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Improved adiabatic calculation of muonic-hydrogen-atom cross sections. III.
Hyperfine transitions in asymmetric collisions
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Cross sections for transitions between hyperfine-structure states of muonic hydrogen atoms in asym-
metric collisions have been calculated for the first time. The. interaction is described by the improved
adiabatic representation. s waves dominate the cross sections except for the remarkable case of
tp( f f )+d where the p wave dominates even at liquid-hydrogen temperature. The quenching rates for
the collisions in which the muon resides on the heavier isotope are A, [dp(11)
+p~dp(1$)+p]=5. 5X10 (6.4X10 ) s ', A[tp(11')+p~tp(1 l)+p]=3.1X10 (3.2X10 ) s ', and

A[tp(1 t) +d~tp(t J )+d]=7 5X10' (7.3X10') s ' at 23 K (232 K) and liquid hydrogen density. Al-

though some experimental observations have been attributed to hyperfine quenching in asymmetric col-
lisions, these rates are probably too slow to have had an effect in previous experiments. However, the
rate for tp( f f )+d is somewhat uncertain since it is found to be extraordinarily sensitive to the poten-
tial. As a by-product of this work, an independent value of the hyperfine correction to the binding ener-

gy of tdp( J= 1,U = 1) is obtained: Achf, = —36. 1 meV for the lowest hyperfine state.

I. INTRODUCTION

The hyperfine structure (hfs) of muonic hydrogen
atoms plays significant roles in a variety of muon physics
experiments. These roles are vital in muon capture by
the nucleus, where the capture rates for the two hfs states
differ by almost two orders of magnitude due to the V-3
nature of the weak interaction [1],and in muon-catalyzed
d-d and d-t fusion, where the resonant molecular-
formation rates differ by two or more orders of magni-
tude at low temperatures due to the different hfs energies
[2]. Because muonic hydrogen is small and neutral, the
hfs also has important effects on thermalization and
diffusion via the different elastic cross sections for the
split states [3].

The muonic atoms are generally formed with a statisti-
cal mixture of hfs states and subsequently are expected to
reach the 1s level with this statistical mixture nearly in-
tact. These are the ground-state ay( 1' l ) and excited-hfs-
state ay( f 1 ), where a =p, d, or t, which are split by the
energy EEhf in Table I. Criven enough time before some
other reaction occurs, the muonic atoms in the excited
hfs state are collisionally quenched, i.e., make transitions
to the ground state. As long as AEhf is greater than the
thermal energy kT, which is usually the case for the
relevant experiments, this transition is irreversible.

For theoretical reasons, it is expected that transitions
between hyperfine levels generally occur in symmetric
collisions —this is because muon exchange suffices in
symmetric collisions [4],

ap( 1' 1')+a ( 1 )~a( T )+a@(J, 1),
whereas a relativistic interaction is required to Hip the
spin in asymmetric collisions,

ap(TT)+b~ap(lT)+b .

TABLE I. Isotopic and hyperfine energy splittings.

EE;„(eV)'

dp and pp
tp and pp
tp and dp

134.709
182.751
48.042

pp (F =0 and 1)
dp (F=

z and —)

tp (F =0 and 1)

EEhf (eV)

0.1820
0.0485
0.2373

The isotopic splittings are with respect to the center of gravi-
ties of the hyperfine levels.

Of course, if species a is sufficiently dilute in an a-b mix-
ture, reaction (2) must be depended on even though its
cross section is much smaller than that for (1). It has
been speculated that such may be the case in recent
muon-catalyzed d tfusion exper-iments [5] utilizing triti-
um concentrations as low as c, =4X10 . In these ex-
periments, the cycling rate is found not to obey the usual
formula, which neglects reaction (2). Also, there is possi-
ble experimental evidence for hfs quenching in
d p(1 't )+p collisions with a rate —10% that in
dp(1 t')+d collisions [6]. However, an alternative inter-
pretation of this experiment exists in light of new calcula-
tions on muon-catalyzed p-d fusion [7—9].

Paper II of the current series of articles presented cross
sections for hfs transitions in symmetric collisions (1)
[10]. The results were generally in good agreement with
two other recent calculations [11,12]. To our knowledge,
hfs transition cross sections for asymmetric collisions (2)
have never before been calculated. In light of the needs
and speculations mentioned in the preceding paragraph,
this gap in knowledge could be serious. The improved
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adiabatic method [13] is well suited for this calculation.
Its application to asymmetric collisions of muonic hydro-
gen atoms was discussed in detail in paper I and will not
be repeated here [14]. The most significant improvement
over the standard adiabatic treatment of this problem is
that it automatically produces states that dissociate prop-
erly in light of the different isotopic masses —paper I
showed that significantly more accurate isotopic-
exchange cross sections result.

