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Using methods of supersymmetry, we calculate the distribution of eigenvalues for random Hermi-

tian band matrices. We show that, if the bandwidth b increases with the d.imension of matrices N
as b oc E~ with some P ) 0, the resulting eigenvalue distribution is given by Wigner's semicircle law

as in the case of full random matrices of the Gaussian unitary ensemble.

I. INTRODUCTION

Random matrix theory [1] has recently attracted a lot
of interest due to its applications to chaotic systems [2].
Various studies [3,4] have shown that statistical proper-
ties of quantum spectra of classically chaotic systems are
well described in terms of ensembles of random matrices.
For autonomous systems one has to choose among three
Gaussian ensembles: the orthogonal (GOE), the unitary
(GUE), and the symplectic (GSE) ensemble, according to
the symmetries present. In all three cases the elements
of the matrices (real symmetric for GOE, Hermitian for
GUE, and quaternion-real for GSE) have independent
and identical normal distributions. Unfortunately, this
approach gives satisfactory results for quantities like the
level-spacing distribution or level correlation functions
only if the corresponding classical system is fully chaotic
in the whole phase space, for it is known [5] that quantum
spectra of classically integrable (regular) systems tend to
show Poissonian level-spacing distributions, just as a di-
agona/ matrix with independently distributed elements.
Since generic systems are neither fully chaotic nor in-
tegrable, one should expect for them some intermediate
situation interpolating between the two cases. Various
attempts aiming at a description of such mixed systems
in terms of random matrices were undertaken [6—9]. In
particular, it was proposed [6,9] that the intermediate sit-
uation could be well described by random matrices which
have appreciably large elements only in a vicinity of the
main diagonal. Such matrices, termed random band ma-
trices, interpolate between diagonal and full ones.

An interesting complication sometimes arises: the so-
called dynamical localization. This phenomenon, discov-
ered for the first time in the kicked rotator [10], is similar
to Anderson localization in disordered systems. There a
random potential causes the energy eigenstates to be ex-
ponentially localized in the position representation. The
degree of localization (measured with the help of the lo-
calization length of eigenvectors) depends on various pa-
rameters of the system. A transition between localized

II. ABRADED AENERATINC FUNCTION

I et P(H)d[H] denote a probability distribution in an
ensemble of random matrices H and H(H) an arbitrary
matrix function of II. For a particular matrix H the
eigenvalue density p(z) reads

p(z) = ) b(z —z, ) = ——Im Tr
j=1 x+ —H

(2.1)

where x1, . . . , z~ denote the eigenvalues of H and x+ =
z + ie with c a positive infinitesimal constant. The en-
semble averaged density p(z) can thus be obtained as the
imaginary part of the Green's function

R(z) = ——1
(2 2)d[H]P(H)Tr

1

x+ —JI

and delocalized states can also be described in terms of
random band matrices [ll—13]. A diagonal random ma-
trix obviously has all states localized in the original basis.
The same property holds for tridiagonal matrices [14].
On the other hand, a typical matrix from the Gaussian
ensembles has delocalized eigenvectors.

The above remarks suggest investigations of random
band matrices. In our paper we calculate the eigenvalue
density for Hermitian random band matrices. Yfe show
that when the eA'ective band width b (i.e. , the number of
appreciably large elements in a row or a column) of such
a random matrix increases with the matrix dimension N
as b oc Nl with some P ) 0, the resulting distribution
of eigenvalues is the same as for GUE and is given by
Wigner's semicircle law [1]. Our result confirms recent
numerical findings [15]. We employ Efetov's [16] super-
symlIietric analysis. These methods were first used in
the theory of disordered metals and recently applied to
various problems of nuclear physics [17,18]. In our calcu-
lations we closely follow the ideas and notations of Guhr
[18]. A brief outline of this background material is given
in Appendix A.
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Using the formulas collected in Appendix A, one can rep-
resent R(z) in the form

