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Jiqiang Chen* and M. J. Stott
Department of Physics, Queen's University, Kingston, Ontario, Canada K71.3N6

(Received 21 December 1990)

We consider the v-representability of the particle density for a noninteracting system of spinless fer-

mions by introducing the idea of proper order of a set of energy levels. It is shown that if E, (A, ), E,(A, ),
and E3(A, ) are three energy levels associated with some local potential Vz(r) that is a continuous func-
tion of A, =(A, &, X2, A,3) over all possible points A, , where A,; is the occupation number of the ith state and
half A I +k2 +k3 is the total number of particles distributed over the three levels, then there must be at
least one A, for which the three levels are in so-called proper order, in which the levels below the highest
occupied level are filled. This result provides a basis for the proof of ensemble v-representability of some
X-particle density for which the ground-state degeneracy of the system is no more than three. As exam-

ples, three- and two-dimensional central systems are examined, and an N-particle central density is
shown to be ensemble v-representable for small N (N& 14 and N~9 for three- and two-dimensional

cases, respectively). The implications for density-functional theory are discussed.

I. INTRQDUCTIQN

The v-representability [1—5] of a density is an issue in
density-functional theory [6]. In addressing the problem
of v-representability we ask if, for a given density n(r),
there is some local potential V(r) which has the density
as its ground-state density. Because of the work of Kohn
and Sham [7], who introduced an auxiliary system of
noninteracting particles moving in some local effective
potential V,s.(r) and having the same density distribution
n(r) as the original interacting system, the v-

representability of a noninteracting system becomes espe-
cially important. In this paper we concern ourselves with
the U-representability of densities for noninteracting sys-
tems of spinless fermions.

Aryasetiawan and Stott [8,9] gave a systematic ap-
proach for deducing V(r) for a noninteracting system
based on the reduction of the 1V one-body Schrodinger
equations to a set of N —1 nonlinear differential equa-
tions

—
—,
' V g;(r)+ V(r)g, (r) =E,P;(r), i = 1,2, . . . , N —1

where

N —1

V(r)= —,
' n(r) —g [P, (r)]

Their work suggests that any reasonable one-dimensional

density is U-representable. This comes about because the

energy eigenfunctions of a one-dimensional potential can
be ordered with increasing energy according to the num-

ber of nodes of the eigenfunctions [10] and there is no de-

generacy. The ground-state configuration of N particles
must be such that the X single-particle states with the

smallest numbers of nodes are occupied, and all other lev-
els are empty. This means there is only one possible
ground-state configuration for a one-dimensional system.
If a potential V(x) is found such that the given density
n (x) can be written in the form

N —1

n(x)= g ~g;(x)~

where i is the number of nodes of eigenfunction g;(x) for
the V(x), then n (x) must be the ground-state density as-
sociated with the V(x). It is clear that any reasonable
one-dimensional S-particle density is v-representable if
the corresponding X —1 nonlinear differential equations
have such a solution.

The problem is more complicated for three-
dimensional systems. For example, for a spherical sys-
tern, the 2s level may be above, below, or equal to the 2p
level, and possible ground-state configurations for two
particles are ls2s (E&, & E2, & Ezz ), Is2p (E&, & E2&
& Ez, ), or ls2s2p (E„&Ez,=E2 ), with the correspond-
ing particle distributions A, = (A,„,A,2„A,2 ): (1,1,0),
(1,0, 1), and (l,x, l —x), respectively, where x can take
any value in the range [0,1). In contrast to the one-
dimensional cases, here there are many configurations
which are possible ground states. When the method of
Aryasetiawan and Stott [8,9] is applied to deduce the po-
tential V&(r) for a given density, even assuming this can
be found, there is no guarantee that the potential has the
chosen set of energy levels for its ground state. So it is
natural to ask which configuration is the true ground
state and whether necessarily there is at least one
configuration which is the true ground state. The former
question depends obviously on the specific density, but
the latter is a basic point which is our main concern in
this paper.

As illustrated above, the ground state for a three-
dimensional system can be degenerate and in such cases it
is useful to introduce the possibility of a density being
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represented as a linear combination of degenerate
ground-state densities corresponding to an ensemble
[1,2, 11]. In these circumstances we refer to the density as
being ensemble v-representable, in contrast to pure-state
v-representable. As the latter can be considered as a spe-
cial case of the former, in what follows we shall not dis-
tinguish between the two forms, but refer to both as en-
semble v-representable when there is no danger of con-
fusion.

