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Time-dependent distortion of the initial electronic state in response to the motion of the projectile is

employed in calculations of total and differential cross sections for the direct-Coulomb, E-shell-
ionization process within the semiclassical approximation. Selected targets are chosen from Al through

Ag for incident protons and helium and lithium ions in the velocity region that corresponds to energies
of 0.175 through 5.0 MeV/u for a Cu target. The distortion is taken to include both energy and wave
function (via polarization) of the initial-state K-shell electron. Discussion is presented with regard to the
appearance of nonorthogonal basis states. The results of calculations for the total K-shell-ionization
cross section in comparison with experimental data show good agreement for protons incident on targets
from Ti through Cu. Some differences are noted for Al and Ag targets, and systematically larger
discrepancies with projectile atomic number are obtained for He and Li projectiles. It is found that the
introduction of temporally dependent distortion causes drastic changes in the behavior of the scattering
amplitude at low velocities that have not been generally appreciated. Time-dependent binding gives rise
to a large suppression of the cross section (over that induced by the well-known introduction of a con-
stant increase in binding), while time-dependent polarization leads to a large enhancement. An explana-
tion of this behavior is suggested. Possible causes of the differences between theoretical and experimen-
tal values of the cross section are considered. Some observations apropos of the introduction of tem-

porally dependent quantities in approximate calculations are made.

I. INTRODUCTION

Considerable progress is being achieved in calculations
of ion-atom collisions in general and of ion-induced ion-
ization in particular. Recent examples of special note in-
clude the single ionization of hydrogen and helium by
protons and antiprotons for both total and differential
cross sections [1] and the double ionization of He by pro-
tons and antiprotons [2]. Good correlation is found be-
tween theoretical calculations and experimental data [3].
It might be expected, therefore, that close agreement
would be found for the seemingly more straightforward
problem of the direct-Coulomb ionization, induced by
light ions, of the innermost shell of an atom for asym-
metric collision systems satisfying Z~ 0.3Z~, where Z~
and Zz are the atomic numbers of the projectile ion and
target atom, respectively. Calculations [4,5] of the total
cross section, which include many features of the physics
of inner-shell ionization, show close agreement with ex-
perimental data for incident protons. However, results
from second-order Born and sophisticated, coupled-
channel numerical calculations [6] for incident protons
differ from experiment by 10%%uo for heavier targets (nickel)
to as much as 25% for lighter targets (carbon) with the
theoretical values systematically low [7]. There is indica-
tion that similar calculations [8] for incident helium ions
show a larger discrepancy [7]. Other calculations [5] for
incident He and Li ions reveal an increasingly larger sys-
tematic deviation from experiment as Z~ is increased.
Thus the relatively close agreement observed in some in-
stances for the proton data may be somewhat fortuitous.

The present paper is part of a combined experimental-
theoretical effort at the Naval Surface Warfare Center
(NSWC) in the investigation of inner-shell ionization.
Experimental measurements have been performed at
NSWC for the proton- and He and He ion-induced total
K-shell ionization cross sections and have been reported
previously [9]. Measurements have also been made at
NSWC for the cross-section differential in the projectile
scattering angle and are reported in a separate publica-
tion [10]. This paper develops a coherent account of a
theoretical description of the inner-shell ionization pro-
cess for asymmetric systems in which several physical
phenomena that are believed to govern the process are
taken into account. The velocity region of interest in
these studies lies within the region 0.2 ~/ ~ 1.2, where g
is the ratio of the adiabatic radius, A'U/Ett, to the K-shell
radius, 1/(Zr —0.3), U is the projectile velocity, and Ett
is the binding energy of the K-shell electron. This region
thus corresponds to projectile velocities less than or equal
to the electron orbital velocity.

Inner-shell ionization induced by a heavy ion is often
described theoretically within the impact parameter for-
mulation or, equivalently, the semiclassical approxima-
tion (SCA), following the pioneering work of Bang and
Hansteen [11,12]. The conditions for this approximation
are often well satisfied for a heavy projectile and the
mathematical expressions for the scattering amplitude
are less complicated in terms of both analysis and numer-
ical evaluation than those for the corresponding fully
quantal treatment. Within this approach it is convenient
to study in a systematic way two physical phenomena
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that are considered to play a major role in the inner-shell
ionization process. These have been labeled as the bind-
ing effect and the polarization effect. Within the single-
particle approximation, the active electron responds to
the time-varying field of the intruding projectile through
a distortion of its energy in terms of an increase (or de-
crease) in its binding energy for a positively (or negative-
ly) charged projectile [13,14] and a distortion or polariza-
tion of its wave function [15,16]. Past calculations [4,5]
of inner-shell ionization for low-velocity projectiles have
often been performed with the approximation that both
the binding energy and wave function be evaluated for
the projectile fixed at or near the position of the target
nucleus, under the rationale that ionization occurs most
probably when the projectile is close to the target nu-
cleus. If, however, we choose to work within the SCA,
then it is of interest to see what are the effects of tem-
porally dependent binding energy and wave functions for
the electron. This paper considers this issue and reports
the results of calculations of the total cross section for
K-shell ionization in which such time dependence is in-
corporated.

The time dependence of the initial-state electron bind-
ing energy has been considered previously in several cal-
culations [17—19] of inner-shell ionization. A sharp de-
crease in the total cross section at low energies in com-
parison with the results of the erst Born approximation
or other forms of perturbation theory was found. Calcu-
lations by the present author [20], in which a Coulomb
trajectory [21] was used to describe the motion of the
projectile and other well-known effects were estimated,
showed that the incorporation of an apparently improved
treatment of electron binding resulted in poor agreement
in comparison with experimental data for asymmetric
collisions at low projectile velocities.