4 H% = ) (z,
'
H, &z„+(;H;„(„)

R(z) = — Z(J)
1

(2.3)
27l' l9J

where the generating function Z(J) is a Gaussian in
a supersynunetric variable @ = (z, g)

where

= ) H~gF&~ (zyz~ —Q(~') = TrHB, (2.11)

Z(J) = d[H]P(H) f ti[O] exp[2iC'](x+ —H+ S)e].
Bi y = Fi y (zi z~ —(jQ ). (2.12)

Hence, completing the square in the exponent we obtain

(2.4)
d[H]P(H) exp( —2iTrHB) = exp( —TrB ) (2.13)

H~J, ——H~yF~I, = H~&F(j —k), (2.5)

where the matrix Hzy belongs to the Gaussian unitary
ensemble, i.e. ,

P(H)=~. p(-TH ), Ht=H. (2 6)

In (2.6) JV is a normalization constant determined by
the condition f P(H)d[H] = 1, while F(k) is a smooth,
bell-shaped function. In the present paper we choose the
Gaussian

In the above formula, according to the notation de-
scribed in Appendix A, z (]r) are ¹omponent vec-
tors of commuting (anticommuting) variables and x =
diag(zI, zI), H = diag(H, H), J = diag( —JI, JI)
are 2N x 2N supermatrices with I being the ordinary
N x N unit matrix.

In the following we want to consider a particular class
of random band matrices:

and have thus achieved the average over the GUE in
(2.4). Unfortunately, the remaining integral over the
graded vector @ is no longer a Gaussian one since the
matrix B itself is bilinear in % and 4't. At the expense
of introducing further auxiliary integrals, we can replace
the quadratic form in B by a linear one after the fash-
ion of (A15). To that end we define N x N matrices
(D&)&I,

—e&(j)bz), and 2 x 2 supermatrices,

tztD„z g D„z
ztD„g g D„g

One proves easily with the help of (2.8) that TrB~
P„g(]M)Tr&B2. We represent each of the exponentiaL~

containing Tr&Bz using (A.15) and obtain

Z(J) = d[e]exp[2iet( ++ a)e]

(2.7)

with b playing a role of a bandwidth. The results, how-

ever, to a great extent do not depend on the particular
choice of F(k) We define . further V(k) = F (k) and
observe that V(j —k) has the discrete Fourier expansion

x d[o] exp —) Trio. ~

x exp 2i ) gg(p)Tr~B—&o„

(2.14)
V(j —k) = ) .g(I )~&(j)~v(k) (2 8)

with d[o] = d[o.„), o„=
O.'p l Pp,

P

(2.15)

.(j) = ~

1
~o(j) =

N

2—sinu& j for p g 0

2—cosu& j for p g 0,

(2.9)

The integral over the graded vector % has now assumed
a Gaussian form. Its evaluation proceeds slightly more
conveniently if we replace the (2N)-component vector @
by N two-component vectors 4z —(zi, (i)T. To achieve
such a transformation we write

Tr g B„a„=z D„zv„+( D„zn„t t t

2xp ~ ~ ~p)
g(p) = exp I—N'](2) (2.10)

The latter expression for g(p) holds, of course, only' in
the limit of large N.

In order to perform the integration over H in (2.4), let
us observe that

—z D„go;"„+if D„(y„

= @ (~~ D~)@, (2.16)

where denotes the tensor product. Now we may ex-
press the right-hand side of (2.16) with the help of the
two-component graded vectors 4z
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'+~ —) v'g(~)( D )

) 4 z I+ JE —) gg(p)cp(g)op [ 4j)

(2.17)

where

—1 04, = (' ~, E=
2

(2.18)

and I is the unit 2 x 2 graded matrix. The generating
function thus takes the form

(
Z(J) = d[0.] exp —) Tr~~„ d[4] exp 2i ) 4 z+I+ JE —) Qg(p)e„(j )~„e; (2.19)

The Gaussian integral over the 4 variables can be done according to (A9)