In our recent work [11]we investigated spherical sys-
tems with two noninteracting spinless fermions discussed
above and showed that any reasonable density which in-
tegrates to 2 is either pure-state or ensemble v-

representable. In this case v-representability hinges on a
simple result concerning two levels which can be degen-
erate. Using this two-level result and reductio ad absur-
dum, we also proved the ensemble v-representability of
spherical densities with N=3, 4, 5. It is clear that results
similar to the one above for two levels must be extended
to an arbitrary number of levels if the proof of the v-

representability is to be carried through for any X. For
example, for a spherical system with N =6, the possibili-
ty of accidental triple degeneracy of 3s, 3p, and 3d levels
must first be considered. In this paper we introduce the
idea of proper order and use it to define the required ex-
tension of the two level result to three energy levels. The
proof of proper order for three levels, which is presented
in Sec. II, is somewhat less obvious than the two-level re-
sult. Not only is this result useful because it allows us to
prove ensemble v-representability for a broader class of
density functions as we show below, but it is also a step
toward a more general treatment of v-representability as
it identifies the sort of result that must be proved. In Sec.
III we show how the ensemble v-representability of the
density for a system whose degeneracy is no more than
three can be proved by using the result, and three- and
two-dimensional central systems are considered as exam-
ples. An N-particle central density is shown to be ensem-
ble U-representable for small N (N& 14 and N &9 for
three- and two-dimensional cases, respectively). Section
IV contains the discussion and some concluding remarks.

M ~ Ai +~ +g3

so that with A, ; ~ 0

Xi+k2+ A3 =M

is a plane in the first octant in A. space subject to the con-
ditions (4) and (5). We also assume that the E, (A, ),
E2(A, ), and E3(A, ) are positive, since a constant to Vz(r)
is trivial, and define a vector E with

(E2 +E2 +E2 )1/2

Ei E2 E3 = (cosa &, cosa2, cosa3)Eo'Eo' Eo

so that all P, the end points of E, are on the surface of a
unit sphere in the first octant in E space; see Fig. 1. We
call this —,

' sphere S. e; is the angle between vector OP
and the axis i. Clearly, if E& is smaller than E2 and E3,
then the angle 0., is larger than az and a3, and the point P
will be far away from axis 1, and vice versa. There are
similar geographic implications for E2 and E3. There-
fore S can be divided, as shown in Fig. 1, into 3 areas S&,
S2, and S3, so that the points inside S,. are points with E,.
the smallest of the three. The points on the line I;,
separating S; and S., are points with E; =E (Ek, and
the point Q has E, =E2 =E3.

Since Vz(r) is assumed to be a continuous function of
A, , E, (A, ), Ez(A, ), and E3(A, ) are also continuous through
the Feynman-Hellman theorem. Thus we establish a con-
tinuous mapping from a plane in k space to a piece of
sphere in E space. This mapping [12] preserves the topo-
logical properties of the plane and we see especially that
since there are no holes on the X plane, there are no holes
in the region of the image on S.

First we consider the case 1 M ~k, . The strategy
max

of our proof is to follow in a systematic way possible
configurations of proper order and to exclude proper or-
der occurring. We shall show that it is not possible to ac-

II. PROPER ORDER OF THRKK ENERGY LKVKLS

In this section, we want to show the following result:
If E&(A, ), Ez(A, ), and E3(A, ) are three bound-state energy
levels associated with some local potential V&(r), which
is a continuous function of A, = (A.„A.2, A,3), where A, ; is the
occupation number of the ith state and A, , +A,2+ X3=M is
the total number of particles occupying the three levels,
then there must be some point A, for which there is
"proper order, " that is the levels below the highest occu-
pied level are filled.

Without loss of generality, we set

(4)

where A, is the maximum occupation number for level
max

l, and

FIG. 1. Energy sphere S defined by Eq. (7). S is divided by
L», L$3 and L» into three parts S&, S2, and S3. L» connect-
ing point Q and point (0,0, 1) is a line on S with a&=a2, and
similarly for Lz3 and L„. Q is the point with coordinate
(1,1,1)/&3.
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complish this. The possible proper order configurations
are (i) no degeneracy with A, =M and E; &min(E. ,Ek);
(ii) double degeneracy with A, , +A. =M and E; =E & Ek,
and (iii) triple degeneracy with A, , + A,2+ A, 3 =M and

E& =E2 =E3 which is a special case of proper order. We
consider these possibilities in turn. The points 1, 2, and 3
in Fig. 2(a) are the vertices of the A, plane at (M,O,O),