As can be seen in Table I, the isotopic splittings are
much larger than the hfs splittings. Some aspects of the
hfs were discussed in paper II, but there the main con-
cern was for molecular symmetries as dictated by the
spins of the muon and the two identical nuclei [15]. Here
we require more detail on the hfs interaction itself, as dis-
cussed in Sec. II. The two isotopic states split into four
states when hfs is included. The interaction is formulated
in terms of the muon charge density at the nuclei, given
in Sec. III. The hfs quenching cross sections calculated
in this four-state representation are presented in Sec. IV.
These calculations also produce new isotopic-exchange
and elastic cross sections (the latter accurately only if the

II. HYPERFINK-STRUCTURE MATRIX ELEMENTS

The hfs interaction in a muonic atom is given by the
operator [16]

5(r,„)
Vhr(~ p) = ', &P~-g.

ap,

(3)

where P„and P~ are the muonic and nuclear magnetons,

g, is the gyromagnetic ratio of the nucleus (a =p, d, or t),
s„and s, are the muonic and nuclear spins, and 5 is the
Dirac function. This interaction splits the energies of the
two possible muonic spin states, F

&
=s, —s„and

F,=s, +s„, where s, =s~=s„=—, and sd=1. Taking the
total wave function P'„where i designates the spin state,
to be the product of the spatial wave function P, and the
total atomic spin function gF I, we have

integration is carried out to larger distances than re-
quired to converge the inelastic cross sections), but these
differ little from the results given in paper I.

~E„,= & q'.
l V„,(~p) l

g'. &
—

& @.'I V.r«p) I@.
'

&

= &4.«)4'F, M l Vhf«p)l&. (r)&F, ,M„&
2 2 1

5(r,„);pg, g, (y.&r)-,'" y, &r) «g, , ~, ls„m. lg, M &
—&g, M ls„s. lgF M

Pap
2 F2 ~ 2 F2

(4)

3 Pg~g, l $, (0) l (s, + —,
' ), (6)

where in the last step we have used the identity

(s 's )gF~ =—(F s s )AM

C, =1.400x10 4,

Cd =2. 128 x 10

(1 la)

(1 lb)

=
—,
' [F(F+ 1)—s„(s„+1)—s, (s, + 1)]gF M

and

C, =1.480X10 '. (1 lc)

The muon charge density at the nucleus is
—3

ly. (0)l'=
m

1+
ma ma2

P

16m.
(9)

from the fundamental physical constants, we evaluate it
directly from the hfs splittings of pp, dp, and tp given in
Table I; thus

Map
2

(s, + —,')

In m.a.u. [17],

3
mp1+ AEhf .
m~

(10)

where a„ is the muonic Bohr radius and m„and m, are
the muonic and nuclear masses. Rather than evaluate the
prefactor

For the collision ap+b there are hfs contributions
from both nuclei,

Vhf(~bp)= Vhr(~p)+ Vhf(bp) (12)

(a third term for the spin-spin interaction of a and b is
omitted since their mutual Coulomb repulsion precludes
any significant contribution). It should be noted that this
form is precise only for ap+b s-wave scattering [18]. It
was expected that only s waves would be significant for
the low-energy scattering of concern. There turns out to
be one exception to this expectation, but we do not ex-
pect the results to be seriously deficient since the angular
momentum is largely carried by the nuclei instead of the
muon [19].

In the present work we consider only asymmetric col-
lisions. Below, where we use a, P, and y as variables
denoting nuclei, it will prove convenient to adopt an
unambiguous notation in which a is the opposite nucleus
from a and likewise P' and P; i.e., a%a' and 13+P' al-
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mays, but it is possible that a =P. We also use a and P as
indices of the improved adiabatic (IA) states. We adopt
the convention m, 0mb, so 0.=1 for the state formed
from ap(ls)+b and 2 for the state formed from
bp( ls)+a. It will sometimes be found convenient to em-
ploy numerical indices for the nuclei also —1 for a and 2
for b. Hence IA state 1 dissociates with the muon on nu-
cleus 1 and IA state 2 dissociates with the muon on nu-
cleus 2. The use should be clear from the context.

For the molecular (abp) interaction the following
changes are made in the atomic (ap) matrix element used
in Eq. (4): (i) The atomic spatial wave function P, (r) is re-
placed by the improved adiabatic function for the mole-

I

cule [13], P, (r, R;R), where r is the muonic coordinate
measured from the center of mass of the nuclei and R is
the internuclear coordinate; (ii) the spin function

gF M (a,p) is replaced by the spin function gs M (a,p;p),
where I is the total spin of ap and S is the total spin of
aPp; (iii) Vhf(ap) is replaced by V„f(abp); and (iv) cou-
pling as well as diagonal elements are required.

