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The v-representability of the particle density for a system of noninteracting fermions is considered. It
is shown that any reasonable spherical density for two spinless fermions is either the nondegenerate
ground-state density or a linear combination of degenerate ground-state densities for some effective local
potential, and is therefore ensemble v-representable. The results of model calculations are given that il-
lustrate various possible situations for two-particle systems. An extension of this result for systems of
more particles is made and the implications for density-functional theory are discussed.

I. INTRODUCTION

Density-functional theory addresses the behavior of
systems of interacting particles such as the electrons in an
atom or molecule. An objective is to describe properties
of the system, particularly the ground-state energy, in
terms of the particle density distribution, which is likely
to be a much simpler quantity than the many-particle
wave function, Green’s functions, or similar devices.
There could be considerable merit in such a description
for a system with a large number of particles such as a
solid because the density distribution remains a function
of a single variable, whereas other quantities such as the
wave function become inordinately complicated for an in-
teracting many-particle system. Although approximate
schemes such as the Thomas-Fermi method were in com-
mon use, the theoretical framework of the density-
functional approach was laid in 1964 by Hohenberg and
Kohn [1]. They showed that for a system with a nonde-
generate ground state there is a one-to-one relationship
between the ground-state density distribution ny(r) and
the external field V., (r) in which the particles move,
consequently the system may be equally well character-
ized by ny(r) or V., (r). The result of Hohenberg and
Kohn was also extended to cover a system with a degen-
erate ground state [2—4].

Hohenberg and Kohn [1] went on to introduce the
ground-state energy functional of the density E[n],
which is subject to the variational principle E[n]=E,
where E, is the true ground-state energy and the equality
is obtained upon substitution of the corresponding
ground-state density. As originally presented, the func-
tional E[n] is defined only for densities which are
ground-state densities for some external field—the so
called interacting v-representable densities. However, the
formulation by Levy [2] in terms of the constrained-
search functional overcomes this restriction and the v-
representability of a density is no longer an issue for an
interacting system.

Although the physical systems of interest consist of
many interacting particles, companion systems of nonin-
teracting particles are useful in density-functional theory
because of the work of Kohn and Sham [5]. They intro-
duced an auxiliary system of noninteracting particles
moving in some local effective potential V g(r) and hav-
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ing the same density as the original interacting system.
Given a prescription for the effective field, the nonin-
teracting problem can be treated by solving self-
consistently the set of single-particle Schrodinger equa-
tions. The ground-state energy and density of the in-
teracting system then follow. In practice, it is necessary
to approximate the effective field, but the local-density
approximation for the electron exchange and correlation
contribution to the energy and the effective potential is
simple to apply and has proved very successful in treat-
ments of the ground-state energy and density and related
quantities for atoms, molecules, and condensed matter.
This Kohn-Sham scheme assumes that the density of the
interacting system under consideration is also the
ground-state density of the auxiliary noninteracting sys-
tem for some V 4(r), in other words ny(r) is assumed to
be noninteracting v-representable. This assumption mer-
its examination because there are many examples of
“‘reasonable” densities for which there is no correspond-
ing noninteracting ground-state wave function for any lo-
cal effective potential, for example, those suggested by
Levy [3] and Lieb [6]. Furthermore, Levy [3] has shown
that any density that can be represented as a linear com-
bination of degenerate ground-state densities is not pure-
state v-representable, by which we mean it cannot be the
density corresponding to a nondegenerate ground state
for a local potential.

In this paper we shall investigate the relationship be-
tween the electron density and the potential for a nonin-
teracting system of particles and focus on the potential
that has a given density as its ground state. This inverse
problem to determine V. [n] has been studied for a
small number of particles by a number of authors and of
particular relevance to this paper is the work of
Aryasetiawan and Stott [7,8], Nagy and March [9-11],
and Li and Krieger [12]. The former authors gave a sys-
tematic approach for deducing V based on the reduction
of the N one-body Schrodinger equations to a set of N —1
nonlinear differential equations. The approach was used
to obtain Kohn-Sham effective potentials for Be and Ne
atoms and further applications were made to a number of
one-dimensional and spherical three-dimensional model
systems. A number of densities for one-dimensional sys-
tems with two and three spinless fermions were con-
sidered and all the examples treated were found to be
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pure-state v-representable. It was shown that any density
for two spinless fermions is pure-state v-representable and
it seemed likely that the same is true for any number of
particles in one dimension. In contrast, densities for
spherical, three-dimensional systems with two particles
were given which did not correspond to a nondegenerate
ground state for any local potential, e.g., n(r)=ce ™ %.
The way in which this can come about is interesting.

