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Two- and three-dimensional behavior of the Rayleigh-Taylor (RT) and Kelvin-Helmholtz (KH) insta-
bilities is examined with a hydrodynamic code: cubic interpolated pseudoparticle. The mushroom
structure owing to the KH instability in three dimensions is much smaller than that in two dimensions,
and hence the nonlinear growth is faster in three dimensions. The simulation without gravity shows a
similar behavior and hence this difference between two and three dimensions does not originate from the
RT instability. This difference cannot be explained by linear analysis on the KH instability also.

The Rayleigh-Taylor (RT) instability has been a subject
of primary interest for many years in many fields of phys-
ics. For example, it may be an origin of fuel-pusher mix-
ing during the implosion process in inertial confinement
fusion [1,2] (ICF). Recently, the interest in this instabili-
ty has grown in astrophysics because it may cause a mix-
ing of materials in Super Nova 1987A as suggested from
the observation data [3,4]. Hachisu et al. [S] made a
two-dimensional simulation on this process and conclud-
ed that the result is adequate to explain most of observa-
tion data that imply mixing. Although there exist three-
dimensional simulations [6] on a similar problem, there is
no clear evidence of the difference between two and three
dimensions. This paper clearly demonstrates the different
behavior of the RT instability in two and three dimen-
sions. We will show here that a mushroom structure ow-
ing to the Kelvin-Helmholtz (KH) instability in three di-
mensions is much smaller than that in two dimensions
and hence the nonlinear growth is faster in three dimen-
sions. This difference cannot be explained by linear
analysis.

We have developed a new general hyperbolic solver
CIP (cubic interpolated pseudoparticle) method and ap-
plied it to a number of test problems [7—10]. It has been
proved that the CIP can give a less-diffusive and quite ac-
curate result [9,10] without any flux-limiting procedure
frequently used in most modern schemes. In this paper,
we apply the CIP method to the classical RT instability
in two and three dimensions.

Let us first describe a configuration used in the simula-
tion. Initially two fluids are placed at rest in contact with
each other. The density of those fluids is p=1.0 for
0=<x=0.3 and p=0.3 for 0.3 <x. The gravity g is im-
posed in the x direction and its magnitude is 1.0. The
pressure is obtained from a static force balance
dp /0x =pg starting from p =0.1 at x =0. The boundary
is free in the x direction and mirrored in the y and z
directions. In order to select the instability mode, the ve-
locity perturbation of the incompressible mode (V-v=0)
is imposed around the interface. Its wavelength in the y
and z directions is chosen so that the system size in the y
and z directions corresponds to one wavelength.

Figure 1 shows the density contours in two- and three-
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dimensional simulations. In both cases, initial perturba-
tion velocity is set to 0.8. In order to check the accuracy
of the code, we have done three simulations for each re-
sult by changing the mesh size. In general, the overall
structure of the mushroom remains similar even if the
mesh size is changed, whereas the detailed structure such
as windings inside the mushroom becomes evident with
reduced mesh size. It is also shown that the mushroom
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FIG. 1. Density contours in the RT instability at
t =0.51 when g =1.0. Initial velocity perturbation V is 0.8.
(a)-(c) Two dimensional results. (d)—(f) Three-dimensional re-
sults. The mesh size is Ax =Ay=0.01(60X30) in (a),
Ax =Ay =0.01/2(120X 60) in (b), Ax =Ay =0.01/3(180X 90)
in (c), Ax =0.01 and Ay =Az =0.01X2'/%(60X 30X 30) in (d),
Ax =0.01/2 and Ay =Az =0.01/2X2!"2(120X 60X 60) in (e),
and Ax =0.01/3 and Ay =Az =0.01/3X2!72(180X 90X 90) in
.
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structure in the three-dimensional case is much smaller
than that in the two-dimensional case. If the wave num-
ber in y and z directions is denoted by k and /, respective-
ly, the growth rate of the RT instability is proportional to
(gk)'/? and [g(k%?+1%)'/21'/2 in two and three dimen-
sions. Thus, in three dimensions we must use 2!/ times
smaller wave numbers that make the growth rate equal to
that in two dimensions. In reality, wave numbers in Figs.
1(d)-1() are 2'/? times smaller than that in Figs.
1(a)-1(c). This has been done by using, for example,
Ay =0.01 in two dimensions [Fig. 1(a)] and
Ay =Az =0.01X2!/? in three dimensions [Fig. 1(d)]. If
we compare the cases having the same wavelength, the
difference is even larger because the growth rate of the
RT instability is 2'/2 times larger than that in two dimen-
sions and the KH instability does not have enough time
to grow. It is widely recognized that the mushroom
structure originates from the KH instability. In order to
separate this effect from the RT instability, we set g =0
to eliminate the RT instability. In this case, the interface
moves with the speed intially given. The relative motion
of two fluids at the interface induces the KH instability.
The numerical results are shown in Fig. 2, where
2(a)-2(c) and 2(d)-2(f) are again the two- and three-
dimensional results. This result is quite similar to that in
Fig. 1. As is easily understood, however, it takes a much
longer time to reach the final state at ¢ =0.51 in Fig. 1
because the motion is not accelerated by the RT instabili-
ty. The result in cylindrically symmetric two dimensions
support this conclusion as shown in Figs. 2(g)-2(i).
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Thus, the three-dimensional behavior is not a conse-
quence of perturbations in three directions but is that of
“three-dimensional configuration” as will be shown later.
In order to explain this difference, we derive a linear
dispersion relation of the KH instability. In the
configuration shown in Figs. 2(a)-2(c), the KH instability
occurs on the surface of a plane whose thickness is 2a,
whereas in Figs. 2(d)-2(f) or 2(g)-2(i) the KH instability
occurs on the surface of a cylinder whose radius is a.
Therefore the dispersion relation is written as [11,12]