Z(J) = d[o]exp —) Trio„—) lndetz z+I+ JE —) gg(y)e&(j)o&
2

(2.20)

III. CALCULATION OF THE DENSITY

In the integral (2.20) we shall treat differently the integration over oo and over other 0& with p j 0, introducing a
new integration variable Y = cro —~N(z+I —JE). The generating function then takes the form

Z(J) = d[Y] d[cr„] exp( —Tr~[Y+ ~N(z+I+ JE)] )

x exp —) Trz o„—) ln detz —) gg(p)e„(j )o&'
)

We further change the integration variables by performing a diagonalization of Y

(3.1)

Y=U 'SU, S=
0 zs2 (3.2)

where U is a graded unitary matrix. Simultaneously we change the variables o& into V cr„U keeping for them the old
name o&. Note that such unitary transformation of all integration variables does not change any graded determinant
entering the second exponential in (3.1). Denoting the Jacobian of the transformation (3.2) by D(S, U) we get

Z(J) = D(S, U)d[S]d[U] d[o„]exp( —Trg[S+ v NU(z+I+ JE)U ] )

x exp —) Trz o —) ln detz S/~N —) gg(p)e&(j)0„ (3.3)

where d[S] = dsqds2. We follow Guhr [18] and express the Jacobian as the squared Berezinian, D(S, U) = B (S),

B(S) =
sy —zs2 (3 4)

The integration over the graded U matrix can be performed using the Guhr s [18] generalization of the Itzykson-Zuber
[19] and Mehta [20] formulas concerning integrations over the ordinary unitary groups. By rescaling the eigenvalues
of Y as s~ —+ ~Nsq and s2 —+ ~Ns~& we arrive at

Z(J) = N d[S] exp[ —NTrz(S+ z+I+ JE) ]j(S),
7r z +

where we have introduced the shorthand notation

(3.5)
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P[s) = f d[~„]exp —$ Tr~ rr„—) ln det~ s —) Qg[p)c„(j)a„
@+0 @+0 2 ( PW[)

(3.6)

The Berezinian B(zI+ JE) is to be understood in the sense of (3.4) with si and is2 as the eigenvalues of &I+ JE.
In order to simplify the notation we define a graded 2 x 2 matrix cr(j) with matrix elements

~(j) = ) v'~(I )~.(~)~. ~*(i) = ) v'g(s)~. (j)~;
pro

~(j) = ) v'~(~)~. (~)~. ~(j) = ).v'g(~)~. (~)~.

(3 7)

By recalling o(j) = [n'(j)]2 = 0 we can rewrite the logarithm of the graded determinant in (3.6) as

lndet~[S —~r(j)] = ln[si —v(j)] —1n[isq —iy(j)]—
~'(j)~(j)

[» —~(j)][i» —i~(j)l
(3.8)

Note also that the integrand in the (3.5) can be understood as an exponential of a quadratic form in the anticommuting
variables. We can therefore integrate out these variables as it is done in Ref. [21]. The result reads

( N )v-1
&(S) =

I d[~]d[v]«p ——) (&&+&&)(2x l4

(
x exp &

—) ln ] si — —i)(g)
~

—ln isq —i y(j) —+ ln detM &, (3.9)

where the (N —I) x (N —I) matrix M is given as

M~~ =4~ —
N )

i» —) .v'g(~") ~ (~) ~~

)p"Qo

(3.10)

In the above equations we have rescaled the integration
variables v& —+ gN/2v& and y„~ gN/2y„, anticipat-
ing a saddle-point integral. We have also introduced the
notation