If we consider initially a 1s2s configuration for the two
spinless fermions, then a potential can be found for which
n(r)=R3 +R32, where R,, is a radial wave function and
this is always possible. This could be the ground-state
configuration for the potential, but not necessarily so.
For example [8], in the case of the exponential density it
was found on examination that the 2p (and the 3d) levels
lay below the 2s, the 1s2s configuration is not the ground
state, and the density is not pure-state v-representable.
To investigate the possibility of this density being a linear
combination of degenerate ground-state densities of some
other effective potential, that is, a Levy-Lieb density, a
configuration was considered with one particle in the 1s
state, and with each of the three 2p levels 1 occupied so
that the density would have the form n(r)=R7j;+R3,.
Again, the effective potential can be deduced and this
time the 2p level is found to be below the 2s, the 1s2p
configuration is the triply degenerate ground state, and
the density is representable as a linear combination of de-
generate ground-state densities.

In this paper we shall show that for specific cases of a
small number of spinless fermions any reasonable spheri-
cally symmetric density is the nondegenerate ground-
state density, or a linear combination of degenerate
ground-state densities for some local potential. In what
follows we shall refer to these alternatives as pure-state
and ensemble v-representability, respectively, and we note
that the former can, of course, be considered as a special
case of the latter. We refer to both as ensemble v-
representability when there are no special implications.
The v-representability of any reasonable density even in
these restricted circumstances of a small number of parti-
cles and spherical symmetry is nontrivial and lends sup-
port for the more general conjecture of Levy and Perdew
[3,13,14] that such v-representability is extremely likely
for any number of particles.

The proof of ensemble v-representability for any spher-
ical density for two spinless fermions is given in Sec. II.
Section III presents the results of calculations which il-
lustrate the salient points of Sec. II. Section IV describes
the extension of the results to larger N, and Sec. V con-
tains the discussion and some concluding remarks.

II. TWO-PARTICLE SYSTEMS

We consider a density distribution # (r) corresponding
to two particles, and which is spherically symmetric, so
that

S nramrrar=n, (1)

with N =2, and ask if n(r) can be the nondegenerate
ground-state density or a linear combination of degen-
erate ground-state densities for a system of two nonin-
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teracting, spinless fermions moving in some local,
effective potential. This system could be the auxiliary
noninteracting Kohn-Sham system. We choose the po-
tential to be itself spherically symmetric; this choice will
be justified later. The two particles must occupy the two
lowest states for this potential. The lowest bound state
must be the 1s, but the next level can be either the 2s or
the 2p or a mixture of the 2s and 2p if they prove to be
degenerate.

To investigate the various possibilities we look for a
potential ¥, (r) such that the three lowest states given by

1 d? _
=3 oz TV [UL(N=E U,

1 d? _
—5F+Vk(r) U,,(r)=E, Uyl(r), (2)
14’ i 1 —E. U

Eﬁ Vk(r)‘*'? Uy, (N =E,,U,,(r)

yield the given density p(r)=r%n (r) through

p(r)=Ui +AU3 +(1—-1)U3, , 3)
where U,;=rR,; are normalized radial functions and
with 0 <A <1, where A can be viewed as the occupation
number of the 2s state. The contribution to the density of
the 2p states is spherically symmetric and comes about
from equal occupation of the m =0 and *£1 states.

We assume for the moment that a solution of Egs. (2)
and (3) can always be found for any value of A in the al-
lowed range and for any reasonable n (r) and that the en-
ergies are continuous functions of A. The remaining issue
is the order of the lowest energy levels of V, (7). Consider
the various possibilities. If for A=1 the resulting poten-
tial has the 2s state below the 2p then the density is 1s2s
pure state v-representable and all is well. Let us assume
this is not the case and the order of the levels is
1s,2p,...,2s,... . Now turn to the solution for A=0.
If the 2p level is below the 2s, then the density is ensem-
ble v-representable with the three 2p states each 1 occu-
pied and the other particle in the 1s. But if the 2s proves
to be the lower level, then we have a density that is not
v-representable for A=0 or 1 and for which the 2s is
lower than the 2p at A=0 and vice versa at A=1. If we
track the 2s and 2p energies as functions of A they must
cross for some A, between 0 and 1. At this crossing point
the 25 and 2p levels are degenerate and the density is an
ensemble ground-state density with occupation numbers
Ao and 1—A, for the 2s and 2p levels, respectively. This
covers all possibilities and we must conclude that the
density n(r) is always pure-state or ensemble v-
representable.

