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Fine structure of negative ions of alkaline-earth-metal atoms
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Fine-structure intervals np1/2-np3/2 (np, /2 is the ground state) are calculated for negative ions using
relativistic many-body perturbation theory: Ca 4p, 56 cm; Sr 5p, 178 cm; Ba 6p, about 460
cm; and Ra 7p, 1341 cm . Comparison of the fine-structure interval with affinity: Ca 10%, Sr
22%, Ba 30%; for Ra the fine-structure interval is larger than the affinity. Thus the Ra 7p3/2 state
is a resonance in the continuous spectrum with energy 0.018 eV. This means that the relativistic spin-
orbit interaction plays a determining role in slow electron-radium scattering.

I. INTRODUCTION

Recently, calculations of negative ions of alkaline-
earth-metal atoms Ca, Sr, Ba, and Ra have been carried
out [1—6]. These calculations have shown that these
atoms have positive affinity and stable negative ions with
configuration ns np. This supports the experimental
discovery [7] of the first negative ion of this type, Ca
which was predicted theoretically [8]. The present work
is a calculation of the fine structure of alkaline-earth-
metal negative ions.

The main feature of these negative ions is that the elec-
tron is bound with the atom that has closed subshells.
This bond is only due to the strong correlation (polariza-
tion) interaction of the extra electron with atomic elec-
trons. This explains the small binding energy -0. 1 eV.
Therefore, we should accurately take into account both
correlation and relativistic (spin-orbit) corrections. The
energy of spin-orbit splitting (fine-structure interval) b,Et,
between p&/2 and p3/2 levels is proportional to z n,
where z is the nuclear charge, a= 37. However, our cal-
culation shows that even for the lightest ion Ca
(z=20) b,Et, =56 cm ', which constitutes 10%%uo of the
4p-electron binding energy. The value of EEL, increases
rapidly in the row of negative ions Ca, Sr, Ba, and
Ra . And for Ra 7s 7p, AE&, is larger than the binding
energy of the 7p&/2 electron, i.e., the upper fine-structure
level Ra 7p3/2 lies in the continuous spectrum and is
unstable.

In the present work we use relativistic many-body per-
turbation theory and the correlation potential method to
calculate np&/2 and np3/2 energy levels of negative ions

and to find the fine-structure interval AE&, =E„-E„
~3/2 ~ 1/2

This method allows us accurately to calculate the correla-
tion interaction of the external electron with the electron-

. ic core, which creates the negative-ion bound state. The
accuracy of our calculation of the external electron ener-
gy level in the usual atoms is —

l%%uo for Tl [9] and -0. l%%uo

for Cs [10]. Even though we use the same method, the
accuracy for the negative-ion affinity cannot be as good
since these very weakly bound levels are very sensitive to
the accuracy of correlation correction calculations (l%%uo

change of correlation interaction leads to —10%%uo change
of affinity). Our estimate of accuracy in this case is about
30%. However, the accuracy of the fine-structure inter-
val calculation is much better: a few percent.

We should note that previous calculations of affinity
were carried out by the many-configuration Hartree-Fock
method [8,3], the Dyson equation in nonrelativistic vari-
ant [7,6], and in the relativistic variant [5]. Use of the
Dyson equation was suggested in Refs. [11] and [12]; a
local-density method was used in Ref. [2], and an R
matrix theory was used in Ref. [4].

II. METHOD OF CALCULATION

The energy of the external electron in a negative ion
can be found from the single-particle equation (see, e.g.,
Refs. [2,5,9,10], and references therein):

(Ho+i)g, =E,g, ,

where Bo is the relativistic Hartree-Fock-Dirac Hamil-
tonian
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Xg, = J X(r„r2,E, )lt, (rz)d rz . (3)

In terms of many-body theory, 2 is a self-energy operator
for a single-electron Green function. The calculation of
2 is discussed below. We use the caret symbol for nonlo-
cal (integration) operators.

In a neutral atom, Eq. (1) determines the so-called
Briickner orbitals g, . Correlation correction (shift of en-

ergy with respect to Hartree-Pock value) is determined
by the operator 2 and is approximately equal to the first-
order correction in 2: (a ~Xia ). Equation (1) also in-
cludes higher-order corrections in 2, which, however are
small. Thus, in atoms, 2 plays the role of a relatively
small perturbation.