N
~p(j) =

2
&~(j) (3.11)

ln P(S) = O(N) + O(N ln N/b) +

for )u g 0.
The integration over the commuting variables in (3.9)

is a very diKcult task in general. In this paper we con-
sider the case when the bandwidth b behaves as Ni, with
some 0 & P & l. In such a case the coefFicients g(p) are
exponentially small for p = O(N~ ) for N ~ oo, pro-
vided P* ) I —P. We expect that out of the integration
variables u& and y&, only the first N P = N/b give a
nontrivial (i.e. , si q-dependent) contribution to the in-
tegral in (3.9). Therefore, if we performed the integra-
tion over the variables u& and y& using the saddle-point
method, we should obtain the asymptotic expansion of
the form

The first term in this expansion is the standard contri-
bution from the saddle point, the second term and/or
the higher-order terms come from the corrections to the
saddle point. Contrary to the usual situation when the
corrections are of the order of ln N, here they may in the
worst case contain an additional factor equal to the effec-
tive number of integration variables. Still the corrections
are negligible in the limit of large ¹

In Appendix 8 we show that the stable saddle point,
corresponds to v&

—
y&

—O. This is a direct consequence
of the orthogonality of the eigenvectors, especially

).~~(j) =0 (3.13)

for p g 0. The leading contribution to the asymptotic
equation is thus

in%(S) = N lnsi —N lnis2. (3.14)

The fluctuations around the saddle point are described
by the Gaussian integral, which is obtained by expand-
ing the exponent in the integrand of Eq. (3.9) up to the
quadratic terms in the variables u& and y&. The resulting
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expression for T reads

5'(S) = exp(N lnsy —N lnis2+ ) ln
~

1 ——1 g(p) 5
2 sqis2 j

—
2 ) ln det[I+ g(p)a(p, S)], (3.15)

where the explicit form of the matrix a(p, S) is given in
Appendix B.For now it is important to note that this ma-
trix has elements of the order of 1 at most. For increasing

p the corrections to the saddle-point value [Eq. (3.15)] be-
have as P„g(p)a(p, s) with a(p, S) = O(l). Obviously,
in the limit N ~ oo the overall effect of those correc-
tions is indeed of the order of relevant terms in the sums
over p, i.e. , N/b T.his shows the self-consistency of our
approach and proves the correctness of the saddle-point
method applied to the integration over the variables v&
and y&.

The remaining integral over s1 and s2 can be again
evaluated in the limit of large N using the saddle-point
method. This integral can be written in the form

Z(J) =— d[S] . . exp I N(s—q + z —J) + N(is2+ z+ J) —N ln sq + N In-is2+ —Z(sq, is2)
7l (By —182 + 2E) 6

(3.16)

VVe have included now the small imaginary term in
the Berezinian to ensure the proper integration contour.
In the evaluation of the saddle-point values we keep the
correction terms of the order of I/O to the saddle-point
values. It is worth stressing, however, that the results
can be generalized to arbitrary order in 1/b

The function l: in the lowest order of the expansion in
1/b may be written as

1+0 i

—I+

( t g(p) i
2s]lsd )

g(s)& & g(~) &«2lr & 2( )')j
(3.17)

1 Oe(s„ is, )—2(sg+ z —J) ——+- =0
sl 6 Osy

(3.18)

1
+2(isg + z —J) + .

2sg

1 OZ(sg, cs2)
6 Bis2

(3.19)

We can now easily compute the expansion of the
saddle-point values

1
s1 ——s1o + -s11 + ~ ~ ~ ,

b

1
2S2 = 2s2o + —2S21 + '

(3.20)

(3.21)

At the same time, in order to calculate the density (2.3),
it is sufhcient to expand each of the terms in Eqs. (3.20)
and (3.21) up to linear terms in J. After an elementary
calculation we obtain

It is worth noticing that l: is symmetric with respect to
the exchange of sq and is2. Moreover, L(s, s) = 0 for
arbitrary s.