All possibilities are illustrated schematically in Fig. 1.
It might appear that there can be some duplication. If,
for instance, the chosen density gives a level diagram
such as Fig. 1(c), then we would conclude that the density
is pure-state v-representable because E, <E,, at A=1,
but at A=0, E,, <E,; and the density is ensemble v-
representable for some different potential. Furthermore,
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FIG. 1. Illustration of the four types of possible behavior of
the energy levels as functions of occupation number A for a
two-particle density.

the crossing point at A, implies that there must be yet
another potential for which n (r) is the ensemble ground-
state density with the 1s and the degenerate 2s and 2p lev-
els occupied. However, the level diagram illustrated in
Fig. 1(c) is excluded because Levy [3] has shown that a
density which can be represented as a convex sum of de-
generate ground-state densities for some potential and is
therefore ensemble v-representable cannot simultaneously
be the pure ground-state density for some other potential.
Levy’s result also leads us to exclude the possibility of the
dashed line in Fig. 1(b) occurring where the 2p state dips
below the 2s for some intermediate range of A as this
would imply that the density is a pure ground-state densi-
ty at A=1 and simultaneously an ensemble ground-state
density at the two crossing points.

Englisch and Englisch [4] have extended Levy’s argu-
ment and shown that a given density cannot be an ensem-
ble ground-state density for two different potentials, and
since for a given potential different ensembles must give
different densities [15], we are led to exclude the possibili-
ties of the dashed line in Fig. 1(a) and multiple crossing
points in Fig. 1(d). The only physical possibilities are
covered by the solid lines of Fig. 1(a), 1(b), or 1(d)
representing, respectively, ensemble v-representability
with A=0, pure-state v-representability with A=1, or en-
semble v-representability at Ay; but there can be only a
single crossing point.

We now attend to some details. It was assumed that
Egs. (2) and (3) could be solved and a potential ¥, could
be found for any A between O and 1. This is shown to be
so in the Appendix by simple extensions of the arguments
of Aryasetiawan and Stott [8]. Also addressed in the Ap-
pendix is our assumption that the energy levels are con-
tinuous functions of A.

We have studied the case of a spherically symmetric
density and assumed that the potential V,(r) is central.
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However, we have seen that any reasonable n(r) is en-
semble v-representable with a central V,(r). But from
Levy’s result [3] or its generalization [4] this n (#) cannot
be simultaneously ensemble v-representable with another,
noncentral potential, and it was sufficient to consider just
central V,(r). Finally, we regard a density which is posi-
tive, twice differentiable and which integrates to NV to be a
reasonable one.

III. CALCULATIONS

Calculations have been performed for a number of
model densities for two spinless fermions to illustrate
points made in Sec. II. Rather than a direct numerical
evaluation on Egs. (2) we have found it convenient to use
the transformation introduced by Dawson and March
[16], namely

U, (R)=[p(r)]'/?sinb(r)cosd(r) ,
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U, (r)= B(kr—) sin@(r)sing(r) , @)
1/2

U,,(r)= l—{_(_&})\ cosO(r) .

Equation (3) is satisfied automatically and Egs. (2) be-
come

o+

L 126 coth |¢=—¢,, sin2¢ ,
P

(5)

6+ L 6=sin20 —%d;z-kezp —%—525 sin’¢ | ,
p r

where &, =E, —FE

effective potential is given by

and ¢,,=E,,—E,;, and the

11p

Vilr=——

2
|2 |+ LS 61— sin0g?

4p 2 2

2
+cos°0 |g,,

-1
2

+e,, sin’psin’6+E,, . (6)

The boundary conditions on 6 and ¢ follow from the re-
quired nodal behavior of the orbitals and we find ¢ is a
monotonically decreasing function with one node and
0=¢(0)=<m/2 with ¢( o0 )=—1/2. The function 6 is re-
stricted to 0=<0=<w/2 with 6(0)=m /2, while 6( « ) takes
the values 7/2 or 0, depending on which of the 2p or 2s
has the higher energy [0( « ) has an intermediate value if
the 2p and 2s are degenerate]. Normalization requires

f “p(r)sin20 coslpdr =1,
°, ©)
. ptrsin0sin’gdr =1,

which give the occupation number of the 2s state once 0
and ¢ have been found.