For negative ions it is impossible to consider 2 as a
perturbation since the negative ion would be unstable if 2
is neglected. Note also, in this case 2 is substantially
larger than for an electron in a neutral atom. Actually,
the long distance asymptotic form of correlation poten-
tial ( r„rz ))ai, ) is

eeX(r„r2,E, )~ — 5(r, —r~) .
2ri

(4)

Here, az is the Bohr radius, while a is electric dipole po-
larizability. The negative-ion external electron is
inAuenced by the polarizability of the neutral atom,
which is much larger than the polarizability of the posi-
tive ion that inAuences an electron in a neutral atom.

In the present work we do the calculations as follows.
(1) The Hartree-Fock-Dirac potential of the neutral

atom V and Hamiltonian Ho are used for a zero approx-
imation basis of states creation (for many-body perturba-
tion theory calculations of 2).

(2) The correlation potential X(r, r2, E, ) in the p, iz and

p 3 /p partial waves is calculated.
(3) Equation (1) is solved for np, i2 and np3/2 orbitals

and the fine-structure interval is calculated from

AEf, =E„—E„

2

k =ca.p+(/3 —1)mc — + f'+,
0 r

V = Vd;, + V„,h is the Hartree-Fock potential created
by the electrons of the neutral atom, Vd;, and f',„,h are
direct and nonlocal exchange potentials, and 2 is the
nonlocal correlation potential (integration operator)
created by the electrons of the neutral atom:

FIG. 1. Second-order diagrams for the correlation potential

Now consider the details of these calculations using as
an example the ion Ca . We use Green functions and
Feynman diagram techniques to calculate R. (Corre-
sponding methods of Green-function and diagram calcu-
lations are described in Refs. [9], [10], and [14].) Usage
of these techniques is convenient for the summation of
high-order diagrams and provides better accuracy than
direct summation over intermediate states in perturba-
tion theory.

In the lowest- (second-) order in residual electron-
electron interactions, 2 is described by two diagrams
shown in Fig. 1. The detailed results of our calculations
for Ca are presented in Table I. The main contribution
to the polarizability of Ca (which determines the asymp-
totic form of the correlation potential) is given by 4s
subshell [see column (a), line 4], and is sufficient to take
into account the contribution of this subshell only to ob-
tain the negative-ion state. However, the binding energy
of the 4p, i2 electron in this approximation [column (a)] is
essentially smaller than the experimental affinity [column
(e)]. Note that it is convenient to find the value of the po-
larizability using the asymptotic behavior of the polariza-
tion operator (Fig. 2):

11(ri, r2, N ) =r i 'r, 'a

r&, rz ))a&, co=0 .

The polarization operator is the most essential part of di-
agram 1(a). In second-order diagrams the value of the
polarizability is strongly underestimated (a=120a~; ex-
periment a(Ca) =170az, Ref. [13]). Inclusion of the 3p
inner shell of the Ca atom increases the polarizability by
a+3a~ only. However, the binding energy of the 4p&i2
electron is doubled [column (b)]. This means that there is
no direct connection between the polarizability and
power of the correlation potential. In other words, the
region inside the atom is essential where asymptotic for-

TABLE I. Binding energies of 4P, /2 and 4P3/2 states of Ca 4s 4p negative ion. Column (a): Only
the second-order contribution of the 4s subshell to 2 (Fig. 1) is taken into account; column (b) second-
order, 4s, and 3p subshell contribution; column (c) 4s contribution with the particle-hole interaction and
screening taken into account; column (d) 4s and 4p contribution with screening and particle-hole in-

teraction; column (e) experiment: binding energy (Ref. [7]) and polarizability (Ref. [13]).