The saddle-point equations take the form

and

2J
10 — ( )+

2J
20 ( ) 2 1/ 2( ))

(3.22)

(3.23)

where

2bJ 1 - g(p)
N s4(z)[2 —1/s2(z)] ( g(p) q

2'

» (z))
(3.24)

(3.25)

Note that

s(z) + z = —s'(z), (3.26)

(3.27)

and ~s(z)~ = 2. Note also that sqq and is2q are already
linear in J. The difference s1 —2s2 is not at all affected
by the I/b contributions and is proportional to J. The
latter property remains intact when we extend our cal-
culation to the order of 1/b2. Out of the two possible
choices of s(z) in (3.25), the one that corresponds to the
negative imaginary part, contributes to the saddle-point
integral [18]. In the limit J ~ oo the prefactor 2J in the
expression (3.16) cancels with the analogous one that en-
ters the Berezinian, i.e. , 2J/(sq —is2) = [1 —1/2s (z)].
The final result is obtained by calculating the saddle-
point value of the exponent in (3.16) up to the linear
terms in J, and evaluating the lowest-order corrections
in 1/N that come from Gaussian fluctuations around the
saddle point. Note that due to the symmetry of 2, the
contribution of l', (sq, is2) to the saddle-point value of the
exponent is null.

Using the explicit expressions for s1, and 2s2, we obtain

Z(J) = N
~

2 —
~ [D(z)] ~~ exp [ 4N Js'(z)], —1
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where D(z) is the determinant of the 2 x 2 matrix of
the second derivatives of the exponent. This term re-
sults from the Gaussian integration over the fluctuations
around the saddle point. In order to calculate D(z) up
to the first-order terms in 1/6, we observe first that the
ofF-diagonal matrix elements of the fluctuations matrix
are proportional to the mixed derivative 8 /Osis(isz) of
the exponent in (3.16). For this reason they contribute
to D(z) in the order I/b2, and may be neglected. On
the other hand, using the symmetry properties of l: it is
easy to show that the diagonal terms of the fluctuations
matrix are given by
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APPENDIX A

so that

1 O'Z(s(z), s(z)) )
s2(z) b Bs~ ) '

1 1 B~Z(s(z), s(z)) )
"(*)

(3.28)

(3.29)

Using the above expression we immediately obtain the
final result

In this appendix we summarize the most important
formulas concerning supersymmetric analysis used in our
calculations. In our presentation we closely follow the
expositions contained in Refs. [16—18].

We use lower-case greek letters to denote anticommut-
ing (Grassmann) variables and lower-case roman letters
for commuting ones, reserving the boldface characters for
the corresponding vectors, e.g. , z = (zi&. . . , z~)
((i, '.

, (~) . Upper-case boldface letters are used for
supersymmetric (graded) vectors with commuting and
anticommuting components, e.g. , % = (z, ()+. Linear
transformations of graded vectors are defined with the
use of graded 2N x 2N matrices of the block form

(3.30)
A=

W

a 0
g b

and

(3.31)

where a, ti, 0', and g are N x N matrices with commuting
(a and b) and anticommuting (o and g) elements.

If ( is a Grassmann variable, then (" is an independent
one with the property ((')' = —(. Consequently, one
defines the Hermitian conjugate of a graded matrix A as

The above expression is the main result of the present
paper. It states Chat the density of eigenvalues of band
matrices with b oc Np obeys Wigner's law. Moreover, the
corrections to the semicircular law of the order 0(l/b)
vanish.

It is obvious Chat our result may be generalized in
many ways. In particular it can be obtained for arbitrary
smooth, bell-shaped functions F(i—j) [see Eq. (2.7)]. In
principle, the method presented here can be used for the
generation of systematic expansion in 1/b for large but
finite b. This could allow one to study the transition
from the semicircle distribution to the Gaussian distri-
bution of diagonal matrix elements. The method pre-
sented here may be applied also to the calculation of the
density-density correlation function. We hope that this
application will explain the scaling of the level-spacing
distribution for b oc N ~2 which was observed in the re-
cent numerical studies of Casati, Molinari, and Izrailev
[15]. The asymptotic analysis in that case, however, is
much more complicated [22], and one necessarily has to
go beyond the first-order terms in the expansion in I/O

After completion of this paper we have learned that a
similar result in the case of b oc N, i.e. , P = 1, has been
obtained recently by Casati and Girko [23]. Our theory
seems more general since it applies to arbitrary P.