We first consider densities of a type introduced by
Levy [3] and Lieb [6] and given by

p(r)=[Ri,+aR3 +(1—a)R},1r?, (8)
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where R, is the radial wave function for a free hydrogen-
ic system with Z =2, and 0<a =1. Our chosen density
is therefore by construction a linear combination of de-
generate ground-state densities. We have treated the
cases a =0, 0.5, and 1.

The other two-particle density we have examined is

p(r)=a’rle ", 9)
for which the scaling r'=ar, ¢’ =e/a? in Egs. (5) and (9)
eliminates the exponent from the -calculations.

Aryasetiawan and Stott [8] considered this density and
tried to represent it by a two-level system at the end
points A=0 and 1. We have examined the representation
of the exponential density and those given by Eq. (8) as a
function of 2s occupation number A. The four densities
considered are illustrated in Fig. 2. The procedure was to
solve Eqgs. (5) with the appropriate boundary conditions
using a fourth-order Runge-Kutta formula to obtain 6
and ¢, and ¢,, and ¢,;. The corresponding effective po-
tential was found from Eq. (6) and E; was adjusted so
that V;(r— )=0. The value of A was obtained from
Fac (N

The energies of the 1s, 2s, and 2p levels as functions of
A for different two-particle densities are shown in Fig. 3.
The energies go smoothly to the values at the end points
of A=0 and 1. The limiting values agree with results ob-
tained by considering the appropriate two-level system,
1s2p in the case of A=0, and 1s2s for A=1. The curves
demonstrate the v-representability of the densities. The
Coulombic density with a=1 is pure-state v-
representable because the point A=1 is a ground state. It
is also unique because the 2s levels are below the 2p for
other values of A. For a=0, the density is ensemble v-
representable because the 2s and 2p levels are degenerate
at A=0 with the 2p below the 2s level for A70. The case
with a=0.5 shows the 2s and 2p levels crossing at
Ap=0.5 at which point the system is in its ground state
and the density is therefore ensemble v-representable.
The potential for which the densities are ground-state

1.2 — 1
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00— "2 "3 4
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FIG. 2. Radial densities p(r)=r?n(r) for the Coulomb poten-
tial from Eq. (8) with curve a, a=0; curve b, «a=0.5; and curve
¢, a=1. Curve d shows the exponential density given by Eq. (9)
with a =2.
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FIG. 3. Energy levels as functions of A for the four densities
shown in Fig. 2. The dots denote values of A which correspond
to the ground-state configurations.

densities is Coulomb for the three cases considered in ac-
cordance with the construction of the densities, and the
degeneracy of the 2s and 2p levels at the values of A giv-
ing a ground state is accidental Coulomb degeneracy.
The potentials V,(r) for other values of A are non-
Coulomb as illustrated for «=0.5 in Fig. 4.

The dependence of the energy levels on A for the ex-

Vy(a.u.)

r(a.u.)

FIG. 4. Representative potentials ¥,(r), which give the
Coulomb density Eq. (8) with a=0.5. Only the potential for
A=0.5 has p(r) for its ground-state density.



44 v-REPRESENTABILITY FOR SYSTEMS OF A FEW FERMIONS

ponential density shows the 2p levels below the 2s for all
A, and the density is therefore ensemble v-representable
because the point A=0 is a ground state. In all the cases
considered the energy of the highest of the three levels
shown is independent of A, this is because the asymptotic
form of the density is governed by the tail of the highest
occupied orbital which in turn is determined by the orbit-
al energy [17].

In compliance with our result that the potential for
which p is the ground-state density, either for a pure state
or an ensemble, is unique, we see at most one crossing
point for the 2s and 2p energies as a function of A. Fur-
thermore, the energies vary smoothly with A.

IV. EXTENSION TO MORE PARTICLES

It is straightforward to extend the proof of ensemble
v-representability to spherical densities with greater num-
bers of particles than 2. We give the proof for N=3 and
show how the same approach can be used for up to N=5.
A new significant feature is involved for the six-particle
systems.

We consider the single-particle states which can be oc-
cupied in possible ground states. For N=3 this amounts
to the s, 2s, 3s, and 2p states where we continue to use
the atomic notation to designate the single-particle states.
We wish to show that the given density is a ground-state
density for some local potential and therefore has the
form

p(r=3 Ay Un(r), (10)
n,l

where the sum extends over the 1s, 2s, 3s, and 2p states
and the U,; are normalized radial functions for the spher-
ical local potential. The occupation numbers satisfy
0=< }"nl <2/ +1and En,l}“nl =3.