The matrix elements couple different I' states but not
different S or Mz states. The four asymptotic states are:
(1) ap( t 1 ) +b (a = 1, i = 1), (2) a p( 1 1 ) +b (a = 1, i =2),
(3) bp(t'$)+a ( a=2, i =1), and (4) bp(11')+a (a=2,
i =2) in order of increasing energy. Thus

fi(r, ~)
&(p I p„,(abp)lpga) =-,'&(p~ g. (p, z'" pp)&gz~ (a,p;a')Is„s. lpga'I (&(p&)'))

fi(rb~) F F
P S,Mg +~P + p b g, ~g P

~bp

The spatial matrix elements are simply related to the charge densities at the nuclei by (note: ()I) and (I()& are real)

(
5(r,„)

, "- ()pl=4~&() I&'(~.„)leap) =4~(p,'pP)'",
ap

where, for example, p, is the muon charge density at nucleus z in state a. Using the definjtjon (9) of C, we have

&&'
i hr(&bp) &j &= C.((:(.)'"&4'~,(a p;a')Is„s. lg, 'M, (Pp;P') &

i CK+Cb(pbpb )'"&gs'~, (a,p;a') is„sb lgs'M, (P,p;13') & .

(13)

(14)

(15)

It now remains to evaluate the spin matrix elements in Eq. (15). To do so, the spin eigenfunctions on the left- and
right-hand sides are rewritten, if necessary, in the basis with the p coupled to the nucleus appearing in the operator so
that Eq. (7) can be applied. For the general form of the spin-coupling matrix element,

&ks', M, (a p a')is„s,'its', M, ('& p &') &'
the required unitary transformation is

gs'I (a', p;a)= g g's~ (a,p;a')&(s, s„)Fi, ,s .;S,Msis, (s„,s ~ )F, .;S,Ms & . (17)

There are three cases of matrix element (16) to be considered separately.
Case (1): a=P=y. This case is trivial;

&gs'M (a,P,;a')is„s its'br (a,P;a')&= ,'[F; (F, +1)—s—„(s„+1)—s (s +1)]5,,
Case (2): a =P&y. Substituting Eq. (17) for both the bra and ket and then using Eq. (18), we obtain

F.
&gs'~ (a,p;a')is„s its'~ (a,p;a') &= —,

' g &(s,s )Fk,s;SMsis, (s,s )F;;SMs &

X &(s,s„)Fi, ,s;S,M is, , (s„,s )F. ;S,M

X[Fk,(Fk .+1)—s„(s„+1)—s .(s ~ +1)] . (19)

Case (3): a&P. In this case we must have y =a or y =a ( =P); for definiteness, suppose y =a. Substituting Eq.
(17) for the ket and then using Eq. (18), we obtain

a,p;a' is„.s its'br (a', p;a) &=—,
' &(s,s„)F, ,s;S,Msis, (s„,s ~ )F .;S,Ms &

X[F; (F, +1)—s„(s„+1)—s (s +1)] . (20)
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s~ sp Fj~
X s S F;

(21)

The collision-induced hyperfine-transition cross sec-
tions that we want to calculate are for

dp(F =
—,')+p~dp(F =

—,
' )+p,

tp(F = 1)+p ~tp(F =0)+p,
tp(F =1)+d~tp(F =0)+d,
pp(F =1)+d~pp(F =0)+d,
pp(F = I )+tripp(F =0)+t,
dp(F = 3 )+ t~dp(F= ,')+t . —

(22a)

(22b)

(22c)

(23a)

(23b)

(23c)

For each value of total spin S, the scattering calculations
are independent. In each of the above reactions, the ini-
tial and final states have only one S value in common.
Hence only one total-spin state can contribute to
hyperfine quenching in each case: S =

—,
' for pp+t and

tp+p, and S =1 in the other four cases. The other two
total-spin states possible in each collision contribute only
to elastic and isotopic-exchange scattering.

There are symmetries in the above transformation
coefficients that are not readily apparent in the form writ-
ten. To manifest these relations and simplify the tabula-
tion, we denote the transformation coefficients by

P(a, i;Pj)—= ((s,s„)F, , s .;S,Ms~s&, (s„,s&)F &,S,Ms)

In terms of 6-j symbols, the transformation coefficients
are [20]

((s,s )F, ,s;S,MB Is, (s,s ~ )FJ ', S,Ms )

= [( F; +1)(2F. +1)]' ( —1)"
Q(1,1;l,l;1)
Q(1,1;1,1;2)

Q(1, 1;1,2;1}
Q(1,1;1,2;2)
Q(1, 1;2,1;1)
Q(1, 1;2,1;2)

Q(1,1;2,2;1)
Q(1,1;2,2;2)
Q(1,2;1,2;1)
Q(1,2;1,2;2)

Q(1,2;2, 1;1)
Q(1,2;2, 1;2)
Q(1,2;2,2;1)
Q(1,2;2,2;2)

Q(2, 1;2,1;1)
Q(2, 1;2,1;2)

Q(2, 1;2,2;1)
Q(2, 1;2,2;2)
Q(2,2;2,2;1)
Q(2,2;2,2;2)