While the incorporation of energy distortion in a time-
independent or time-dependent way is straightforward,
treatments of wave-function distortion have been varied.
Within the SCA a traditional model [4,22] employs an
initial-state wave function evaluated in the united-atom
limit; i.e., a K-shell wave function for a target nucleus
having an atomic number equal to the target plus projec-
tile is used. Alternatively, an elaboration [16,23] of this
model assumes a E-shell wave function evaluated with an
effective charge that is determined from a minimization
of the total energy [Eq. (4) below] corresponding to the
distance of closest approach. Both models thus incorpo-
rate only a monopole distortion of the wave function. In
an approach designed to introduce a dipole distortion of
the electron wave function, Basbas, Brandt, and Laubert
[15] employed the simple harmonic-oscillator model for
the electron shell. This modification was one of several
corrections to the plane-wave Born approximation for
inner-shell ionization. More recently, Basbas and Land
[24] constructed an initial-state, multipole wave function
that exhibits polarization induced by the projectile and
consists of an undistorted wave function multiplied by a
factor that allows charge to build about the projectile.

As noted previously, the overall goal of the present in-
vestigation is to incorporate the full temporal dependence
of both the electron binding and wave function in E-shell

ionization. Hence, the multipole wave function of Ref.
[24] was subsequently employed in (unpublished) calcula-
tions of the ionization probability that included this time
dependence. A significant enhancement in the ionization
probabilities was found and this appeared to cancel, at
least in part, the suppression induced by binding alone.
This result was quite surprising and, in order to study its
origins, an electronic wave function, which consists ex-
plicitly of a spherically symmetric contracting term
(monopole) and a dipole term, was advanced [25] as an al-
ternative to the multipole wave function, which was
difticult to deconvolute. The enhancement in the ioniza-
tion probabilities was found to arise explicitly from the
temporal variation of the monopole component of the
wave function and not from the dipole part. A qualita-
tive discussion of both the suppression from binding and
enhancement from polarization is given below.

In the present paper, this model, involving the mono-
pole and dipole wave function, is applied in calculations
of the K-shell-ionization cross section from low through
moderate velocities for incident protons and helium and
lithium ions. The systems studied include a wide range of
target atoms from Al through Ag for which experimental
data are available. The theoretical results are shown in
comparison with experimental data. Good agreement is
obtained for incident protons in comparison with the
NSWC data [9]. However, a systematic and increasingly
larger discrepancy is observed for incident He ions and Li
ions as the projectile atomic number increases. A
broader comparison of the theoretical results with the
reference cross sections of Paul and Muir [26] for in-
cident protons shows a larger discrepancy for Al and Ag
targets.

It is noted that similar calculations, which employ the
multipole wave function of Basbas and Land [24] and in
which the time dependence of both binding energy and
polarization are considered, were recently reported by
Trautmann and Kauer [27]. While the results of the cal-
culations in comparison with experimental data are simi-
lar to the present calculations, the authors of this paper
conclude a somewhat more favorable overview of the
theory than what will be reached here.

Throughout this work atomic units are generally used
(m, =e =Pi= 1); in addition, the notation (u, Av) is used
to represent the matrix element dr u * r Av r, where

u and v are basis states and A is a quantum-mechanical
operator in the coordinate-space representation.

II. THEORETICAL CONSIDERATIONS

A. Hamiltonian

ZTK
H = ——'V— —V2 I" s (lb)

The Hamiltonian H is written as the sum of an atomic
part M, and an interaction V(t):

H =H. + V(r),

where
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ZPZ1' R I
M

+ W(R), (lc)
oratory coordinate system by the addition theorem for
spherical harmonics,

and where MT is the mass of the target nucleus, and r
and R(t) are the coordinates of the electron and the clas-
sically prescribed trajectory of the projectile.

The form of 0, presupposes hydrogenic basis states,
denoted by P„, at least asymptotically. The use of
ZTz =ZT —0.3 invokes the Slater prescription for the
inner screening of the active K-shell electron by the
second electron, and the appearance of V„a constant
shift in energy, implies the Merzbacher-Lewis [28]
prescription to account for. screening by the outer elec-
trons. V, is given by V, = —

—,'ZTx+~Eii~, where Eii is
the experimentally determined value of the binding ener-
gy of the K-shell electron.

The interaction V(t) is given by the sum of three terms
Vc,„i+V„,i+ W(R}. The first term Vc,„, represents the
Coulomb potential between the incoming projectile and
the target electron. The second term V„,&

describes the
effect on the system of the recoil of the target nucleus un-
der the inAuence of the projectile, and has been discussed
elsewhere [29]. The third term W(R), which may in-
clude the projectile-nucleus potential, is an arbitrary
function of R (t). An exact solution of the Schrodinger
equation is independent of W(R) (gauge invariance). It is
desirable that approximate solutions, such as the present
one, maintain this property.

B. Initial-state ~ave function

The basic motivation behind the present model is to
employ within a perturbative approach basis states that
describe approximately the behavior of the system in in-
teraction with the perturbing projectile. This approach
contrasts with the more usual one of expanding the
scattering amplitude in terms of the eigenstates P„ofH,
above. The goal is to minimize coupling among the excit-
ed states of the system, or, equivalently, to diagonalize a
larger part of the total Hamiltonian within the given
basis states.

An initial-state wave function V~,i(r, R(t)), which de-
scribes the polarization induced by the passing projectile,
is expressed as [25]

4 „(r,R(t))=R „(r,g) Yoo(r),

where

R ~,i(r, g) =N (R )[1+A (R )r cos8']Rii (r, g(R )},
Rii (r, g(R ) ) =2/(R ) e

and N(R) =[1+(A,/g) ] '~ is a factor to guarantee unit
normalization. 0' is the angle between the projectile
coordinate R(t) and the electron coordinate r in a coordi-
nate system whose origin is centered on the target nu-
cleus. This wave function is thus seen to consist of a
monopole term and a dipole term that depend upon R (t),
both multiplied by a spherically symmetric K-shell radial
wave function that also depends upon R (t). The angular
term involving cosO' can be expressed in terms of the lab-

The functions g(R ) and A,(R ) are determined separately
by means of variational principles. The quantity g(R),
which plays the role of an effective charge, is obtained
with A, (R) set to zero by the variational principle of Ref.
[22] in which the total energy,

E,.(r) =(9 „,H(t)ql„i)
= —

—,'ZTx+ V, + ,'(g ZTx—)—

is minimized with respect to g(R ). This yields for g(R )

g(R) =Zz'x+Zp(l+2$R)e (4)

The function A, (R ) is determined by a subsequent minimi-
zation of the energy (without recoil) with respect to A, (R)
with g(R) held fixed. Details are relegated to Appendix
A. For asymmetric systems A, (R) is given to a very good
approximation by

~(R)=2 [1—e '~
( I+2$R +2('R'+g'R ')]

( R)
+&(Z~/Zm)'.