We assume that a potential ¥, can be found for any set
of occupation numbers A =(A; A,;,A3,A,,). We also as-
sume that the single-particle energies for V, are continu-
ous functions of A. As we have seen for the two-particle
case, merely finding the potential for a given A is not a
problem. The difficulty is that in general the order of the
energy levels for ¥, will be such that p(r) will not be a
ground-state density of V,, but will correspond to some
excited state. We shall show that there is always one
choice for A giving a ¥, which has p(r) as its ground
state.

The strategy of the proof is to select those
configurations or A which can correspond to a ground
state and then progress through them in a prescribed
fashion. We can then show, using general conditions on
the order of the energy levels, that there must be a A with
a corresponding ¥, for which the order of energy levels
is such that A gives the ground-state configuration. Gen-
eral conditions on the levels are

E, >E,, n'>n
, (1
Eyp>Ey _pyy, U'>1

so that for any ground state A;; =1 and A,;; =0, and only
the distribution of the other two particles among the 2s,
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3s, and 2p levels remains to be considered, which of
course, depends.on the position of the 2p level with
respect to the 2s and 3s levels.

We begin by considering A;=(1,0,0,2). This would be
the ground state if E, = E,,, but there can be no as-
surance that V’H gives this order. Let us assume that this

is not the ground state so that E,, > E,; at A,. Now con-
sider the A along the line (1,x,0,2—x), with 0=<x =1,
from A, to A,=(1,1,0,1) and track the 2s, 3s, and 2p ener-
gy levels as functions of x. If for some x =x the 2s and
2p levels cross in a point of accidental degeneracy, then
Ay=(1,x4,0,2—x,) is the ground state. But if there has
been no crossing when A, has been reached, then at A,,
E,,>E,;. The point A, would be the ground state if in
addition E;; = E,,, but let us continue along this line of
argument and assume that A, is not a ground state so that
E,,>E; >E,;. The final step is to proceed from A, to
A;=(1,1,1,0) along the line (1,1,x,1—x), with 0=x =1.
If the 2p and 3s levels do not cross on the way to A3, so
that a ground state has not been encountered in passing
from A, to A; via A,, then at A; we must have E,, > E;;
and A, must be the ground state wherever the 2p level lies
in the region above E;;. In other words, if all else fails
the ground state must be 1s,2s,3s. Any spherical density
for three particles is therefore ensemble v-representable.

The proof of ensemble v-representability with N=4
and 5 follow along similar lines. For N=4 the 4s
must be added to the set of levels and with
A=(RAi5,A5A35,A455A5,). The progression through the
possible ground states is (1,0,0,0,3), (1,1,0,0,2), (1,1,1,0,1),
and finally to (1,1,1,1,0). The 3d is involved for
N=5 (the 3p level is not involved in a ground state be-
cause it must lie above the 2s level), and with
A=y5, A0 355 Aggs s, AgpsA34),  and  ensemble  v-
representability of a p(r) can be proved easily by follow-
ing the path (1,0,0,0,0,3,1), (1,1,0,0,0,3,0), (1,1,1,0,0,2,0),
(1,1,1,1,0,1,0), (1,1,1,1,1,0,0,).

For N <5 it was only necessary to consider double de-
generacy and possible ground states could be sampled by
following a line in A space. The possibility of accidental
triple degeneracy of the 3s, 3p, and 3d levels must be con-
sidered for N=6, and possible ground states spread over
a plane in A space. Triple and higher degeneracies are
key features for larger numbers of particles. We have
been able to account for the triple degeneracy and carry
through the proof of ensemble v-representability for N=6
up to 14. These results we shall present in a separate pa-
per. The proof can be extended to larger numbers of par-
ticles, but it becomes increasingly laborious for larger N
as higher-order degeneracies enter at N=15, but it seems
likely that a spherical density is ensemble v-representable
for any N.

V. DISCUSSION AND CONCLUSIONS

We have shown that any spherical density for N=2, 3,
4, or 5 noninteracting spinless fermions is pure state or
ensemble v-representable. This means that any reason-
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able function p(r), which is positive definite and in-
tegrates to the required W, is the nondegenerate ground-
state density or a linear combination of degenerate
ground-state densities for some local potential V(r),
which itself is spherical. Furthermore, to within an addi-
tive constant V(r) is unique. This result supports the
general conjecture of Levy and Perdew [3,13,14] that any
density is noninteracting ensemble v-representable.