—1

12

0
&2/3
1/2&3
1/4&3
—1/&6
1/2v'6

1

2—5/12
1/&6

—1/2&6
1/2&3
1/4~3

0
—3

4

1/&2
0

1

2
1

4

—3
4

0
&3/4

1

1

8—&3/8
&3/8

1

4
1

2

&3/8
—&3/8

1

8
1

8

0
—3

&3/4
0

1

2
1

4

0
1/v'Z
1/4&3
1/2&3

—1/2&6
1/&6

1

4

2

1/2&6

1/4+3
1/2&3

1

12—1

&2/3
0

—5
12

1

can be obtained from the orthonormality relation

P(a, i;a, j)=5;~

or from the symmetry relations

P(Pj;a,i)=P(a, i;Pj )

and

(26)

(27)

TABLE III. Array Q(a, i;P,j;y) of spin-coupling matrix
elements [see Eq. (25)]. Other elements can be obtained from
the symmetry relation (28).

tpp

and the spin-coupling matrix elements by

Q(a «'»j 'y)=&ks, 'M, (a p a')ls& skulk's'Ms (p'p'p)&

(24) Q(P, j;a,i; y)=Q(a, i;P,J';y),
where each a, P, y, i, and j can be 1 or 2.

III. IMPROVED ADIABATIC QUANTITIES
AND CROSS-SECTION CALCULATION

(28)

(25)

where a, a'(Aa), P, and y are nuclei 1 ( =—a) or 2 ( =b)—
(the nuclei with which the muon of the improved adiabat-
ic states dissociate in the case of the first and third argu-
ments of Q) and i and j are the hyperfine states (1 for
ground, 2 for excited). The P arrays are given in Table II
and the Q arrays in Table III for collisions ap+b and
bp+ a with a&b Elements not. given in these two tables

P(1,1;2,1)

P(1,1;2,2)
P(1,2;2, 1)
P(1,2;2,2)

dpp

—1/&3
&2/3
~2/3
1/&3

tpp

&3/2
&3/2

1

tdp

—1/&3
&2/3
v'2/3
1/&3

fABLE, II. Array P(a, i;p,j) of transformation coefficients
[see Eq. (24)]. Other elements can be obtained from Eq. {26) or
the symmetry relation (27).

The required improved adiabatic potential curves and
matrix elements (of d/dR and d /dR ) were given in pa-
per I [14]. The only additional quantities required in the
present work from the molecular wave functions are the
muon charge densities at the nuclei. These were
simply calculated as p, =

~P (r=R„R;R)
~

and
pb= ~P (r=Rb, R;R)~, where R, = Rmb/(m, —

+mb )

and R„=Rm, /(m, +mb), and are listed for the lowest
two IA states in Table IV. The charge densities at the
nuclei in the molecule dip are plotted as a function of in-
ternuclear distance in Fig. 1; the other two molecules are
qualitatively similar. In the separated-atom limit
(R ~ oo ), the IA charge densities at the nuclei are about
8%, 3%, and l%%uo greater than the precise values given by
Eq. (8) for pp, dp, and tp, respectively. They also vary
slightly for the same atom dissociating from a different
molecule, e.g. , tp from tpp and tdp.

The only other necessity before using the IA descrip-
tion in the scattering calculation including hyperfine
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TABLE IV. Improved adiabatic muon charge densities (in units of a„)at nuclei. (Power of 10 ex-
ponents are given in brackets. ) p, and pb are the densities at nuclei a and b of the molecule aha in state
a.

R (a„)
0.40
0.80
1.20
1.60
2.00
2.40
2.80
3.20
3.60
4.00
4.40
4.80
5.20
5.60
6.00
6.40
6.80
7.20
7.60
8.00
8.40
8.80
9.20
9.60

10.00
11.00
12.00
13.00
14.00
15.00
16.00

1
pd

9.75[—1]
5.17[—1]
3.34[—1]
2.46[—1]
1.98[—1]
1.71[—1]
1.54[—1]
1.46[—1]
1.42[—1]
1.42[—1]
1.46[—1]
1.54[—1]
1.64[—1]
1.78[—1]
1.95[—1]
2.13[—1]
2.31[—1]
2.46[—1]
2.57[—1]
2.64[—1]
2.69[—1]
2.71[—1]
2.73[—1]
2.73[—1]
2.74[—1]
2.74[—1]
2.75[—1]
2.75[—1]
2.75[—1]
2.75[—1]
2.75[—1]

(a) dpp
1

Pp

9.23[—1]
4.77[—1]
3.01[—1]
2.16[—1]
1.70[—1]
1.41[—1]
1.23 [—1]
1.11[—1]
1.02[—1]
9.51[—2]
8.89[—2]
8.24[—2]
7.49[—2]
6.56[—2]
5.44[—2]
4.18[—2]
2.95 [—2]
1.90[—2]
1.13[—2]
6.33[—3]
3.40[—3]
1.79[—3]
9.21[—4]
4.70[—4]
2.38[—4]
4.27[—5]
7.49[—6]
1.30[—6]
2.22[—7]
3.76[—8]
6.33[—9]