For small R, A, (R ) has the limiting behavior

A(R)=-', Z, gR .

The function A, (R) is related to the dipole moment
D=(% „,r4' „)=~D~R by

2—=IDIO 1+—

X2Z e /&4' .

As before, N (R ) is determined to give unit normalization
to the wave function; f (R) is again determined by a vari-

(Components of D perpendicular to R are zero by the
symmetry of the wave function. ) For asymmetric systems
the term (A, /g) is negligible.

The polarized wave function V,i(r, R(t)) so deter-
mined thus has the following properties: (i) as R ~ oo,
%,i is an exact eigenfunction of the Hamiltonian Eq. (1)
in the separated-atom limit, since g(R )~ZTx and
A,(R)~0; (ii) as R ~0, %~,i is an exact eigenfunction of H
(without recoil) in the united-atom limit, since
g(R)~(ZTx+Zp) and A,(R)~0; (iii) as ZP~O, the un-
perturbed state is recovered.

In a previous investigation, Basbas and Land [24] in-
troduced a different wave function that also incorporates
projectile-induced polarization:

%,i(r;R)=N(R)[e +f (R)]



TIME-DEPENDENT DISTORTION IN CALCULATIONS OF K-. . .

ational principle in which the total energy is minimized.
In this wave function the electron cloud builds about the
projectile in a K-shell-like fashion as the projectile nears
the target nucleus. Unlike the initial-state wave function
of Eq. (2), which consists of monopole and dipole mo-
ments only, this wave function is comprised of all mo-
ments. However, it is not clear how to resolve the vari-
ous multipole contributions to the total amplitude, a cir-
cumstance which proves desirable.

Similar forms of a wave function containing polariza-
tion have been considered previously. Temkin [30] em-
ployed a polarized orbital in a wave treatment of
electron-hydrogen scattering. Kleber and Unterseer [31]
introduced a wave function quite similar in form to that
of Eq. (2) in calculations of K-shell ionization. Their ap-
proach develops a wave function from a dynamical, vari-
ational principle as a solution of the complete time-
dependent Schrodinger equation. The S matrix is ob-
tained on the basis of closure. Unfortunately, the appli-
cation of this solution was limited to the systems p in Cu
and d in Cu, processes which seem not to stress the
theory.

It should be noted that the description of the electron
cloud through a spherically symmetric (monopole) con-
traction and expansion of the wave function has been dis-
cussed by other authors. Laegsgaard, Andersen, and
Lund [22] have considered its inhuence on the screening
factor V, contained in H, above. Benka, Geretschlager,
and Paul [32] introduced this effect as a further correc-
tion to the energy-loss Coulomb-deAection perturbed-
stationary-state relativistic (ECPSSR) model of Basbas,
Brandt, and Laubert [14] and Brandt and Lapicki [33].
This group notes that this description for low projectile
velocities amounts to the use of the correct K-shell elec-
tron velocity in the united-atom limit, to be distinguished
from the use of the correct electron binding energy [13]
in this limit, which is included in the ECPSSR model.

C. Final-state wave function

The wave functions describing the final states of the
electron which, for the problem of ionization, are contin-
uum states are chosen as the eigenfunctions P„of the
atomic Hamiltonian H, . In principle, the final states
could also exhibit a distortion or polarization induced
by the projectile, and the continuum-distorted-wave
eikonal-initial-state model of Crothers and McCann [34]
utilizes such states. An immediate interest of those au-
thors was to study the e6'ect of the projectile on emitted
electrons that are close to the projectile. These studies
were subsequently extended by Fainstein, Ponce, and
Rivarola [1] specifically for incident antiprotons. Such
states would be required for studies, performed within the
context of perturbation theory, involving capture to the
continuum of the projectile. Because the states of the
projectile continuum contribute very little to total or
differential (in the projectile scattering angle) cross sec-
tion, simple unperturbed eigenfunctions of FI, are used.

The radial part of these eigenstates for angular momen-
tum l is written [35]

&zk
RI,I(r)= (2l + 1)!

(2kr)'e

XF(i/'k +l +1,21+2,2ikr ),
where the normalization constant Czk is given on the en-
ergy scale by

2C s+-
( 1 ~

—2~/k)1/2 ~ ~ k 2

and F (i /k + I + 1,2l +2, 2ikr) is conAuent hypergeo-
metric function. In these expressions the variable k does
not represent the momentum of the outgoing electron be-
cause of the presence of the screening potential V, in the
Hamiltonian. Rather, it is a parameter related to the
final-state electron energy E& by

k =[2(Z~+ V, )]'";
for E& &

~ V, ~, k is purely imaginary, and the radial wave
function R&I(r) becomes infinite exponentially as r —+ ~.
This circumstance is well known [28] in this application
and causes no problem when this wave function is used in
matrix elements involving states bound sufFiciently
strongly.

In the calculations reported here, the continuum radial
wave functions Rkl were readily obtained through a nu-
merical solution of the Schrodinger equation by the
Runge-Kutta method. This was extended out to 36 times
the E-shell radius.

D. Scattering amplitude

In writing an expression for the scattering amplitude, it
must be borne in mind that the present model is
developed in terms of basis states that are more general
than the usually employed unperturbed eigenfunctions of
the atomic Hamiltonian R, . The initial-state wave func-
tion u;(t) =4,

&
may be regarded as a member of a set of

basis states [u„(t)J, of which the remaining members are
obtained from the excited bound and continuum states of
the system. Collectively these functions in general form a
set of nonorthogonal states that are not rigorously com-
plete. Nevertheless, they can be used as an acceptable
basis provided that the lack of orthogonality is taken into
account and that symmetry properties of the Schrodinger
equation, such as gauge invariance, are maintained.

