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Many-body perturbation-theory calculations in atoms with open shells
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Energy intervals, g factors, and M1 amplitudes of the 6p configuration in Pb and the 6p'
configuration in Bi are calculated. All the corrections of second-order perturbation theory in residual
electron-electron interaction are taken into account. The higher-order corrections are also investigated.
In Pb we have calculated the most important corrections: the screening of external electrons interaction
by closed-shell polarization. In Bi the higher-order corrections are treated semiempirically. Energy lev-
els for a superheavy element with charge Z = 114 are also calculated.

In the past few years, methods [1—5] have been
developed that allow us to calculate with high accuracy
the energy levels and other spectroscopic characteristics
of heavy atoms with one external electron above the
closed shells with high accuracy. These high-precision
atomic calculations were stimulated by the interest in re-
liable prediction for parity-nonconservation effects in
heavy atoms (see, e.g. , Ref. [6] and references therein).
The following and much more complicated problems are
the investigation of atoms with few external electrons.

In the present work the technique developed in Refs.
[1], [3], and [5] was applied to the investigation of Pb and
Bi atoms. The energy intervals and g factors of 6p and
6p configurations were calculated. We have also calcu-
lated the amplitudes of M1 transitions. These amplitudes
are necessary to obtain useful information from the
parity-violation experiments on Pb and Bi (see, e.g. , Ref.
[7]). Note that preliminary results of the present work
(configuration wave functions and Ml amplitudes) were
used by us in the calculation of parity nonconservation in
Pb and Bi atoms [8].

Unlike the external electron ionization energy, the en-
ergy intervals and structure of configurations in Pb and
Bi are determined mostly by the residual electron-
electron interaction, which we treat by means of pertur-
bation theory. This is the reason for the accurate ac-
count of correlation corrections. All the corrections of
the second-order perturbation theory in the residual in-
teraction were calculated. The higher-order corrections
were taken into account by different methods for Pb and
Bi. The most important higher-order corrections corre-
spond to collective screening of electron-electron interac-
tions [3]. In Pb the screening of electron-electron in-
teraction due to closed-shell polarization was calculated.
In Bi the higher-order effects were treated semiempirical-
ly. Practically, only two fitting parameters are needed for

where

ZeHo=cap+(13 1)mc — —+ V .
r

Here a and P are Dirac matrices, Z is the nucleus charge,

(3)

The single-particle potential Vhas the form

V= VHF+ V6p . (4)

Here VH„ is the Hartree-Fock potential of closed shells
(both direct and exchange). V6 in Pb is the angular-
independent part (zero harmonic) of one external 6p elec-
tron potential and in Bi it is the angular-independent part
of the potential of two 6p electrons (V ' approxima-
tion). The Hartree-Fock potential VHF added to (3) leads
to the exact cancellation of a certain class of diagrams,
namely those diagrams which describe an interaction
with closed-shell electrons without their excitation. Simi-
lar to VH„, the field of external shell V6 is canceled out
in perturbation theory diagrams. But this cancellation is
approximate only, because of the difference of 6p, &2 and

accurate description of energy intervals, g factors, and
M1 amplitudes inside the 6p configuration.

We use the relativistic Hartree-Fock method as a zero
approximation. The exact Hamiltonian of an atom is di-
vided into two parts. The first part is a sum of single-
particle Hamiltonians allowing an exact numerical solu-
tion, and the second part represents the remaining ("re-
sidual") interaction which can be taken into account in
terms of perturbation theory:

H=QHO(r;)+U
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6p3/2 electron electric fields.
In atoms that have one external electron there are now

first-order corrections to ionization energy because of
adequate choice of zero approximation. In Pb and Bi
there are two reasons which lead to 6p" configuration
splitting. The first effect, which appears already in the
first order of perturbation theory, is the interaction of
external 6p electrons. The second effect is the 6p-level
fine structure. This is a simple single-particle effect.

The second-order corrections to the mixing of
configurations and energy-level splitting are shown in
Fig. 1. We use the Feynman perturbation theory tech-
nique for drawing these diagrams. In this technique the
number of diagrams is essentially smaller than in the usu-
al Brueckner-Goldstone many-body perturbation theory
technique. Moreover, the Feynman technique allows us
to calculate in Pb an infinite chain of diagrams corre-
sponding to collective screening of Coulomb interaction
by closed-shell polarization [3,5].

