron energy, which shows that
high values of E are important for the total cross sec-
tion. The steep decrease for small positron energies is
due to the repulsion of the positron by the Coulomb field
of the target nucleus. For high values of y we observe a
weaker decay of the cross section and the maximum
value is shifted to larger values of E .

Figure 2 presents double-differential cross sections for
proton-uranium collisions as a function of the electron
energy E, . The positron energy is fixed at E =10mc .
The projectile energies are the same as in Fig. 1. We ob-
serve that electrons are preferably emitted with energies
E =2—6mc . Electrons and positrons, as a conse-
quence, are emitted with approximately the same max-
imum energies. In contrast to the positron spectrum
shown in Fig. 1, we obtain a nonzero value for the cross
section at E, =mc, which refIects the fact that the pro-
duced electron is attracted by the target nucleus.

Finally, we shall discuss the asymptotic behavior of the
double-difFerential cross section at asymptotically high
projectile energies. Becker, Griin, and Scheid [11] show
that the double-differential cross section increases in pro-
portion to lny. This behavior can readily be obtained
from Eq. (9) by noting that the denominator in Eq. (9) has
a singularity for y~ ~ at qb =0. The matrix element
H(qb) is proportional to qb so that an elementary in-

p+U

C2

mC

l og q p ( Y )

I

10

tegration over qb yields a y dependence like lny. We
note that the asymptotic behavior of the total cross sec-
tion is given by 0 —( 1ny) [13,14]. In Fig. 3 double-
differential cross sections for proton-uranium collisions,
which are divided by lny, are displayed as a function of
the Lorentz factor y. The electron energy is 10mc, the
positron energy 2mc . The curve tends to a constant
value for y ) 10 thus demonstrating the correct asymp-
totic behavior of the differential cross sections calculated
from Eq. (9). In this way, it is ensured that the inliuence
of spurious terms [16] has been eliminated.

FIG. 3. Double-differential cross sections for the creation of
free electron-positron pairs in proton-uranium collisions as a
function of the Lorentz factor y. The cross sections are divided
by lny. The electron energy is 10mc, the positron energy
2mc .
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FICx. 2. Double-differential cross sections for the creation of
free electron-positron pairs in proton-uranium collisions as a
function of the electron energy E, for various Lorentz factors
y=10, 100, and 1000, respectively. The positron energy is
Ep=10mc .
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FICx. 4. Single-differential cross sections for the creation of
free electron-positron pairs in proton-uranium collisions as a
function of the positron energy E~ for various Lorentz factors
y =50, 100, and 1000, respectively.
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B. Single-differential cross sections

Single-difFerential cross sections der/dE~ are obtained
by integrating d o/(dE, dE ) over the electron energy
E, . Figure 4 displays single-differential cross sections in
proton-uranium collisions as a function of the positron
energy E . The Lorentz factor is choosen as 50, 100, and
1000, respectively. The curves show a behavior already
discussed in connection with the double-difFerential cross
sections presented in Fig. 1. Small positron energies are
strongly suppressed. With increasing y more and more
positrons with high energies are produced. The curves
also reveal that single-differential cross sections decrease
slowly with increasing positron energy, which implies
that high positron energies give important contributions
to the total cross section.

C. Total cross sections

In Fig. 5 total cross sections for pair production in
uranium-uranium collisions are presented as a function
of the Lorentz factor y. Figure 5 shows four calculations:
(a) The results of our exact numerical integration of Eq.
(9) employing Sommerfeld-Maue wave functions; (b)
first-Born cross sections given by Becker, Griin, and
Scheid [11] based on a partial-wave expansion; exact
Dirac continuum states are employed but only multipoles
up to i =10 are included; (c) exact lowest-order QED cal-
culations by Bottcher and Strayer where electron and
positron are treated as free particles [3]; and (d) results
derived from an approximate integration of Eq. (9) [14],
where (i) the first term on the right-hand side of Eq. (8) is
neglected, (ii) peaking approximations are used in or-

der to simplify the integration over qb, (iii) it is assumed
that only electrons and positrons with energies
mc «E, p «yacc contribute to the total cross section,
and (iv) cutofF parameters for the impact parameter in-
tegration are introduced.