(O,M,O), and (O,O,M), respectively. If P& the image of
point 1, is in S&, then E, , E2, and E3 are in proper order
at point 1 because at this point all the M particles occupy
E&, which is lower than Ez and E3. We assume this is
not the case, so that P, must be in Sz or S3. Similarly, if
points 2 and 3 are not to be proper order points, then
their image points P2 and P3 must be in S& or S3 and S,
or Sz, respectively. We now consider the possibility (ii).
The lines in Fig. 2(a) connecting&, P2, and P3 represent
the images of lines 12, 23, and 31. If the line P, P crosses
boundary L;., the crossing point would be the image of a
proper order point on ij of type 8 as we would have the
M particles occupying E; and E. with E,- =E (Ek. We
exclude these proper order possibilities by ensuring that
the line P;P does not cross I, . As a consequence of ex-
cluding the first two sorts of possible proper order
configurations, the lines P

&
P2P3P

&
must encircle the

point Q. Because the mapping is continuous, the point Q
must be the image of some point on the X plane, which
must be a proper order point. In other words if all else is
excluded, there must be some point A, at which
E ] E2 E3 which is a point of proper order.

The case A.
&

&M &A,2 is shown in Fig. 2(b). The A,
max max

plane has four vertices. The points 2 and 3 are the same
as in the case just discussed, and we only need consider
points 1' and 1" in detail. S, is divided into two equal
parts S&. and S,- by the extension of Lz3. If P, . is in S&.,
where E, &Ez &E3 with A, , =(A, M —A, 0), then

max max

point 1' will be a proper order point. The point 1"also is
a proper order point if P,- is in S,-. Moreover, if P, .P,-
crosses the extension line of L23, then the crossing point
will be the image of some point A, on the line 1'1" so that
the point A, is a proper order point with E, & E2 =E3. If
we exclude all possibility that some point is a proper or-
der point due to the positions of P, P&-, P2, and P3 and
their connections P, .Pz, PzP3, P3P,-, and P,-P, , then
we have Fig. 2(b), which shows that there must be a prop-
er order point with its image at Q.

When different values of M with respect to A, &, A, 2max max

and A, 3 are considered, the point 2 may become two
max

points 2' and 2" [see Fig. 3(a)], and there are cir-
cumstances when the point 2" coincides with the point 1'

[see Fig. 3(b)], and so on. The proofs for the various
cases are easy to carry out if we subdivide S when a point
is split into two, or combine regions when points coincide
[13]. It is clear that no matter how many vertices the X

plane has (there are at most six vertices), K vertices
should be accompanied by the division of S into K pieces,
all vertices have similar properties, and the arguments
used above can be carried through easily to complete the
proof.

If there are restrictions on the relative values of the en-
ergies the result that there must be a point of proper or-
der still holds. For example, if the three energy levels un-
der consideration cannot be triply degenerate, then all
points P must lie in an area which excludes Q, and be-
cause the mapping is continuous, does not surround point
Q. Clearly, there must be some point P; in region S; or
some line P;P. crossing L; which guarantees a point of
proper order. As a further example, if 1 & M ~ A,

&
but

max

there are restrictions on the energies so that E2 )E3 with

2P

2'

E,

iE E,

E,

(b)

(a) (b)

FIG. 2. Schematic mapping relation between A, space and E
space for the cases (a) M~A,

&
and (b) A, I &M~A, 2max max max

FICr. 3. The forms of A, plane and the divisions of S for two
different cases: (a) X2 & M & A,

&
+k& ( &3 ); (b)

max max max max

+A2 ~M A3
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E1 taking any value so at most there can be double de-
generacy, then points P must lie in the regions S3 or S1 of
Fig. 2(a), but not on Lz3 or its extension. Furthermore,
P, and P3 must be in S3 and S1, respectively, if neither is
to be a proper order point; consequently P1P3 must cross
L13 with the intersection being a point of proper order.
It is straightforward to work through other restricted
cases and the result can be applied to any three levels
whether or not they can be degenerate.

d U„(r)
Vg r +E„

n, l&1s

2

X p(r) g—A, „& ~ U„&(r) ~

'~ +E„,
n, l&1s

(13)