The details of the Feynman-diagram calculations
(Green function in Hartree-Fock field, polarization
operator, integration over frequencies, diagram summa-
tion) are described in Refs. [3] and [5]. The diagrams,
Fig. 1(a), are the renormalization of the external-electron
interaction. Most important here is the first diagram, (i)
which is the only one without closed-shell electron excita-
tion. The Fig. 1(b) diagrams change the single-particle
energy. These diagrams give corrections to 6p level fine
structure which we calculate quite accurately. In Fig.
1(c), we have shown the diagram describing the interac-
tion of three 6p electrons which appear in Bi only.

Energy levels, g factors, and M1 amplitudes of the 6p
Pb and 6p Bi configurations calculated in first and
second orders of perturbation theory are shown in Tables
I—III. Due to relatively small energy intervals, the ma-
trix of interaction between the 6p (or 6p ) configuration
components was diagonalized exactly. We see that the
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2's'
0

0
10 303
10 303
20 606
20 606

Energy levels (cm ')
0 0 0

6779 8 692 8 165
10414 10838 10504
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31 807 28 258 29 729

0
7 819'

10651'
21 458'
29 467'

3pl
2

1D
2

1.167
1.333

g factors (cm ')
1.315 1.248
1.185 1.252

1.246
1.254

1.2753(4)
1.2263(1)g

'Zero order over residual electron-electron interaction.
First order.

'Second-order calculations.
Second order over residual interaction plus screening of

external-electron interaction by the closed-shell polarization.
'Reference [10].
'Reference [11].
gReference [12].

first-order correction is comparable with fine-structure
splitting, and the second-order correction is only two
times smaller than the first one.

As was shown in Refs. [3—5] for the Tl and Cs atoms,
there are two of the most important effects among the
higher-order corrections (Fig. 2). The first effect [Fig.
2(a)] is a strong collective screening of the external elec-
trons interaction by the closed-shell polarization. The
second [Fig. 2(b)] is an attraction of particles and holes in
closed shells which reduces effectively the energy denomi-
nators in perturbation theory graphs. In atoms with one
unpaired electron these two effects strongly cancel each
other, which is a source of reasonable accuracy for the

TABLE I. Energy levels and g factors of the Pb 6p
configuration.

Expt.

(a)

TABLE II. Energy levels and g factors of the Bi 6p con-
figuration.

Expt.

4
S3/2

2
D3/2

2
D5/2

2
~1/2

I
~3/2

0
12 142
16793
24 248
35 435

0
11 672
15 593
21 806
33 337

Energy levels (cm ')
0

11 507
15 320
20 688
32 839

0
11419
15 438
21 661d
33 165

4S3
2D 3/2
2

1.7481
1.1332
1.2527

g factors (cm ')
1.5907 1.6445
1.2884 1.2321
1.2645 1.2594

1.6433(2)'

1.2608(1)

FIG. 1. The second-order electron-electron interaction dia-
grams: (a) the two external-electron interaction, (b) the single-
particle energy correction, (c) the three external-electron in-
teraction which appears in the Bi 6p configuration only. The
external lines in diagrams correspond to 6p electron states. We
have not shown here diagrams with single-particle operator V6~

[Eq (4)l.

' The first and second orders over residual interaction are taken
into account.
'The result of semiempirical treatment of higher-order correc-
tion.
Reference [10].

'Reference [13].
"Reference [14].
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TABLE III. M1 amplitudes in Bi.

Transition

4 I 2S3/2- D
4 ~ 2
S3/2 D5/2

4 ~ 2S3/2 P 1./2
4 ~ 2S3/2" ~3/2

—1.747
0.615
0.625
0.166

—1.695(9)
0.563(6)
0.590{5)
0.199(5)

'Second-order perturbation-theory calculation.
"Second-order calculation plus higher-order corrections treated
semiempirically.

= '"
&z,J, ~I.,+2s, ~J,J, &

2mc

, "
&~,J, ~s, ~J,~, &.

For calculating g factors and M1 amplitudes we use the

second-order perturbation-theory calculations [1,2].
Unlike the alkali-metal atoms, in Pb and Bi the main

contribution to the mixing of 6p" configurations comes
from the direct interaction of two external electrons
without closed-shell excitation [diagram (i) in on Fig.
1(a)]. For the Pb atom we have taken into account
screening of the Coulomb interaction by closed-shell po-
larization only in these second-order diagrams. In other
words, we have calculated the chain shown on Fig. 3.
The method of calculation of Coulomb interaction
screening was described in Refs. [3] and [5]. Concerning
the renormalization of second-order diagrams a2-a4 with
excited core electrons (holes) we suppose that the
particle-hole attraction cancels numerically the essential
part of the screening of Coulomb interaction (see discus-
sion above). Results of high-order calculations in Pb are
shown in Table I, column d. One can see that higher-
order corrections (screening and particle-hole attraction
diagrams) essentially improve the accuracy of calcula-
tions of energy levels.