Consider a set of basis states [u„(R(t))). Assume that
all states of the set, except for the ground state, which
represents the initial state of the system, are mutually or-
thogonal, although, for the moment, possibly dependent
on R(t). They are chosen to satisfy the boundary condi-
tions

where the P„are the time-independent eigenfunctions of
the atomic Hamiltonian II, . By the usual procedure, the
expansion of the solution g(t) of the Schrodinger equa-
tion in terms of these states,
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g(t) =g a„(t)u„(t),

is substituted into the Schrodinger equation to yield a set
of coupled equations for the amplitudes a (t):

i a =pa„(u, Hu„) i —g a u, u„

i —a;(u, u;) .
dt

The unitary transformation

a„(t)=exp —i fdt'H„„(t') b„(t)

removes the diagonal terms from the right-hand side of
these equations. The introduction of perturbation theory
at this point (often called the distortion approximation
[17,19]), whereby it is assumed b„((b, = 1 and

db, /dt =0, yields for the amplitude bt ( ~ ) of a final state

f the expression

b&(~)= i f— dt exp i f dt'[H&&(t') H;;(t'—)]
. a

uf &
H 1 u( H(/'(uf&u; )

Bt
(9)

This amplitude is manifestly gauge invariant; i.e., it is in-
dependent of W(R). However, as the amplitude is ex-
pressed in terms of the nonorthogonal basis set [ u„J, the
presence of the overlap integral involving the initial and
final states is crucial for this property to hold. It should
be noted that the use of perturbation theory does not im-

ply an expansion in Zp/ZT, as each term in general con-
tains contributions to all orders in Zp/ZT, but rather an
expansion in the amplitudes b„.

In the present model only the initial state of the system
is chosen time dependent and the final states are taken as
the time-independent, unperturbed eigenstates of H„P„.
Further development of Eq. (9) is specialized to this case.
One first notes that

ui
uf (uf u;)

at at

term plays no role in the numerical evaluation of the am-
plitude, and can be dropped. Nevertheless, its role in
preserving the gauge invariance of the theory is again
stressed. For problems involving excitation to a bound
state, this term is nonvanishing. It is also nonvanishing
in formulations that employ pseudostates to represent the
continuum states of the system.

It is worth noting that the expression for b/( oo ), Eq.
(10), can also be obtained from other methods in atomic
scattering theory and that there is agreement among the
results through terms of the order of (Zz/ZT) . One of
these is the standard two-state approximation [36,37]. In
this approach, a trial solution gr(t) of the Schrodinger
equation is written as the sum of two states P; and g/
with arbitrary coefficients:

Pr(t) =c;(t)P;(t)e ' +c&(t)P/e

b&(~)= i f dte—xp i f dt'(H/f H, , )

X [(uf Vu') Vff(uf u;)] . (10)

This expression resembles the result of lowest-order per-
turbation theory for the final™state amplitude in the SCA
with the addition of the term involving the overlap of the
nonorthogonal initial and final states. The appearance of
the interaction potential V in Eq. (10) results from the
choice that the final states of the system u& are exact
eigenfunction of the atomic Hamiltonian H, . It has been
shown previously [20] that when f refers to a continuum
state, the diagonal matrix element V&& can be considered
as small as one wishes for numerical purposes, so that the

because the u&=P& are here independent of time, and
then performs an integration by parts to accomplish
effectively the indicated time differentiation of u;. The
expression for b/( a& ) becomes

The coefficients c; and c& are determined variationally,
e.g., with the variational principle of Sil [36,38]. In the
present case the functions g, and P& are chosen to be %',

&

and P/, respectively. In the general case, care must be
given to insure that the two states g, and QJ satisfy the
proper boundary conditions at t=+oo. Equation (10)
follows through terms of the order of (Z~/ZT), if it is
assumed that c& «c, .

An alternative point of view can be found in the
method of symmetric orthogonalization developed by
Crothers [39]. Here one constructs to some order in a
small parameter a set of complete, orthogonal states. In
the present problem the small parameter is, clearly,
Z~/ZT, although in other cases another parameter, such
as velocity, could be appropriate. This procedure also
implies the applicability of Eq. (10) for the scattering am-
plitude b&( ~ ) and is again in agreement through order

(Zp/Zr) .
In summary, the model for ionization to a continuum

state is implemented with the following expression for the
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scattering amplitude bI( ~ ):

bI(~)= i f— dt exp i f dt'[E —E,.(t')]
OO

f
X(Q/, V(t)+ „(R(t))) .

rlf drPki(r)P~(r, g)

This expression, which is effectively gauge invariant in
the context of ionization (but not excitation), is not to be
regarded simply as a generalized form of the usual ex-
pression of the scattering amplitude obtained within the
SCA from lowest-order perturbation theory, with a time-
dependent initial-state energy and wave function replac-
ing the more normal time-independent, unperturbed
forms. Rather, it is obtained by expanding the solution
of the Schrodinger equation in a suitable set of basis
states that includes the state +,i(R(t)) describing the E
shell electron.

The final state f consists of an electron of energy EI
and angular momentum lm. Thus, within the SCA
~b&(~)~ represents the differential probability for the
ejection from the K shell of an electron with energy Ef
and angular momentum lm for a projectile with a definite
impact parameter b. The probability for ionization at
this impact parameter P(b) is obtained by summing over
all energies and angular momentum states. The total X-
shell-ionization cross section o is obtained by summing
P(b) over all impact parameters o. =2 J2vrb db P(b), in

which an additional factor of 2 is included to account for
the two electrons in the K shell.

l+1
2l+3 r

(13)

For the contribution from target recoil one has

ZT FI(A, /3)
V,";,'i (R)= ZF — Y/* (R)N(R)

T

X f dr r + ' Pk&(r)P&(r, g),
0

(14)

F. Numerical methods

where FI(A, /3) has the forms A, /3, 1, and 2A, /3 for the
cases 1=0, 1, and 2, respectively, and is zero for l & 2. In
these expressions the notation Pkr =rRkI, P~ =rR~ has
been introduced. The calculations reported below in-
clude s-, p-, and d-wave final states.