The Hermitian conjugates of N x N matrices are con-
structed according to the standard rules via transposition
and conjugation. For graded matrices one introduces su-
persymmetric counterparts of trace and determinant

TrgA = Tra —Trb, (Al)

det&A = det(a —oh')(detb)' (A2)

detz(A B) = det&A det~B.

As for ordinary matrices one has

det~A = exp[Tr~ ln(A)]. (A4)

Integrals over ant, icommuting variables are defined by

Simple calculations show that Trg and detg have the
properties of their ordinary counterparts when applied
to products of graded matrices, i.e. ,

Tr~(A B) = Tr~(B A),
(A3)
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d( = 0 = f d(', t, dg = (2~)-'~' = g'd$'.

(A5)

exp( —Trio t2)d[o]

The differentials of anticommuting variables are Grass-
mann variables as well, hence

(l(24142 ——
l 6%i l l

(2d(2 = (27r)) &

(A6)

If A is an N x N ordinary matrix, then, by diagonalization
of a quadratic form and series expansion, one proves

exp( —Trs o.2)d [o)

e ~" +" ldvdy e d[n] = —= 1. (A14)

Hence, completing the square in the exponential and
shifting the variables we obtain, from the linearity and
the cyclic property of the Trg operation,

[—Tr, ' —2 ~Tr, ( t)]d[ ]

exp(igtAg)d[(] = det
I

f Al
$ 2ix) (A7)

v .( )] []
where d[(] = d(f d(q, . . . , d(~d(~. This can be compared
with its ordinary counterpart exp —Tr& ~ —2 gp

~ gg

~

~exp(iz Az)d[z] = det
~

(A8) (A15)

with

d[z] =
~ 4 ~ h

n=1
dz~dz~ = 2 d Rez„d Imz„.

for an arbitrary 2 x 2 graded matrix p and scalar real g.
It is easy to show that the above formula remains valid
for the case of 2N x 2N graded matrices o and p where
v and y are ordinary N x N Hermitian matrices if we
de6ne

An analogous formula for the graded vectors and matrices
reads

(A9)

where 4' = (z, g)+ and d[@] = d[z]d[(].
Let A = diag(A, A) be a block-diagonal graded matrix

with A being an ordinary N x N matrix, E = diag( —I, I),
where I is the unit % x N matrix, and J is a scalar
parameter. Then

Z (J)—:exp[i@ (A+ JE)@]d[%']= det, (A+ J)
and

d[v] = dv, , d Re v,.td lm v, p,
j=1 j&k

d[y] = dy, , dRey, xdlmy;x,
p=i

d[n] = dn,'.„dn, g,
j,k

d[o] = 2 ~ '&d[v]d[y]d[n]. (A16)

= exp Tr[in(I+ JA ) —ln(I —JA ')]
(A10) APPENDIX 8

and

Z(J) = 2TrA
J=O

(A11)

V 0,'

2y
(A12)

which gives a convenient representation of the trace of an
inverse matrix in terms of a Gaussian integral.

Let

In this appendix we prove that the saddle point of the
integral (3.9) is given by v&

—y„= 0. We also perform
the Gaussian integral over the Ructuations around this
saddle point.