III. CENTRAL SYSTEMS
IN THREE AND TWO DIMENSIONS

is spherical. The R„&(r) are the usual radial functions and
(8,$) spherical harmonics. We express p(r)=r~n(r)

in terms of U„&(r)=rR„&(r),

p(r) =y A,„/p„/(r) =/A, „/ ~ U„((r)
~

(10)
n, l n, l

with Q„IA,„&=N, where the 2l+1 states with the same
energy Enl are equally occupied each having occupation
number k„&j(2l + 1) ~ 1, and the sum runs over all
single-particle states from which ground-state
configurations can be constructed. For spherical symme-
try there are the following restrictions on the energies

E 'l)El n )n
n'l' n' —I'+l l &

The ground-state orbital U„(r) can be written

U), (r)= p(r) —g A,„l ~ U„((r)~
n, l%1s

(12)

and hence the potential can be expressed in terms of
U„(r)

A point of proper order of a set of levels is a ground
state if all levels above the set are empty and those below
filled. Obviously, the results of Sec. II show that the den-
sity of a three-level system must be ensemble v-

representable. This conclusion by itself is not of much
significance because we are not to know, in advance, the
number of levels that must be involved in the ground
state for an arbitrary density. The three-level result can
be applied more usefully to systems where we have some
knowledge in advance of the energy-level spectrum. We
take systems with central symmetry in three and two di-
mensions as examples.

For a given spherical density n (r) with

J n(r)4mr dr=N, (&)
0

we assume the potential is spherical and hence its energy
level E„& is (2l+ 1)-fold degenerate, where n is the princi-
pal quantum number and I the orbital angular momen-
tum quantum number. If the 2l+1 states are equally oc-
cupied, then the particle density distribution over these
states

4 m=1

X»+1

which explicitly depends on p(r) and A, . Substitution of
the expression above for V&(r) into the radial wave equa-
tions leads to a set of coupled nonlinear equations for
U„I(r).

For a two-particle system all possible ground-state
configurations can be constructed from the 1s, 2s, and 2p
states W.e have shown that for N =2 the potential V&(r)
for any A, exists, and the solutions Uz, (r) and U2 (r) can
be found from the pair of coupled nonlinear equations
[11]. However, the order of the energy levels for V&(r) is
such that in general the configuration A, is not a ground
state. In the following, for a given N particle spherical
density, we assume that a potential Vz(r) can be found
for any set of occupation numbers A, =(A,&„A2„.. . ) and
is a continuous function of A, in a I, space prescribed by
the density. For the purpose of the proof of v-

representability, we can take 1,„=1 because E„is always
the lowest level.

The ensemble v-representabilities for X=2, 3,4, 5,
which were proved earlier [11],can be shown more easily
using the three-level result. Let us take X =4 as an ex-
ample. The single-particle states which can be occupied
in possible ground-state configurations are 1s, 2s, 3s, 4s,
and 2p, and the A, space to be considered is
A. =(A.&„A2„A3„A4,;A& ) with A.„=l. First consider the
proper order of E2„E3„and Ez~ with A,z, +A,3s+X2p 3.
The only proper order point (p point) that is not
guaranteed to be a ground state is A, , =(1,1, 1,0;1) with
E2 )E3, . This is not necessarily a ground-state point (g
point) because Ez could be higher than E4, . We then
consider the p points of E3„E4„and E2 with two parti-
cles, and all of these points are g points because all the
levels below the occupied E4, or Ez are filled. So any
four-particle spherical density is ensemble v-

representable.
For X =6, the single-particle states to be considered

are 1s, 2s, . . . , 6s, 2p, 3p, and 3d. Because one possible
ground-state configuration involves accidentally degen-
erate 3s, 3p, and 3d levels, this case can not be proved us-
ing the methods of Ref. [11]. We require the three-level
result of Sec. II. We begin by considering the proper or-
der of E2„Ezz, and E3d with X2s+A, &~+A,3d =5. Among
the possible p points, the point A, &=(1,1,0, . . . , 0;3,0;1)
with E3d )E2, is the only one which is not necessarily a g
point because E3d may be higher than E3, . Now we con-
sider the proper order of E3„E3,and E3d (the three lev-
els could be degenerate) and there must be a p point
among A, =(l, 1,A,3„.. . , 0;3,A, 3;A,3d) with A, 3, +A.3

+X3d 1 . All of the possible p points are assured
to be g points except A,4=(1, 1, 1,0,0,0;3,0;0) with
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TABLE I. The main steps for the proofs of ensemble v-representabilities of spherical densities with
N=6, 10, and 14. The A, spaces are (A1$, . . . , A6$, A2p, A3p A3d) (Als ' ' ' A10$ A2p ' ' ' A4p A3d A4f)
and (A,1„.. . , A, 14 A2p A5p A, 3d Ar4d At4f ), respectively. We use an abbreviated symbol for a point in
A, space, for example, [4;3;1;0]for (1,1,1,1,0, . . . , 0;3,0, . . . , 0;1,0, . . . , 0;0, . . . , 0).