E. Matrix elements of the potential

The matrix element of the interaction potential V(t)
appearing in Eq. (11) for the scattering amplitude in-
volves the initial, distorted state of Eq. (2) and the final
continuum Coulomb state of Eq. (7), having energy E&
and angular momentum lm. This matrix element may be
written

V"' (R)=(P/, V(t)Pp, i(R(t)))
= f drRkr(r)Y&* (r) V(r, R(t))

X R& i(1' g) Ypp(1')

rI
I+, Yl~(R)Ym(r),r —R~ i 2l+1 r' (12)

in which the frequently employed notation r& (r& ) is
used for the lesser (greater) of r and R. One finds

where V is given in Eq. (1) above. The two parts of V,

Vc,„] and V„„,are considered separately. The evalua-
tion of each part can be found straightforwardly with the
help of some well-known formulas [40] following from
angular momentum theory and noted for reference in Ap-
pendix B. The piece involving the Coulomb interaction
between the projectile and the electron is based upon the
expansion

The matrix elements of the potential developed above
are used in Eq. (11) in the evaluation of the scattering am-
plitude. Equation (11) is basically the Fourier transform
of V"' (R(t) } with respect to exp(idiot ), where pi

=E& E, (oo ), in whic—h ad. ditional oscillatory factors to
be discussed below also occur. A scrutiny of V"' (R(t))
shows that it can be written as a sum of terms having one
of two different asymptotic behaviors: exp( —ZTx.R) or
1/R", with n ~ 2. In order to insure good numerical ac-
curacy in the evaluation of this Fourier integral, em-
phasis was placed on developing numerical methods that
reproduce known results for integrands having similar
asymptotic behaviors. For simplicity in this discussion,
the unit of length is taken as the E-shell radius 1/ZTz.

For terms having the asymptotic behavior exp( —R),
the following Fourier transform serves as a suitable mod-
el [41]:

2 2 1/2eiwz —(z + b ) K, (b(w +1)' },
OO ( 2+ 1)1/2

where w =co/u =g ' and K, is a modified Bessel func-
tion. It is found that an upper limit of z =24 (times the
K-shell radius) is sufficient for integrals of this form to
yield accurate values for the region in parameter space in

g and b of interest here.
Integrals with the R " asymptotic behavior are more

complicated. A sample integral is
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dze' ' 1 w&

z'+b' (16)

This integral, with an upper limit of z =24, is in general
not close to its correct value. The remainder of the in-
tegral from z =24 to z = ~ is evaluated by deforming the
contour, which extends along the real axis to infinity, up
the imaginary axis at z=24 to a point beyond which
there is no further contribution to the integral. The
remaining portions of the integral (e.g. , parallel to the
real axis to infinity) are vanishingly small. That portion
of the integral along the imaginary axis converges very
well, but care must be exercised because its value in ex-
treme cases (low g and large b) is nearly equal in magni-
tude to, but of opposite sign from, the contribution from
the real axis from z =0 to z =24.

In determining a suitable mesh size in the evaluation of
the scattering amplitude, Eq. (11), care was taken of the
following. The use of a temporally varying (increasing)
binding energy causes a more rapid oscillatory behavior
(larger w). The use of a Coulomb trajectory in the repul-
sive case leads to a decreased projectile velocity v and,
hence, to a more rapid oscillation. Finally, the oc-
currence of final continuum states likewise leads to a
larger oscillation rate. It is the numerical accuracy of the
evaluations of the integrals of Eqs. (15) and (16) that lim-
its the applicability of calculations of the cross section in
practice to values of g & 0. 17.

The numerical evaluation of the matrix elements
V"' (R(t)) was performed at preset values of R. In or-
der to determine V"' (R(t)) for values of R in between
in the evaluation of the integrals in the variable z, a spline
interpolation [42] was performed. This procedure was
tested in the evaluation of the integral in Eq. (IS). Matrix
elements are specific to the target atom and, when polar-
ization is included, to the projectile as well. In practice
the matrix elements are stored to save calculational time
in studying the energy dependence of the cross section for
a given system.

G. Additional considerations

The major thrust of this investigation is the study of
the temporal dependence of electron binding and polar-
ization. There are several additional aspects of this prob-
lem that have not been included, the most important of
which arises from the use of nonrelativistic wave func-
tions. Relativistic effects are known to be important in
inner-shell ionization because the velocity of the K-shell
electron in targets as light as Cu no longer lies in the non-
relativistic regime. A significant conclusion of this paper
will be seen in the observation of a systematic and in-
creasingly larger discrepancy of theory from experiment
as the projectile charge Z~ increases. This result can be
reached on the basis of the three lightest systems, p and
He in Ti and Li in Cr, and at the highest projectile ve-

locities for which experimental data are available. Under
these conditions, relativistic effects are less than 3%.
Thus the impact of this (potentially very significant)
physical effect on this major conclusion is not a pivotal is-
sue.

It would, nevertheless, be useful and interesting to ex-
tend comparisons with data to a broader range of targets
in order to infer a possible dependence of the target
atomic number and, in particular, on the ratio Zz/ZT.
In order to include relativistic effects in situations in
which this phenomenon is important, the ratio of the rel-
ativistic to nonrelativistic total cross section is calculated
from the CPSSR [43] model and is incorporated in the
calculations of the total cross section reported below as a
multiplicative factor. This factor is close to that provid-
ed by several other estimates, as summarized by Admun-
sen, Kocbach, and Hansteen [44] and to the results of cal-
culations performed with relativistic wave functions.
Thus, it is felt that meaningful conclusions can be drawn,
even though for the worst case considered (0.3 MeV/u
Li in Pd) the increase in total cross section is 300%%uo. The

incorporation of Dirac-Hartree-Fock-Slater wave func-
tions is currently underway.

TABLE I. Values of the total K-shell ionization cross section calculated theoretically with PBBCDP,
uncorrected and corrected by the multiplicative factors, ENL and REL from the ECPSSR model for
energy loss and relativistic eftects for p in Cu and 'He in Ti. These cross sections are denoted by
o- c '" and o.P B, respectively. Experimentally measured values, o'" ', are taken from the Paul-
Muir reference cross sections [26] for incident protons and from Simons et al. [9] for incident 'He ions.
All cross sections are given in barns.