2
pd

1.52[—1]
1.75[—1]
1.81[—1]
1.78[—1]
1.71[—1]
1.61[—1]
1.51[—1]
1.40[—1]
1.27[—1]
1.13[—1]
9.72[—2]
7.94[—2]
6.05[—2]
4.25[—2]
2.75[—2]
1.65[—2]
9.33[—3]
5.09[—3]
2.71[—3]
1.42[—3]
7.38[—4]
3.80[—4]
7.09[—5]
1.29[—5]
2.31[—6]
4.05[—7]
6.97[—8]
1.16[—8]

2
pp

1.44[—1]
1.69[—1]
1.78[—1]
1.78[—1]
1.75[—1]
1.72[—1]
1.69[—1]
1.68[—1]
1.70[—1]
1.74[—1]
1.82[—1]
1.92[—1]
2.04[—1]
2.16[—1]
2.27[—1]
2.35[—1]
2.40[—1]
2.43[—1]
2.45[—1]
2.46[—1]
2.46[—1]
2.47[ 1]—
2.47[—1]
2.47[—1]
2.47[—1]
2.47[—1]
2.48[—1]
2.48[—1]

R(a„)

0.40
0.80
1.20
1.60
2.00
2.40
2.80
3.20
3.60
4.00
4.40
4.80
5.20
5.60
6.00
6.40
6.80
7.20
7.60
8.00
8.40
8.80

1.00[0]
5.32[—1]
3.46[—1]
2.56[—1]
2.07[—1]
1.80[—1]
1.64[—1]
1.56[—1]
1.54[—1]
1.56[—1]
1.63[—1]
1.73[—1]
1.87[—1]
2.05 [—1]
2.24[—1]
2.42[—1]
2.58[—1]
2.69[—1]
2.76[—1]
2.81[—1]
2.84[—1]
2.85[—1]

(b) tpp
1

pp

9.27[—1]
4.76[—1]
3.00[—1]
2.15[—1]
1.68[—1]
1.39[—1]
1.20[—1]
1.07[—1]
9.78[—2]
8.97[—2]
8.18[—2]
7.34[—2]
6.35[—2]
5.20[—2]
3.96[—2]
2.76[—2]
1.76[—2]
1.04[—2]
5.76[—3]
3.08[—3]
1.60[—3]
8.23 [—4]

pt

1.58[—1]
1.80[—1]
1.86[—1]
1.82[—1]
1.73[—1]
1.62[—1]
1.50[—1]
1.36[—1]
1.20[—1]
1.03[—1]
8.31[—2]
6.29[—2]
4.39[—2]
2.81[—2]
1.68[—2]
9.51[—3]
5.19[—3]
2.76[—3]
1.45[—3]

2
pp

1.47[—1]
1.73[—1]
1.82[—1]
1.82[—1]
1.80[—1]
1.77[—1]
1.76[—1]
1.77[—1]
1.81[—1]
1.88[—1]
1.97[—1]
2.09[—1]
2.20[—1]
2.30[—1]
2.38[—1]
2.42[—1]
2.45 [—1]
2.47[—1]
2.48[—1]
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structure (hfs) is the transformation of the spinless basis
to the hfs basis. This is easily accomplished using the
transformation coefficients P of Table II. For any spin-
independent operator 0, the 2 X 2 matrix on the spinless
basis (e.g, V' ' ', A, B, and C of Paper I) is transformed
to the appropriate hfs basis by

&@.'lola& = &P.lolgq&P(a, ~;P,J), (29)

with P(a, i;P,j) given by Eqs. (21) and (24). The hfs ma-
trix obtained in Sec. II is thus added to the transformed
potential matrix so

(30)
where we have used the fact that V' ' ' is diagonal and
Eq. (26). The scattering calculation is then carried out as
in paper I except that it is never necessary to integrate
beyond an internuclear distance of -200a„ to converge
the hyperfine-transition cross sections.

Though scattering can occur in states of different
molecular spin, as mentioned earlier hyperfine transitions
can occur in only one of these states. Hence the observ-

TABLE IV. (Continued).

R (a„)
9.20
9.60

10.00
11.00
12.00
13.00
14.00
15.00
16.00

1

pt

2.86[—I]
2.86[—I]
2.87[—I]
2.87[—I]
2.87[—I]
2.87[—I]
2.87[—I]
2.87[—I]
2.87[—I]

(b) tpp
pp

4.18[—4]
2.10[—4]
1.05[—4]
1.84[—5]
3.14[—6]
5.30[—7]
8.82[—8]
1.46[—8]
2.38[—9]

7.51[—4]
3.87[—4]
1.98[—4]
3.65[—5]
6.58 [—6]
1.16[—6]
2.00[—7]
3.37[—8]
5.43[—9]

2
Pp

2.48[—I]
2.49[—I]
2.49[—I]
2.49[—I]
2.50[—I]
2.50[—1]
2.50[—I]
2.50[—I]
2.50[—I]

R (a„)

0.40
0.80
1.20
1.60
2.00
2.40
2.80
3.20
3.60
4.00
4.40
4.80
5.20
5.60
6.00
6.40
6.80
7.20
7.60
8.00
8.40
8.80
9.20
9.60