(a) (b) (c) (d) (e)

4P I /2 (meV)
4P3/2 (meV)
KEf, (cm ')

a (units of a~)

24.2

120

55.8
48.9
56

123

54.5

149.1

71.0
64.1

56
149.8

43+7

170
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FIG. 2. Polarization operator.
FIG. 4. Screening of the electron-electron interaction.

mula (4) is not applicable.
Estimates show that this doubling of the binding ener-

gy corresponds to a 10%%uo increase of power of the correla-
tion potential. The strong dependence of the binding en-
ergy on the correlation potential power is because the
greater part of the correlation potential ( -80%%uo ) is spent
on the creation of the bound state from the continuous
spectrum (i.e., 0.82, gives the bound state with energy
E = —0) and only a small part determines the position of
the level. Thus, we need great accuracy ( —l%%uo) in the
calculation of f, to obtain the affinity with an accuracy of
10%%uo (in the neutral atom, the situation is just the oppo-
site: a 10%%uo accuracy in 2 gives a 1% accuracy in the en-
ergy calculation). Therefore, the agreement between the
calculated 4p»2 binding energy 55.8 meV (2 calculated
in second order) and the experimental value 43+7 meV
looks satisfactory. In the same approximation the bind-
ing energy of the 4p3/2 electron is 48.9 meV, i.e., the
fine-structure interval EEf, =6.9 meV=56 cm '. This
value of EEf, is comparable with experimental error in
the aftinity of the Ca atom. If, in experiment, the Ca
ions are created in both the 4P&/2 and 4P3/2 state, the ob-
served am. nity probability corresponds to a statistical
average value, which is closer to the 4P3/2 energy. In our
calculation this value

IE I

=
I —,'E4p +-,'Egp

I
=51.1 meV .

Consider now the contribution of higher-order dia-
grams to the correlation potential R. Our experience
shows that for the neutral atom two classes of diagrams
are the most important (see Refs. [9] and [10]): the
particle-hole interaction in the polarization operator (Fig.
3) and the screening of the electron-electron interaction
(Fig. 4). The first effect essentially decreases the energy
denominators that appear in the perturbation theory, and
correspondingly increases the polarization operator and
the correlation potential R. It is easy to take this effect
into account by calculation of the Green function, which
enters into the polarization operator (Fig. 2) in the field of
atomic core with the hole. Screening of the electron-
electron interaction decreases the polarization of the elec-
tronic core by the external electron and decreases the
correlation potential R. The method of the screening cal-
culation is described in Refs. [9] and [10]. (This calcula-
tion is, in fact, a summation of the matrix geometrical
progression for the polarization operator A=II(r, , rz)
and the Coulomb interaction Q; it reduces to a calcula-

tion of an inverse matrix: the renormalized operator is
n. =A[1+igft] '. ) The final diagrams for 2 which in-
clude the particle-hole interaction in ft and the screening
of the electron-electron interaction, are presented in Fig.
5. For simplicity, we neglect higher-order correlations in
the exchange diagram in Fig. 5(b) since this diagram is
considerably smaller than that in Fig. 5(a), and we do not
need high accuracy in its calculation.

The results of this calculation are presented in column
(d) of Table I. The effects of the particle-hole interaction
in the polarization operator and the screening strongly
compensate each other. Therefore, the binding energies
of 4P&/2 and 4P3/2 only slightly exceed the values ob-
tained in the second-order calculation of 2 [column (b)].
The fine-structure interval practically does not change.
Note that the observed change in the 4P binding energy
corresponds to a 4%%uo change of the correlation potential
power only. But the new value for the polarizability
+=149.8a~ substantially exceeds the second-order result
and lies much closer to the experimental value. This is
explained by more accurately taking into account the
particle-hole interaction.

It is interesting also that the screening of the electron-
electron interaction reduces drastically the polarization
of internal shells by the external electron field. In column
(c) of Table I we present results that take into account 4s
contributions to X (Fig. 5) and a only. Comparison with
column (d) shows that screening suppresses the contribu-
tions of the 3p shell to the polarizability four times (0.7az
instead of 3a~) and the contribution to the 4P, &2 binding
energy two times. It is easy to understand this fact. The
external shell 4s drastically screens the field of the extra
weakly bound electron inside the atom similar to the
screening of an applied electric field by the external atom-
ic shell (see Ref. [15]).

It is interesting to determine how much we overesti-
mate the correlation potential (with the particle-hole in-
teraction and screening taken into account; see Fig. 5). If
we introduce the factor 0.932 to 2, we obtain the binding
energy of the 4P, &2 level 43 meV (remember that the ex-
perimental value is 43+7 meV). The overestimation fac-
tor would probably be even closer to unity if the statisti-
cally averaged energy of 4P, / and 4P3/2 were measured.
We see also that we need the calculation with l%%uo accu-

(b)

FIG. 3. Particle-hole interaction in the polarization operator.