System Energy

(Mev)
0.2
0.5
1.0
1.5
2.0

PBBCDP, u

0.0249
1.41

14.7
45.4
90.1

ENL

0.868
0.946
0.973
0.982
0.987

REL

1.328
1 ~ 170
1.097
1.065
1.048

PBBCDP

0.0287
1.56

15.7
46.4
93.2

expt

0.0333
1.62

15.9
48.2
95.7

'He~ Ti
(MeV/u}

0.2
0.5
1.0
1.5

2.63
77.3

640.0
1680.0

0.971
0.989
0.995
0.997

1.134
1.067
1.034
1.021

2.90
81.5

658.0
1710.0

3.15
89.0

787.0
2160.0
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Another effect that has been neglected involves the en-
ergy loss of the projectile in the ionization of the atom.
This inherently quantal effect has been estimated from
the ECPSSR model [33] and is also included as a multi-
plicative factor. For incident He and Li this effect is
quite small (3% or less); see Table I.

It has been noted that the calculations of the cross sec-
tions are performed with a hyperbolic Coulomb trajecto-
ry [21]. Details are given in Appendix C.

III. RESULTS OF CALCULATIONS
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The present model, characterized by a time-dependent,
initial-state binding energy E; (t) and polarized wave
function lp, I(R(t)), is now applied in calculations of the
total cross section for K-shell ionization. In the following
these calculations are denoted by PBBCDP. [PBBCDP is
a pseudoacronym, PB standing for P(b), the probability
for ionization at impact parameter b, B for binding, C for
Coulomb trajectory, and DP for (dipole) polarization. ]
Results are reported in comparison with the NSWC ex-
perimental values of Simons et al. [9] for incident pro-
tons and He ions and with values measured by Raith, Di-
voux, and Gonsior [45] for incident Li ions. In all in-
stances involving comparisons with experimental data the
present theoretical results are corrected for energy loss
and relativistic effects as discussed above.

In Fig. 1 results are shown for incident protons in
terms of the ratio of the experimental to the (PBBCDP)
theoretical values of cross section as a function of the
scaled velocity g and cover a range in g from 0.4 to 1.2.
Targets include Ti, Cr, Ni, and Cu. The agreement be-
tween the two is very close, with the theoretical values
slightly low ((10%) at the highest values of g con-
sidered.

In Fig. 2 similar results are shown for incident He ions
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FIG. 2. Same as Fig. 1 for 'He ions incident on Ti, Cr, Cu,
Zr, and Ag targets.

in the range of g from 0.2 to 1.0. Here somewhat larger
discrepancies are noted. The experimental to theoretical
ratios for Ti, Cr, and Cu targets are similar, being low by
about 10%%uo at low g and by 20%%uo at higher g. The trend
of a larger discrepancy at higher energies, seen for in-
cident protons, is reproduced. For the Zr and Ag targets,
there appears, on the average, to be agreement between
the theoretical and experimental results. It should be
kept in mind that a considerable correction (up to 250%)
is required for Zr and Ag targets from relativistic effects.
There also is a hint from these results of a dependence of
the observed discrepancy on ZT.

In Fig. 3 comparisons are shown for incident Li ions
[45]. The range in g extends from 0.2 to 1.1. Here
discrepancies between theory and experiment are larger
still. Also, the trend of larger discrepancies at higher
values of g continues. However, there is now a clear
dependence of the discrepancy on ZT with smaller
differences occurring for larger ZT. Calculations were
also performed for Li on Fe (Z =26), and the experimen-
tal to theoretical ratios lie between those for Cr (Z =24)
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FIG. 1. Ratio of experimental to the PBBCDP theoretical
values of the total K-shell ionization cross section as a function
of g for protons incident on Ti, Cr, Ni, and Cu targets. Energy-
loss and relativistic effects are included in the theoretical values
from the ECPSSR madel [33].
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FIG. 3. Same as Fig. 1 for Li ions incident on Cr, Ni, Y, and
Pd targets.
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and Ni (Z =28); they are not displayed in the figure for
the sake of clarity.

From the above comparisons it is clear that there is a
strong dependence of these ratios on Z~ and, from the
cases involving incident Li, a manifest dependence on ZT
as well. In order to explore this dependence for incident
protons and to extend the domain of comparison between
theory and experiment, ratios of the PBBCDP theoretical
values to the reference cross sections developed by Paul
and Muir [26] are calculated. These reference cross sec-
tions, applicable for protons, are based upon a systematic
average of many experimental measurements. Since the
data considered above cover the region of g from roughly
0.2 to 1.2, calculations have been performed in the region
from /=0. 17, the minimum value for the reference cross
sections, to /=1. 2 for four targets, Al, Ti, Cu, and Ag.
The results are displayed in Fig. 4. Here one notes a
dependence on ZT, not present in experimental data lim-
ited to the range 22 ~ ZT + 29. In particular, for higher
values of g, all the curves rise slightly, in agreement with
the overall trend observed above. The different behavior
of the curve for Al could arise from coupling effects from
the I. subshell. At lower g the curves exhibit a sharp
peak at /=0. 275, below which they fall rapidly.

In Table I some typical numerical values of the total
E-shell ionization cross section calculated here along
with the contributions from the relativistic and energy
loss effects are shown for p in Cu and He in Ti.

Calculations of the E-shell cross sections differential in
the projectile scattering angle I'(b) have also been per-
formed. These are presented in a separate publication
[10] in which comparisons with NSWC and other data
are shown.