10.00
11.00
12.00
13.00
14.00
15.00
16.00

1.00[0]
5.26[—I]
3.39[—I]
2.49[—I]
2.00[—I]
1.71[—I]
1.54[—I]
1.44[—I]
1.39[—I]
1.37[—I]
1.39[—I]
1.42[—I]
1.47[—I]
1.55[—I]
1.65[—I]
1.78[—I]
1.94[—I]
2.12[—I]
2.32[—I]
2.50[—I]
2.65 [—I]
2.75[—I]
2.81[—I]
2.85[—I]
2.87[—I]
2.88 [—I]
2.89[—I]
2.89[—I]
2.89[—I]
2.89[—I]
2.89[—I]

(c) tdp
1

pd

9.80[—I]
5.11[—I]
3.26[—I]
2.38[—I]
1.89[—I]
1.60[—I]
1.42[—I]
1.30[—I]
1.23[—I]
1.18[—I]
1.15[—I]
1.12[—I]
1.09[—I]
1.05[—I]
9.89[—2]
9.03[—2]
7.86[—2]
6.40[—2]
4.78[—2]
3.23[—2]
1.98[—2]
1.13[—2]
6.05[—3]
3.14[—3]
1.59[—3]
2.81[—4]
4.79[—5]
8.04[—6]
1.33[—6]
2.19[—7]
3.55[—8]

pt

1.62[—I]
1.86[—I]
1.93[—I]
1.91[—I]
1.85 [—I]
1.77[—I]
1.68[—I]
1.60[—I]
1.52[—I]
1.43 [—I]
1.34[—I]
1.23 [—I]
1.10[—I]
9.36[—2]
7.52[—2]
5.57[—2]
3.75 [—2]
2.30[—2]
1.31[—2]
7.06[—3]
3.68[—3]
1.88[—3]
3.36[—4]
S.81[—5]
9.87[—6]
1.65[—6]
2.74[—7]
4.46[—8]

2
pd

1.59[—I]
1.85[—I]
1.93[—I]
1.92[—I]
1.87[—I]
1.81 [—I]
1.77[—I]
1.73[—I]
1.71 [—I]
1.71[—I]
1.74[—I]
1.79[—I]
1.87[—I]
1.98[—I]
2.13[—I]
2.29[—I]
2.45[—I]
2.58[—I]
2.67[—I]
2.72[—I]
2.75 [—I]
2.77[—I]
2.78[—I]
2.79[—I]
2.79[—I]
2.79[—I]
2.79[—I]
2.79[—I]
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FIG. 3. Hyperfine-quenching cross section for tp( f f )

+p~tp( $ $)+p. The integrated cross section {solid line) is to-
tally dominated by the s wave (long dash) as the p wave (short
dash) is negligible in collisions at 10 eV.

FIG. 1 ~ Muon charge densities at the nuclei in the molecule

dpi' as a function of internuclear distance. Those for the
ground IA state, which dissociates to dp+p, are shown as solid
lines; those for the second IA state, which dissociates to pp+d,
are shown as dashed lines.

able transition cross section for ap+b is given by [10]

cr; (ap+b) = r,~
c(ap+b. ),

2F, +, 2sb+1

(and similarly for bp+a) where cr; is the cross section
calculated for the particular molecular spin-state, S=—,

'

for pp+t and tp+p, and S =1 for pp+d, dp+p, dp+t,
and tp+d.

IV. RESULTS AND DISCUSSION

The partial-wave and integrated hyperfine-quenching
cross sections for dp( 1'$)+p, tp( t 1)+p, and tp(1f )+d
collisions are shown in Figs. 2, 3, and 4, respectively. The

dp(Tt')+p and tp(t')')+p quenching cross sections are
completely dominated by the s-wave contributions at rel-
ative collision energies E below 10 eV. However, the
tp( 1 1 )+d quenching is dominated by the p-wave contri-
bution; only at E( 10 eV (not shown in Fig. 4) does the
s-wave contribution finally exceed that of the p wave.
The explanation of this surprising behavior will be dis-
cussed below. The d-wave contributions to quenching
are completely negligible in all cases.

The isotopic-exchange cross sections (presented in Pa-
per I) [14] far exceed the hyperfine-quenching cross sec-
tions in the collisions pp(f1)+d, pp(1'1)+t, and
dp(t't)+t. Nevertheless, for completeness, integrated
quenching cross sections for these collisions as well as
those discussed in the preceding paragraph are given in
Table V. In all cases but tp(1'1 )+d, the quenching
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FIG. 2. Hyperfine-quenching cross section for dp{ f f' )

+p~dp(tl)+p. The integrated cross section (solid line) is
totally dominated by the s wave (long dash) as the p wave (short
dash) is negligible in collisions at 10 eV.