K1+A2+A3=M
A2 A3

p points that are not
necessarily g points

Conditions for the point
not to be a g point

10

14

2S

3$

A4$

~5$

A2,

3$

~4$

~5$
A,6$

Af 7$

~8$

~9$

A2.

3s

~4$

~5$

~6$

7S

~8$

~9$
A 10$

~11$

~12$

~13$

At 2p

A 3p

~5$

~6$

3d

Al 3p

A4p

AI3p

X3p

Alf 3p

A9$

~10$

A3d

Al 3p

X4p

A5p

A4p

A4p

A4p

A 3p

At 3p
A 3p

~13$

~14$

A3d

A3d

X2p

X2p

A4f
A3d

A3d

A3d

A3d

Al 2p

X2p

A4f

A4f

A3d

A3d

A3d

A3d

A3d

A3d

A3d

A3d

A' 2p

X2p

10
4
5
1

3
2
1

3

1

3
2

[2;3;1]
[3;3;0]
[5;1;0]
none

[2;3;5;0]
[3;6;1;0]
[4;6;0;0]
[5;5;0;0]
[6;4;0;0]
[7;3;0;0]
[9;1;0;0]

none

[2;3;5;4]
[3;6;5;0]'
[4;9;1;0]
[5;9;0;0]
[6;8;0;0]
[7;7;0;0]
[8;6;0;0]
[9;5;0;0]
[10;4;0;0]
[11;3;0;0]
[13;1;0;0]

none

E3d & E3 (E3
E2p &E4,
E2 &E6,

E3d & E3 (E3p )

E3d & E4 (E4p )

E3p )E5,
E3p )E6,
E, &E,
E2p &E8,
E2p & E1Os

E4f )E3(E3)
E3d & E4, (E4p ) or E3p & E4,

E3d & E5.«5p)
E &E,
E4p &E7,
E4 )E8,
E3p &E9,
E3p )E1Os

E2p & E12.
E2p & E14s

'There is more than one such point at this step. It is easy to show that the sequences of steps from
those other points will end at the point [3;6;5;0] or some following steps of the sequence listed in the
table. For example, [2;6;5;1] with E4f )E4„ is such a point, but considering the proper order of E3„
E4d, and E«with one particle leads back to [3;6;5;0].

TABLE II. The main steps for the proofs of ensemble v-representabilities of two-dimensional
central densities with X = 3 and 9. The A, spaces are {A, 1p, . . . , A, 30', A,» ) and
(A, 10 ~ ~ ~ A.90 A21 ~ A41 A32 A42 A43 A54), respectively. We use an abbreviated symbol for a point in A,

space as we did for spherical densities.

A2p

A, 1+A2+ A3 =M
A2 A3

~30

p points that are not
necessarily g points

none

Conditions for the point
not to be a g point

X20

~30
A 3Q

~40

~50

~60

A/0

~80

~43
A 31

~31
A4'j

A41

A31

~31
A 90

~54
A 54

A'43

A32

32

A32

32

~21

[2;2;2;2;1]
[3—x;2+x;2;2;0]'

[3;4;2;0;0]
[4;5;0;0;0]
[5;4;0;0;0]
[6;3;0;0;0]
[7;2;0;0;0]

none

E,4 & E3o(E31)
E43 & E3o(E31)

E31 & E40 or E32 & E40(E41 )

E41 & Eso
E31 )E6p
E3, &E7o
E21 & E80

'O~x ~1.
"This step gives more than one such point, and we only list the sequence of steps for the points
[3;4;2;0;0].
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E3, &Ezp &E3d because E4, could be smaller than E2p.
So we consider the p point of E4„Es„and E2 with
three particles and of these only A5=(1, 1, 1, 1, 1,0;1,0;0)
with E5, & E2 is not necessarily a ground state because
we may have E6, &E2 . But when the proper order
of ES„E6„and E2 with two particles is considered,
all the p points: A, 5 with E5, & Ez E6„
J(s=(1,1, 1, 1, 1, 1;0,0;0) with Es, ~E2, and
J(7=(1,1, 1, 1, 1,x; I —x, O;0)(0~x ~ 1) with E6, =E2~ are
possible g points, and the ensemble v-representability of
any six-particle spherical density is proved.