In the development of the present model the incorpora-
tion of the time dependence of the binding energy and po-
larization of the electronic wave function as a function of
the position of the projectile was accomplished in two
steps. In the first step [20] the temporal dependence of
the binding energy alone as a function of the position of
the projectile was incorporated with an undistorted wave
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function. In the second step [25] the time dependence of
both the binding energy and a polarized wave function
was considered. As discussed above, it was found that
the introduction of a time-dependent binding energy with
an undistorted wave function gives rise to a large
suppression of the total cross section for K-shell ioniza-
tion at lower velocities; at higher velocities (g 1) the two
cross sections approach one another. However, the intro-
duction of a wave function that is allowed to respond to
the time dependence of the projectile position was found
to give rise in turn to a large enhancement of the cross
section at low g that cancels in part the suppression in-
duced by the time-dependent binding.

These results are illustrated in Fig. 5. Two systems are
considered, p in Cu and He in Ti, spanning values of the
ratio Z~/ZT from 0.035 to 0.091. The lower curves in
each portion of the figure represent the ratio of the cross
section calculated with time-dependent binding to that
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FIG. 4. Ratio of the Paul-Muir reference cross sections [26]
to the PBBCDP theoretical values as a function of g for protons
incident on Al, Ti, Cu, and Ag targets.
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FIG. 5. Ratios of theoretical cross sections as calculated with
time-dependent binding (bind) to those calculated with time-
independent binding (lower curves) and of cross sections as cal-
culated with time-dependent polarization (pol) to those calculat-
ed with time-independent polarization (upper curves) as a func-
tion of g for He in Ti (a) and p in Cu (b). The dashed extrapola-
tions shown for p in Cu represent calculations for a constant-
velocity, straight-line trajectory. In this figure and the next,
o." ' and cr""" refer to total cross sections calculated with the
particular physical effect(s) in question as time dependent or as
time independent with R (t) fixed at b.
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calculated with the time-independent binding energy
evaluated at R =b, and demonstrate the significant
suppression of the cross section for time-dependent bind-
ing. These calculations were performed with an unpolar-
ized wave function. The upper curves represent the ratio
of the cross section calculated with time-dependent polar-
ization to those calculated without polarization, and re-
veal a large enhancement at low g. Both of these calcula-
tions include temporally dependent binding. As noted
above and discussed elsewhere [25], numerical studies of
this enhancement showed that its origin is found
specifically in the spherically symmetric (monopole) con-
traction and expansion of the wave function,
exp[ —g(R )r], and not in the dipole distortion involving
the term with A.(R). The latter was found to introduce a
shift in the cross section proportional to Zz/ZT that is
roughly independent of projectile velocity in the velocity
region considered here, g ~ 1.2. It was in order to draw a
sharp resolution between these pieces that the wave func-
tion of Eq. (2), consisting explicitly of a monopole and di-
pole part, was introduced as an alternative to the mul-
tipole wave function of Eq. (6).

Two additional points should be made in connection
with Fig. 5. In the case of p in Cu, the ratios (solid
curves) are seen to turn over and approach unity for
small g, in sharp contrast to the situation involving in-
cident He. Most of this behavior arises specifically from
the effect of Coulomb deflection in the p-wave part of the
amplitude, which is overriding the inhuence of the tem-
poral dependence of the binding and polarization. To il-
lustrate this, calculations that employ a constant-
velocity, straight-line trajectory have also been per-
formed, and the results are indicated by the dashed extra-
polations of the solid curves. These ratios are similar to
those obtained by He in Ti, for which Coulomb effects
are considerably weaker because of the heavier mass of
He. The small rise in the binding curve for incident p at

the lowest g is starting to be seen for incident He also.
Secondly, the curves that compare time-dependent versus
constant binding rise slightly above unity at large g. The
naively expected behavior of the cross section in which
the binding varies between two limits is that its value
would lie between values appropriate for the limiting
cases. This clearly does not happen except at large g.

The ratios shown in Fig. 5 that include polarization ex-
hibit the enhancement at low velocity just described, but
differ from unity at high velocity because of the total
neglect of polarization in the calculated cross sections of
the denominators. In order to see the effect of a "time-
independent" polarized wave function, the following cal-
culations were additionally performed. In the polarized
wave function of Eq. (2), the value of R in the monopole
portion, Rs(r, g(R)), was taken in the united-atom limit,
i.e., at A =0. This gives rise to a time-independent
monopole piece. However, in order to maintain compa-
tability with existing computer codes, the time depen-
dence of R was kept in the dipole term involving A.(R ). It
has been shown [25], as remarked above, that the tem-
poral dependence of the dipole portion does not contrib-
ute to the large enhancement at low velocity. Thus, the
polarized wave function just described is appropriate to

illustrate the effect of time independent polarization.
The results of these calculations are shown in Fig. 6.

The lower curves represent time-dependent versus time-
independent binding and are taken from Fig. 5 for com-
parison. With respect to these ratios, it should be noted
that corresponding calculations performed with time-
independent polarization as described above are indistin-
guishable from those shown. The upper curves represent
the ratio of the total cross section calculated with the full
temporally dependent wave function of Eq. (2)
(PBBCDP) to those calculated with the monopole portion
evaluated in the united-atom limit. The enhancement at
low velocities, though not as large as that seen in Fig. 5,
is still quite pronounced. In addition, the ratios are close
to unity at the higher velocities, as would be expected.
The middle pair of curves represents the ratio of cross
section calculated with complete time dependence of both
polarized wave function and binding energy (PBBCDP)
to those calculated with the time-independent monopole
portion of initial-state wave and time-independent bind-
ing. While these curves show a modest structure, they
are near unity, suggesting some cancellation at the lowest
velocities considered in the figure between the enhance-
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FIG. 6. Ratios of theoretical cross sections as calculated with
time-dependent effects to those with time-independent effects as
a function of g for 'He in Ti (a) and p in Cu (b). The lower
curves represent the effect of binding, the upper curves the
effect of polarization, and the middle curves the effects of both
binding and polarization.
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FIG. 7. Ratios of experimental values to the theoretical
values calculated with time-dependent binding and polarization
(PBBCDP) and with time-independent binding and polarization
of the total K-shell ionization cross section as a function of g for
p in Cu. Energy-loss and relativistic effects are included in the
theoretical values from the ECPSSR model [33].

ment and suppression occurring from temporal depen-
dence of the polarization and binding, respectively, and
illustrate the situation that past calculations which
neglect the time dependence of the binding energy and
wave function distortion have often shown reasonable
agreement with experiment. The results of Ref. 4 provide
a good example for low-velocity incident projectiles.