0.0
10

~l
10 10

RELATIVE ENERGY (eV)
10

FIG. 4. Hyperfine-quenching cross section for tp( f f )
+d~tp(f$)+d. The integrated cross section (solid line) is
dominated by the p wave (short dash) as the s wave (long dash)
is negligible except at extremely low energies. This anomalous
behavior is due to the weakly bound J= 1 state of tdp.
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TABLE V. Hyperfine-quenching cross sections for asymmetric collisions. The last column gives the cross section obtained for
tp+ d when the mass is modified to give the precise J= 1, v = 1 binding energy of td p (see text). (Power of 10 exponents are given in

brackets. )

E (eV)

0.001
0.002
0.005
0.010
0.020
0.050
0.100
0.200
0.500
1.000
2.000
5.000

10.000

dp( T T)+p

7.18[—25]
5.12[—25]
3.33[—25]
2.46[—25]
1.87[—25]
1.40[—25]
1.19[—25]
1.05[—25]
9.04[—26]
7.92[—26]
6.66[—26]
4.86[—26]
3.63[—26]

tp(T T)+p

4.31[—25]
3.05 [—25]
1.94[—25]
1.38[—25]
9.90[—26]
6.52[—26]
4.89[—26]
3.78[—26]
2.82[—26]
2.29[—26]
1.82[—26]
1.27[—26]
9.52[—27]

tp( T T )+d

8.24[—26]
1.11[—25]
1.70[—25]
2.37[—25]
3.30[—25]
4.96[—25]
6.42[—25]
7.48[—25]
6.68[—25]
4.35[—25]
2.08[—25]
5.48 [—26]
1.70[—26]

0 hfq (cm )

pp(T T)+d

2.62[—27]
1.85[—27]
1.18[—27]
8.39[—28]
6.03 [—28]
4.00[—28]
3.03[—28]
2.38[—28]
1.83[—28]
1.52[—28]
1.25[—28]
9.40[—29]
7.41[—29]

pp( T T )+t

1.52[—26]
1.07[—26]
6.83[—27]
4.87[—27]
3.51[—27]
2.34[—27]
1.78[—27]
1.41 [—27]
1.09 [—27]
9.24[—28]
7.89[—28]
6.61[—28]
6.15[—28]

dp( T T )+t

5.15[—25]
3.67[—25]
2.38[—2S]
1.75 [—25]
1.33[—25]
9.82[—26]
8.24[—26]
7.14[—26]
6.02[—26]
5.26[—26]
4.62[—26]
4.29[—26]
5.14[—26]

tp( T T )+d
modified

5.07[—26]
6.66[—26]
1.00[—25]
1.40[—25]
1.95[—25]
3.01[—25]
4.04[—25]
4.99[—25]
4.98[—25]
3.S5 [—25]
1.83 [—25]
5.15[—26]
1.64[—26]

essentially all occurs in the s wave. So except for this
anomalous case, the quenching cross sections monotoni-
cally decrease with increasing collision energy, and the
characteristic low-energy dependence of E ' is fairly
well satisfied at E ~ 0.256Ehf, where AEhf is the hfs split-
ting of the muonic atom. On the other hand, the
tu( t' f )+d quenching cross section has a relative
minimum at -0.0001 eV and a maximum at -0.025 eV.

We now examine the unusual behavior of tp( f f)+d.
It is not a priori obvious whether the cause lies in the par-
ticular spin structure (hfs couplings and splitting) or in
the particular Coulomb dynamics (potential curves and
reduced mass). The explanation turns out to lie in the
latter, and, in fact, the large p-wave contribution is close-
ly related to the existence of the same weakly bound state
that makes muon-catalyzed d-t fusion so interesting. The
smallness of the s-wave contribution is an independent
occurrence but has a similar explanation.

The situation is made clear by scattering calculations
in which the reduced mass, and nothing else, is arbitrarily
varied. Figure 5 shows the s- and p-wave quenching cross
sections at collision energies 0.002 and 0.02 eV obtained
for a system like tp( f 1 )+d except having fictitious re-
duced mass from 6 to 14m„. The true reduced mass,
marked by circles, is 10.8010m„. It can be seen that the
p-wave cross section is extraordinarily sensitive to the
mass; a rather small change could increase or decrease
the cross section by several orders of magnitude. Howev-
er, for a given mass, the p-wave cross section is not terri-
bly sensitive to the collision energy —the results shown
for 0.002 and 0.02 eV are qualitatively similar. The s-
wave cross section, on the other hand, happens to lie near
a minimum as a function of the fictitious mass. It is as-
tonishing that even though the hfs interaction is quite
small, the hyperfine-quenching cross section could have
been quite large, even exceeding the quenching cross sec-
tion arising from muon exchange in syrnrnetric collisions.