It is seen from Fig. 5 that the agreement of our results
with the results of Becker, Grun, and Scheid [11]is satis-
factory at low projectile energies (y-2) but the curves
tend to disagree at larger projectile energies. It has been
pointed out by Becker, Grun, and Scheid that their cross
sections might be inaccurate at projectile energies larger

.than 10 GeV/u due to the neglect of multipole contribu-
tions with I ) 10, which leads to an underestimation of
the total cross section. In order to assess the accuracy of
the Sommerfeld-Maue approximation for the continuum
states employed in our calculation, we have computed to-
tal cross sections using "ultrarelativistic" continuum
wave functions [8], i.e. , we have neglected the terms con-
taining a in Eqs. (10) and (12) or (15) and (16), respective-
ly. The cross section for @=100obtained in this way is
only by about 15% larger than the value shown in Fig. 5.
This behavior is expected when large electron-positron
energies give the main contribution to the total cross sec-
tion and indicates that the Sommerfeld-Maue approxima-
tion is accurate.

For Lorentz factors y ) 17 our results show unexpect-
edly good agreement with the values derived from @ED
calculations [3] in which the electron and the positron are
described by plane waves. Accordingly, higher-order
terms in the target charge give only a small contribution
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FICx. 5. Total cross sections for the creation of free electron-
positron pairs in uranium-uranium collisions as a function of
the Lorentz factor y. Solid line, present work (first-Born calcu-
lations using Sommerfeld-Maue continuum states); dashed line,
Ref. [3] (lowest-order QED calculations); dashed-dotted line,
Ref. [14] (approximate first-Born calculations); dashed-double-
dotted line, Ref. [11] (first-Born calculations employing a
partial-wave expansion with I ~ 10).
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FIG. 6. Total cross sections for the creation of free electron-
positron pairs as a function of the target charge ZT for Lorentz
factor y = 100 and Zp = 1. Dots, present work; dashed line, Ref
[3].
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to the total pair-production cross section. This is in
agreement with the findings for photon-nucleus pair pro-
duction where corrections by about 10% for heavy ele-
ments like Pb were found [18]. We thus conclude that
pair production is reasonably well described by the
lowest-order QED diagrams for Lorentz factors as low as
y —17, which holds even in the presence of very strong
fields. It should be noted that the cross sections derived
by Racah as early as 1937 (see Racah [7], Eq. (61) and
Ref. [19])are in close agreement with exact lowest-order
QED cross sections [3] and show a good agreement with
our results for y ) 10. The cross sections given by Bertu-
lani and Baur [14], which are obtained from an approxi-
mate integration of Eq. (9), underestimate our exact re-
sults for Lorentz factors 100&y & 10 000 considerably.
The approximations employed seem to be valid only for
Lorentz factors as large as y =20 000.

To further examine higher-order corrections in nZT, it
is instructive to consider the dependence of the pair-
production cross section on the target charge ZT. In Fig.
6, total cross sections for pair production are displayed as
a function of the target charge for a Lorentz factor
y=100 and Z~= jJ. The dashed curve represents the
QED calculation [3], which has a target charge depen-
dence as Z~. The dots are the results of our first-Born
calculation, which includes the target interaction to all
orders. The Born cross sections show an unexpectedly
clear ZT dependence and agree with the QED cross sec-
tions on the percent level. Accordingly, cross sections for
all projectile and target combinations can be obtained
from Fig. 5 by assuming a scaling law of the pair-
production cross section like o. -ZTZ~.

IV. CONCLUDING REMARKS

In this paper, we present double-differential, single-
differential, and total cross sections for electron-positron
pair production in relativistic heavy-ion collisions. Elec-

tron and positron continuum states are described by
Sommerfeld-Maue wave functions and the resulting first-
Born matrix elements are evaluated exactly. Our formu-
lation provides a treatment of pair production, which
covers a wide energy regime from 1 GeV/u up to 20
TeV/u. Good agreement is found with first-Born calcula-
tions employing exact continuum states [11]at low pro-
jectile energies and with lowest-order QED calculations
using plane waves [3] at projectile energies 15
GeV/u&E &20 TeV/u. It turns out that higher-order
terms in aZT give only a small contribution to the total
pair-production cross section. Our results indicate that
perturbation theory gives an accurate description of
electron-positron pair production even in the presence of
strong fields.

We finally remark that for projectile energies of several
TeV/u not only single but also multiple electron-positron
pairs are expected to be produced in a relativistic heavy-
ion collision [1,20]. Since the exact numerical evaluation
of higher-order diagrams will become extremely difficult,
new approaches are needed to give reliable estimates of
the corresponding cross sections. Here the theoretical
development is just at its beginning.
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