The same general approach can be applied to systems
with larger number of particles. The idea is to locate the
p points of sets of the possible energy levels and check if
they are ground states for the system. We first identify
the levels from which possible ground states can be con-
tracted and step through them systematically in sets of
three. The points of proper order are considered for each
set and conditions are accumulated under which there
may not be a ground state. Following this line through
we are eventually led to a set of levels whose points of
proper order are all inevitably ground states and ensem-
ble u-representability is proved. If larger X is considered,
the A, space must be expanded. For N =7, 8, 9 more s lev-
els must be considered, the number of s levels being equal
to N. The 4p and 4f levels are required for
1V= 10, 11,12, 13, and 5p and 4d must be added for
N=14. The main steps for proofs of %=6, 10, and 14
are listed in Table I. For %= 15, although only one more
s level is needed, a possible ground-state configuration in-
volves accidentally degenerate E4„E4p, E4d, and E4f
levels which hold one particle with the other 14 particles
filling the levels below the four-fold degenerate one. This
case and subsequent ones cannot be covered by the
three-level result.

For central systems in two dimensions orbitals are

(r, P) =R„(r)e+™, — (14)

IV. DISCUSSION AND CONCLUSIONS

We proved that for any chosen set of three energy lev-
els, we can find a potential V&(r) so that the three levels
are in proper order. A density is the ensemble ground-
state density at this point if levels above the set are empty
and those below filled, and hence is ensemble u-

representable. This result provides a basis for the proof
of ensemble u-representability of some density for which
the degeneracy of the ground state of the system is no
more than three. By applying the three-level result we

where I=0, 1,2, . . . and each energy level E„can be
occupied by two particles for m %0.

A similar procedure to that used in the spherical case
can be adopted to determine the Vz(r) that yields a given
density n(r). If we again assume a V&(r) can be found,
and is continuous in A, , and we observe that similar re-
strictions to Eq. (11) hold for the energies, then it is
straightforward to show the ensemble v-representabilities
for X =2 up to 9. The results are summarized in Table II
for 1V =3 and 9. When N ~ 10 the fourfold degeneracy of
E4O, E4i, E42, and E43 must be considered.

have proved that any central density with particle num-
ber up to 9 for two dimensions and to 14 for three dimen-
sions is ensemble u-representable.

Symmetry of a density plays an important role in the
proof of ensemble v-representability, because the order of
energy levels prescribed by the symmetry can be known
in advance. For example, Eq. (11) gives general restric-
tions on the order of energy levels for any central system,
and all possible ground-state configurations can be treat-
ed systematically. On the other hand, our three-level re-
sult does not depend on any special symmetry. If we
know the general features of the order of levels for an X-
particle density and the degeneracy of the ground state is
no more than three, then it is easy to show the ensemble
v-representability of the density.

Proper order of a set of energy levels is a key idea in
our proofs of ensemble u-representability for various den-
sities. So far we have only considered cases of low ac-
cidental degeneracy, and consequently our approach is
limited to systems of a few particles. In fact, by using
some results from topology we are able to develop the
idea for three levels to a set of any number of levels
which can be degenerate. From this extension, spherical
densities with any X can be shown to be ensemble u-

representable, and ensemble v-representabilities of some
densities without any special symmetry also can be
proved. These generalizations will be presented in a
forthcoming paper.

The results given in this paper and our earlier work
[11]show that the U-representability of a density is relat-
ed to the topological properties of the occupation number
space and the energy space, and the mapping relation-
ships between the two spaces. These properties and rela-
tionships display general features which are independent
of specific densities. Thus our results support the general
conjecture of Levy and Perdew [2,14,15] that any density
is noninteracting ensemble v-representable, and lend for-
mal approval to the Kohn-Sham method [7].

We would like to point out that although we have as-
sumed V&(r) can be found and is a continuous function of
A, , this is only necessary in the region of A. space where
there may be ground-state configurations. For example,
for a spherical density, we need only consider the sub-
space

n') n

l'& l

and A, „/=A, „l if A, „,(WO, and A, „, /, +I I=A,„. I, +I / if
X„,&,%0. In particular we need only consider A, „=l.
Furthermore [11],we are able to prove that Vz exists for
the three-level case and an extension to more levels looks
straightforward. Numerical examples treated earlier also
yield V& explicitly. In summary, this assumption does
not appear to be a major factor in ensemble v-

representability if n (r) is reasonable.
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