To this end we first expand the logarithms entering the
exponent in the expression (3.9). We obtain

() ln sg — —v(j)
~2 j

be a 2 x 2 graded matrix with v and y real. Then

Tr~o. = v + y +2n n = Tr~ot . (A13)

N ) .v(j) N ) (v(j))
2 . sq 4 . ( sg )

2

Denoting d[o] = d[n]dvdy, we have, according to (A7),
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).&~(j)&~ (j) = 4~- (B2)

The result is

Using the property (3.13) of the Fourier eigenvectors, we
easily see that P.v(j) = 0, i.e. , the first-order term in
Eq. (Bl) indeed vanishes. The second-order term may
be easily surroned up, using

The sum over p may be performed, using

1 ) -9(p)~p(i)~~U) i G 0 S 9(o)
N f(p, S) ~ '

Nf(O, S)y '

(Bl1)

where

) inl si-
~

—v(j) = N lnsi —N ) - 9(P)vp
4si a(k, s) = —')

N f(p, S)
(B12)

M = Mp+ Mg+ Mg+

where

Mo, ~u =
I

1 — . Ibv =f(»S)b~9(p) l
2siis, )

(B4)

(B5)

) - V'9(P)~~(j)V'9(P')~~ (j)
+2N Sy2S2

An analogous term arises from the second logarithm in
the exponent of (3.9).

It is a little more difBcult to expand lndetM. First,
we expand the full matrix up to the second-order terms
ln vp and pp )

Elementary estimations show that the function G(0, S) is
of the order of 1/b. It is essential that the result (Bll) is j
independent. The trace (B10) then becomes proportional
to the P. v(j) = 0 or P. iy(j) = 0, and thus vanishes.
This proves that all the first-order terms in the exponent
of (3.9) are null and there exists indeed a saddle point at
Vp, =2' =0.

Same algebra allows to calculate the TrMp M2. The
result is

g(0)
I G(0S)

( )
I

& (j) y(j)& (B6)
si 2 ( ZS2 j sl)s2

i ~ - V'9(P)" (~) V'9(P')" (~)
2)I I g/~ S 2S1 2

& (j) '
& y(~)&' (j) y(j)

Si g )Sg ) Si)S2

(B7)

The logarithm of the determinant of M can be written

Finally, the last term can be written as

( 1 - N
TrI Mi

E Mo 8(si)sg)

(B13)

lndetM = lndetMo+ Tr (Mi + Mq)
Mp

——,'Tr
I

Mi
I

&Mo J
The zeroth-order term is, due to (B5), equal to

(B8)

9(0)j
j,k

x
I

+ . I +(v(j) iy( j) 6 v(k) iy(k) )
si )s2 4 sl 2S2 j

(B14)

lndetMii = ) ln
I

1—( g(p) )
cwp

2si)sop

The erst order term reads

1 - 1 ) - ). 9(p)e„(&)e„(&)
»is~f(p, S)

f'v(j ) iy(j) i

si zs2

(B9)

(»0)

Note that both v(j) and iy(j) are defined in terms of
the Fourier expansion. The sum over j in (B14) can be
treated as an action of the matrix whose matrix elements
depend only on j—k, on the vectors v( j) and iy(j). Using
the Fourier expansion of v(j) and iy(j) we easily perform
such a task. The sum over k then becomes equivalent to
the evaluation of scalar product of the vectors v(k) or
iy(k) with the vector that results from the action of the
matrix. Introducing
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h(p, S) = ) i G(&, S)—
N f(0, S)

we obtain

(B15)
I+g(I)a»(S S)

l
g(I )
282

g(0)
N f(0, S)

8] Z8g

h(p, S)
4(si is2)~

2 2

(B16)

I+g(t)a»(1 S)

g(s )
2(is2)~

(o)
N f(0, S) h(p, S)

slis2 4(slis2)

The expressions (B3), (B13), and (B16) completely de-
scribe the IIuctuation matrix. It is elementary to check
that at the saddle point this matrix is positive definite, so
that the saddle point is stable. The result of the Gaussian
integration over e& and iy„can now be easily written in
the form (3.15), i.e. , in the form of the sum over p g 0 of
Iogarithms of determinants of 2 x 2 matrices. The matrix
I+ a(p, S) that enters the expression (3.15) is given by

(&)a»(p, S)

,. g(~)
48' f82

g(&)a»(~ S) = g(I )a»(~ S)

( 0 g()
N f(0, S) h(p, S)

sl&s2 ~(siis2)
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