The large p-wave contribution is clearly due to the
weakly bound J= 1 state of td p', in fact, the peak in this

I
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Fictitious tp+d Reduced Mass (units of

FICx. 5. Hypothetical s- and p-wave cross sections for a
(tp+d)-like system having fictitious reduced mass between 6
and 14m„ for collisions at energies of 0.002 and 0.02 eV. At the
lower (higher) energy the s wave is shown by a long-dashed
(chained) curve and the p wave by a short-dashed (dotted) curve.
The values at the actual tp+d reduced mass are marked by cir-
cles.

partial cross section as a function of fictitious mass,
which comes close to the unitary limit, occurs when this
bound state becomes barely unbound but is still trapped
by the centrifugal barrier. This sensitivity to the mass
brings up a disquieting consideration. In the present
method, which utilized only the lowest IA states,
the reduced mass normally used is that of (tp)
+d(10.8010m„). This choice has been demonstrated
to be correct for elastic scattering since, unlike the re-
duced mass of the nuclei t +d (10.6442m„), it provides
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TABLE VI. Hyperfine-quenching rates normalized to liquid-hydrogen density. The last column gives the rate obtained for tp+d
when the mass is modified to give the precise J= 1, U = 1 binding energy of tdp (see text). (Power of 10 exponents are given in brack-
ets. )

T (K)

23
58

116
232
580

1160

dp( T T)+p

5.51[2]
5.67[2]
5.95[2]
6.43[2]
7.74[2]
9.46[2]

tp(T T)+p

3.11[2]
3.12[2]
3.14[2]
3.19[2]
3.33[2]
3.55 [2]

tp(T T)+d

1.28[2]
3.17[2]
6.29[2]
1.23[3]
2.82[3]
4.86[3]

~hfq

pp(T T)+d

1.94[0]
1.95[0]
1.97[0]
2.00[0]
2.10[0]
2.27[0]

pp(T T)+t

1.05[1]
1.06[1]
1.07[1]
1.09[1]
1.16[1]
1.25[1]

dp(T T)+t

2.92[2]
3.00[2]
3.13[2]
3.38[2]
4.00[2]
4.82[2]

tp(T T)+d
modified

7.52[1]
1.85[2]
3.73[2]
7.31[2]
1.76[3]
3.18[3]

the correct asymptotic wave number. This provision is
vital for the correct long-range development of the
elastic-scattering phase shift. However, hyperfine transi-
tions occur at short range and, in the peculiar case of
tp+d, require accurate representation of the J=1, U =1
state of td p.

Thus we calculated the energy of this bound state in
the two-state IA treatment. For the reduced mass
10.8010m„, the binding energy before hyperfine splitting
turns out to be 0.5272 eV, which may be compared with
the accurate value of 0.6318 eV (0.6602 eV Coulomb less
0.0284 eV relativistic shift) [21]. We also determined
what reduced mass would give precisely this binding en-
ergy using the same IA potentials and matrix elements as
before. This is achieved by a mass 10.8167m„, which it
may be noted is still much closer to the (tp)+ d reduced
mass than that of (dp)+t (10.9958m„); both are larger
than the reduced mass of t +d. The effect of this altera-
tion can be discerned from Fig. 5; the corresponding in-
tegrated cross sections are given in the last column of
Table V.

The bound-state calculation was repeated using the
four states including hfs. The correction to the binding
energy of the J=1, U =1 state of tdp due to hfs was
thereby found to be 36.1 meV. Other recent calculations
have given 35.2 meV (Ref. [21]) and 35.9 meV (Ref. [22]),
the former utilizing a nonadiabatic variational wave func-
tion.

Though the above modification resulted in a fairly
modest reduction in the tp(1'1)+d quenching cross sec-
tion, the problem probably deserves a more exact treat-
ment in view of the extreme sensitivity revealed by Fig. 5.
Such a treatment might be possible using the converged
many-state adiabatic representation [23] or using
rearrangement-channel [24] or hyperspherical [25] coor-

dinates.
The hyperfine-quenching rates for asymmetric col-

lisions, normalized as conventional to liquid-hydrogen
density N =4.25 X 10 atomslcm, are given in Table VI
at several temperatures. Except for the lowest tempera-
tures of interest, and even there not for tp+d, we do not
have crht ccE ', so Ah& =N(ohfqu) is not given by the
simple expression used in papers I and II [14,10]. These
rates are quite slow, so it would appear unlikely that any
of the speculations invoking these processes to explain ex-
perimental results are valid [5,6]. However, in view of
the sensitivity to the weakly bound state of td p, the pos-
sibility of a much larger value for tp(]'1)+d hyperfine
quenching cannot be ruled out, though it appears unlike-
ly.

In the four-state calculations of the hyperfine-
transition cross sections for asymmetric collisions, the
elastic and isotopic-exchange cross sections are also
simultaneously generated. Converging the elastic cross
sections requires integration to a greater internuclear dis-
tance, but this was done at a few energies in order to see
the effect of hyperfine structure on elastic scattering. The
differences in cross sections for different atomic hyperfine
states were generally ~ 1% for both elastic and exchange
scattering. The cross sections calculated in paper I ignor-
noring the hyperfine splitting usually, though not always,
lie in between the cross sections for the two hyperfine
states.
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