FICx. 5. Diagrams for the correlation potential 2 taking into
account the particle-hole interaction and the screening of the
electron-electron interaction.
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TABLE II. Binding energies of np&/2 and np3/2 states and fine-structure intervals for negative ions of
rare-earth atoms.

Z Ion
Binding energy (10 eV)

+p &/z F3/2
EEf, &P l/2

(cm ')

20
38
56
88

Ca 4s 4p
Sr 5s Sp
Ba 6s26p
Ra 7s 7p

56
102

148

49
80

56
178
460b

1341

56
93

192
125

Other calculations for Ca, Sr, Ba (Ref. [5]) and Ra (Ref. [2]).
Ba fine structure is extrapolated from Ra and Sr calculations (AEf, -Z ).

racy to obtain affinity with 10% accuracy. Now we have
an accuracy of several percent in 2 (see Ref. [10]).

III. RESULTS AND DISCUSSION

The results for Ca presented above show that the
binding energies of the 4P&/2 and 4P3/2 electron states
are very sensitive to the power of the correlation poten-
tial 2 and depend on the approximation that is used for
the calculation of R. However, the fine-structure interval
AEf, is practically not sensitive. The reason is the follow-
ing. The matrix element of the spin-orbit interaction is
determined mainly by the small region near the nucleus
(Ui, -zlr ). The small distance behavior of the p-wave
function depends slightly on 2 since even for energy
E~O a wave function with orbital angular momentum
l & 1 tends to the quadratically integrable function
(f-r '). Therefore, we can calculate the fine-
structure interval using the simplest second-order ap-
proximation (Fig. 1) and take into account both the exter-
nal shell and several inner-shell excitations in the polar-
ization operator loop.

The energy of the states np&/2 and np3/2 and the fine-
structure intervals for negative ions Ca 4p, Sr 5p, and
Ra 7p calculated in this way are presented in Table II.
For comparison, we also present in this table the energies
of np»2 levels for Ca, Sr, and Ba by solution of the
relativistic Dyson equation [5], and for Ra obtained by
the local-density method with relativistic corrections [2].
The correlation potential 2 in Ref. [5] was calculated in
the second-order of perturbation theory. Our results in
Table II were obtained with the same physical approxi-
mation. Therefore, the good agreement with the results
for np»2 levels between the present work and Ref. [5] is
only the test of computational accuracy [we use difFerent
methods of X calculations and different methods of the
solution of Eq. (1)]. The small difference in the results
corresponds to —1% accuracy of X calculation.

Barium has the largest a%nity among these four atoms.

tie co
M i( 3/2 I /2 2 S9m c

(6)

By substituting the frequency co=LE&, /A one obtains
lifetimes of P3/2 levels: for Ca, 635X10 s; for Sr
19.8X10 s; and for Ba, about 2.7X10 s. Since the
lifetimes are large it is necessary to take into account the
existence of a metastable np3/2 level in the aftinity mea-
surements.
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It looks natural since Ba has the largest polarizability
(a(Ba)=270, a(Ca) = 170, a(Sr) =190 (see Ref. [13]);for
Ra our calculation gives a =206a~ ).

Fine-structure intervals EEf, rapidly increase with nu-
clear charge (-Z ). Therefore, the 7p3/2 Ra level ap-
pears in the continuous spectrum at energy E =0.018
eV. This quasistationary state of the ion Ra 7p3/2 de-
cays by tunneling through the centrifugal barrier and has
a small width: I (E )iE =0.58 (note that 1 -E /; the
calculation of I is carried out in our work [17]). In the
scattering of low-energy electrons this state appears as a
resonance in the p3/2 wave. There is no such resonance
in the p&/2 wave. Thus the scattering of electrons on Ra
is a wonderful example of how relativistic spin-orbit in-
teraction plays a determining role in the scattering of
very slow electrons (for a detailed calculation of corre-
sponding relativistic effects, see Ref. [17]).

The upper np3/2 levels are metastable in Ca, Sr, and
Ba ions. They decay by the M1 transition np3/2 np&/2
(the E2 transition is suppressed due to small frequency;
even for Ba wzz/w~, (4X10 ). The probability of an
M 1 transition is (see, e.g., Ref. [16])
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