Li and Krieger [12] have also considered the represen-
tation of a spherical density for N=2 by the ground state
of a two-level system, and Nagy and March [11] have dis-
cussed representation by two- and three-level systems.
These authors suggest that if a potential can be obtained
for a given density through solution of the appropriate
set of single-particle equations, e.g., Eqs. (2) and (3), then
the Kohn-Sham potential for the density has been found.
Arasetiawan and Stott [8] explained that this was the case
for one-dimensional systems, but not in general for the
spherical systems addressed by these authors. The mis-
take comes about because there is no guarantee that the
potential has the chosen set of energy levels for its
ground state. However, our results above show that it is
always possible to find a set of levels and occupation
numbers that yield a potential that has the density for its
ensemble ground state.

Degeneracy plays an important role in the proof of en-
semble v-representability as we have presented it for sys-
tems of two spinless fermions and for the extensions to
larger numbers of particles. Two sorts of degeneracy
enter. For the spherical densities considered here most of
the cases of degeneracy are a direct consequence of the
spherical symmetry. The equal occupation of the three
degenerate 2p levels in the case we have considered is one
example. We should expect this degeneracy to be less
prevalent for nonspherical densities and absent when
there is no special symmetry. The possibility of acciden-
tal degeneracy is also important as seen in the case of the
Coulomb potential, but it is not restricted to that situa-
tion. For nonspherical densities where the degeneracy re-
sulting from symmetry is lifted we should anticipate that
the class of functions which are pure-state v-representable
is increased and only in the relatively infrequent cases of
accidental degeneracy will the density be ensemble
ground-state v-representable.

We are encouraged to suggest that the class of func-
tions which are candidates for the ensemble ground-state
density of a system of noninteracting fermions is broad
and the exceptions are easily excluded on physical
grounds.
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APPENDIX

Some properties of the solutions of the set of single
particle equations for a given density are presented.

Equations (5) can be obtained from a variational princi-
pal. Minimization of the kinetic-energy functional

T[9,¢]=f0°°t[e,¢]dr

=2‘n-f0wp 9.2+sin29(;52+cos29i dr

Al)
r? (

with respect to 6(r) and ¢(7), subject to the constraints
[ ptrsin’0cos’pdr=1, (A2)

fo‘”p(r)sinZe sinpdr=A , (A3)
gives Egs. (5). That solutions that minimize T exist can
be shown by replacing the space by a lattice and applying
Weierstrass theorem [18] in the manner used by
Aryasetiawan and Stott [8].

In order to show that a density is ensemble v-
representable, not only did we assume that a solution to
the set of single particle Eqgs. (2) could be found for a
given A, but we also assumed that the resulting single-
particle energies obtained from ¥V, were continuous func-
tions of A. An interesting result related to this latter as-
sumption follows by applying the Feynman-Hellman
theorem to the single-particle energies E |, E,;, and E,,
regarded as functions of A

dE,, _dE,, dE
oy gy B d

dA dA dr  drado

Substitution of ¥, in (A4) in terms of p, 6, and ¢ using
Eq. (6) yields

V)"p dr . (A4)

dT,

_m

dr
where T,,=T1]6,,,4,,] is the value of T[6,¢] at the
minimum for a given A. The result (A5) suggests that T,
is a continuous function of A because the minimization of
Eq. (A1) exists and therefore the energy differences €,
and ¢€,, are bounded. If for a given p we are able to take
the derivative under the integral in Eq. (A5), i.e.,

d 0 _ w—d_
—E—A_f() t[9m7¢m]d" f() d}\’t[gm,(ﬁm ]dr s (A6)

then the solutions of Eqgs. (5) will be expected to be con-
tinuous functions of A over range »r =[0, « ) and therefore
E\, E,, and E,, should be continuous.

The numerical solutions for the specific densities
chosen as examples gave us no cause to suspect that the
set of equations (5) is not well behaved. The ¥V, and the
corresponding energies were found without great
difficulty and they proved to be smooth functions of A.

EasFEx=— (A5)

*Permanent address: Center for Fundamental Physics,
University of Science and Technology of China, Hefei,
Anhui, People’s Republic of China.
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