[2) 1
kV 1+F’ M
where o is the complex frequency, V is the relative veloci-
ty of two fluids at the interface, and « is the wave num-
ber. Here, F is given by
172
F= |PL1+texp(2ka)

p2 1—exp(2ka) @

in two dimensions and
172

K (ka)I(ka)
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F=

P2 Ko(Ka)Il(Ka)

in three dimensions. In Eq. (2'), K(,K,I,,I; are the
zeroth- and first-order modified Bessel functions of the
first and the second kind, respectively. In Egs. (2) and
(2'), F is imaginary, and hence this wave propagates on
the surface and grows. The growth rate is depicted in
Fig. 3, for p,/p;=0.3.

FIG. 2. Density contours at ¢ =0.91 without gravity. (a)-(c) Plane two-dimensional results with ¥ =0.8X0.72. (d)-(f) Three-

dimensional results with V' =0.8. (g)-()

Cylindrical two-dimensional results with ¥ =0.8X0.72.

The mesh size is

Ax =Ay(=Az)=0.01[60X30X(30)] in (a), (d), and (g), Ax =Ay(=Az)=0.01/2[120X60X(60)] in (b), (e), and (h), and

Ax =Ay(=Az)=0.01/3[180X90X(90)] in (c), (f), and (i).
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FIG. 3. The growth rate of the KH instability. (a) For a sur-
face wave on a moving plane. (b) For a surface wave on a mov-
ing cylinder.

In the configuration shown in Fig. 2, the seed of the
KH instability is given at the leading edge of the heavier
fluid and hence xka ~ 1. At this wave number, the growth
rate in three dimensions is about 72% of that in two di-
mensions. It seems that this difference in the growth rate
may explain the difference between two and three dimen-
sions. We can confirm this by reducing the initial veloci-
ty of the perturbation by 28% in two dimensions which
corresponds to the reduction of V in the dispersion rela-
tion Eq. (1). Since w is proportional to ¥, this reduction
will make the growth rate equal both in two and three di-
mensions. In Figs. 2(a)-2(c) this reduction has already
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been done. If we use the velocity ¥ =0.8 without reduc-
tion in two dimensions, the mushroom structure develops
even wider in the y direction. We should note that we
have used Ay =Az =0.01 in Fig. 2(d) in contrast to Fig.
1(d). By this choice, we can compare the two- and three-
dimensional results with the same a in Egs. (2) and (2').

From this comparison, we may conclude that the
difference in the mushroom structure between two and
three dimensions cannot be explained by the linear
analysis. It is probably attributed to the nonlinear pro-
cess. It is natural to imagine that the windings of the
fluid inside the mushroom stays within a plane of two di-
mensions in the two-dimensional case, whereas the wind-
ings in the three-dimensional case can escape in the other
direction and its effect will decay rapidly with increasing
distance from the mushroom, and therefore may not
grow so large. Note that the effect may decay in propor-
tion to » ~! and » ~2 in two and three dimensions, respec-
tively, where r is the distance from the surface. This
may be a reason why the two-dimensional result in cylin-
drical geometry corresponds to the three-dimensional re-
sult.

More realistic situations similar to SN1987A will be
worthwhile to investigate because the growth of the two-
dimensional RT is not sufficient to explain the data when
a reasonably small perturbation is imposed initially. The
present result implies that perturbations can grow large
in three dimensions because of less drag resulting from
the mushroom structure. In this paper, we will not treat
the process in further detail but we will discuss it in a fu-
ture paper.

We would like to thank Dr. D. Shvarts for suggesting a
cylindrically symmetric simulation.
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