We have also calculated the value of M1 amplitude
P o

- P
&

in Pb which is interesting for the interpretation
of parity-violation experiments

A~, = —1.29(1) (5)2' c
The reduced M 1 amplitude is defined as (I'A/)

J' 1 J
AM1( 1) ' —J 0J

fact that the overlapping of 6pi/2 and 6@3/2 radial wave
functions is 0.98 both in Pb and Bi, and also include the
correction a/2m. in the free-electron g factor.

In Bi the second-order perturbation theory calculations
are almost the same as in Pb. Only one additional
second-order diagram appears [Fig. 1(c)] which connects
three external 6p electrons. To evaluate the high-order
effects in Bi we use a semiempirical approach. Let us
neglect all the relativistic corrections in high-order
effects. In this case, the residual Coulomb interaction
conserves I.—the total angular momentum of an atom.
Thus all the high-order corrections may be expressed in
terms of three matrix elements Uo, U&, Uz corresponding
to Bi 6p available in configuration values of L =0, 1,2.
Moreover, the mixing and splitting of 6p configurations
depend on only two values, U&

—Uo and U2 Uo ~ We
have chosen the fitting parameters (in cm ')

U& Uo =2115

U2 Uo 1277
(7)

Po ) =0.9744~ —,
'

—,
' ) —0.2246

~
—,
' —,'),

l'so ) =0 2246l —,
'

—,
' )+0 9744 —,

'
—,
' )

Coefticients for J =2 states are easily extracted from g-
factor values.

Experience with calculations for atoms with one elec-
tron above the closed shells shows that second-order
perturbation-theory calculations usually overestimate the
fine structure of single electron levels. In Tl, whose 6p
electron properties look very similar to those of 6p elec-
trons in Pb and Bi, the accuracy of the second-order cal-
culation of fine structure was =2% [9]. Therefore we
have also reduced the fine structure of 6p single-particle
energies in Bi by 300 cm (2%). The improved values of
energy levels, g factors, and M1 amplitudes in Bi are
shown in Table I, column c.

For possible applications we present here expansion
coeNcients for the configurations 6p in lead and 6p in
bismuth in a jj scheme. They are obtained by diagonali-
zation of an interaction matrix calculated in second order
with semiempirical treatment of higher orders (see
above). Note that we neglect here the admixtures of
higher configurations (for lowest states their weight is
about 2%%uo).

For Pb, J=O,

(a)

FIG. 2. The two most important chains of high-order dia-
grams in alkali-metal atoms: (a) the collective screening of the
external-electron interactions, {b) the attraction of particles and
holes in closed shells.

+ 0 ~

FIG. 3. The high-order diagrams which we have calculated
in Pb.
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TABLE IV. Energy levels (cm ') for Sn, Pb, and a superheavy element with Z=114. Zero corre-
sponds to ion configuration np&zz. Experimental values from Ref. [10].

np

npn's

3pl
0

3p
3pl

2
lD

2
'S0'

3p
3p

n=5
Calc.

—59 209
—57 522
—55 786
—50 649
—42 099
—24 735
—25 741

Sn

n'=6
Expt.

—59 232
—57 540
—55 804
—50 619
—42 069
—24 591
—24 318

n=6
Calc.

—59 960
—51 996
—49 174
—38 301
—30282
—25 163
—25 721

Pb

n'=7
Expt.

—59 821
—52 002
—49 171
—38 363
—30 354
—24 861
—24 534

E114

n=7, n'=8
Calc.

—68 452
—42 645
—40 061
—9 191
—3 934

—25 523
—25 209

For Bi, I=2,

+0. 1904~ —', —', —', ),
~'I)'„, ) =O. 3354~-,'-,'-,' &+O.9406~-,'-,'-', &

—0.0526~-,'-', —,
' &,

~

P 3 r2 ) = —0. 1622 —,
'

—,
' —', ) +0. 1127

~
—,
' —', —', )

+0.9803 —', —', —,
' ) .

The results for M1 amplitudes and expansion
coeKcients are in good agreement with semiempirical cal-
culations [15]. As is known, there is an "island of stabili-

ty" near a charge Z =114 nucleus. The corresponding
atom E 114 (configuration 7p ) is the analog of Sn (Sp )

and Pb (6p ). It is interesting to calculate the spectrum
of this atom. We obtained it using a direct calculation of
first and second order for the interaction matrix of 7p
states and extrapolation of higher orders for the np
configuration from a semiempirical fit in Sn and Pb (the
method is similar to that we use for Bi). The results of a
such calculation are presented in Table IV. For an es-
timation of the accuracy we present also the calculated
and experimental energies for Sn and Pb.
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