Having introduced time-dependent binding and polar-
ization, and having seen that discrepancies with experi-
mental data remain, has anything been gained over
evaluating these quantities at some fixed time? To answer
this question, let us confront each calculation with exper-
imental data. This is done in Figs. 7—9 for p in Cu and
He in Ti and also for Li in Cr. Data are from Ref. [9]

for p and He and Ref. [45] for Li. For p in Cu both cal-
culations are generally to within 5% of the data, al-
though the calculations having full time dependence are
in a little closer agreement overall. The remaining two
systems exhibit trends that are quite similar. Calcula-

FIG. 9. Same as Fig. 7 but for Li in Cr.

tions with the full time dependence lie below the experi-
mental values, with the discrepancy increasing for higher
velocities, as shown in Figs. 2 and 3. Those calculations

- performed with binding and polarization time indepen-
dent are close to the time-dependent results at higher ve-
locities, as would be expected, but at lower velocities ex-
hibit a pronounced and (perhaps) undesirable structure
with a large dip near /=0. 4. While on the average the
time-independent results are closer to experiment, the ab-
sence of structure in the ratio that follows from the use of
time-dependent binding and polarization appears more
persuasive in favoring this model with respect to compar-
ison with data.

Figure 10 shows comparisons in the cross sections for
the two forms of polarized wave function discussed
above, the dipole wave function Eq. (2) and the multipole
wave function Eq. (6). Two systems are considered, p in
Cu and He in Ti. The multipole wave function, whose
calculations are denoted by PBBCPL, gives rise to some-
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FIG. 8. Same as Fig. 7 but for He in Ti.

1.6 FIG. 10. Ratio of values of the cross section calculated with
the multipole wave function, Eq. (6), (PBBCPL) to those calcu-
lated with the dipole wave function, Eq. (2), (PBBCDP) as a
function of g' for p in Cu and He in Ti.
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what lower values of total cross section with the
difference increasing with larger Zp/ZT, as would be ex-
pected. While the largest difference of nearly 10% is seen
for the He projectile in Ti at /=0. 4, the overall similari-
ty between the results of the two wave functions gives
credence to the use of either to characterize the effects of
wave-function distortion.

Calculations in configuration space of the matrix ele-
ments of the potential with the multipole wave function
proceed in a similar way to those without polarization.
In addition to the expansion of the I/~r —R~ part of the
potential in spherical harmonics, Eq. (12), the contribu-
tion from polarization can readily be included through an
analogous expansion in spherical harmonics of the prod-
uct exp( —ZR~r —R~)/~r —R~ [46], which combines the
polarized piece of the wave function with the electron-
projectile potential.

IV. MATHEMATICAL ANALYSIS
OF TIME-DEPENDENT BEHAVIOR

With such dramatic changes in the scattering ampli-
tude upon the introduction of time-dependent binding or
polarization as observed in Fig. 5, it is of interest to un-
derstand their origin. In previous work [20] a study was
performed to determine the cause of the large suppres-
sion of the scattering amplitude at low projectile veloci-
ties when the electron binding energy is allowed to de-
pend on time. This study proceeded through an analysis
by the method of steepest descent of integrals prototypi-
cal of those that occur in the expression for the scattering
amplitude, Eq. (11). Here this analysis is extended to in-
clude a time-dependent monopole moment of the type
that was found responsible for the observed enhance-
ment. It should be emphasized that this analysis is in-
tended as qualitative in nature; details depend on the ex-
act form of the assumed matrix element of V. In this sec-
tion as in Sec. II F, the unit of length is the K-shell radius
1/Zrsc.

The scattering amplitude of Eq. (11) may be expressed
generically in the form

I= f" dz exp i z+ —' —f 'dz'bE(R') V(R),
00 U U 0

(17)

I(s)=f dze f"

where V(R ) represents the matrix element of the poten-
tial and bE(R) is given by [E;(t)——,'] from Eq. (3). A
temporally dependent binding energy is thus explicitly in-
cluded. Here R is given by (b +u t )', implying a
straight-line trajectory. Several forms of V(R ) were
studied previously [20] and the form most amenable for
the present analytic consideration is V(R)=exp( —R).
Here, in order to incorporate temporally varying polar-
ization, the function V(R) is generalized to

V(R ) =g(R )3/2e —$1R)R

where g(R) is the effective charge factor defined in Eq.
(4).

An integral of the form

may be approximated for large s by [47]
sf(z )&2~e ' e'

I(s)—=
sf (z)~1 /2

f (z)= iz + dz'6 R z'
w co 0

bg(R—)R + in((R )
1 3

w 2w

where

—:g(z)+h (z),

g (z) =iz —R /w,

and h (z) is the remaining portion of f (z), which is of the
order of Zp/ZT. iu =co/u is assumed large. bg(R) is
given in analogy with the definition of b,E (R ) by
[g(R ) —1]. Note that f (z) is singular at z =+ib

The critical point of f (z), z„ is obtained from
f'(z, )=0. For h =0, the critical point of g(z), z,', is
readily found to be

iwb
z

( 1+ 2)1/2

which lies below the singular point at z =+ib and is the
only saddle point. The critical point of f (z) may be
found perturbatively. From f '(z, ) =0, one finds

z, dh (z, )0=i —— +
w ( 2+ b 2)1/2 dz

or, upon squaring,

dh(z, )—w (z +b )=z 2wz (z +b )'—
C C C C dz

+O(Zp/ZT)

If it is assumed that z, differs from z,' by terms of the or-
der of Zp/ZT, then z, may be replaced by z,' everywhere
in the term involving dh /dz, provided that dh /dz
remains bounded near the singular point at z =ib. One
finds that

dh i=—b(R ) —— b,g(R )+ 1 ———1 dR 31 dg
dz CO W dz 2g dR

Under the stated assumptions, one has R(z, )=0 and
dR (z, )/dz =iw Thus, dh (z, )/d. z is bounded. Further-

Here z, is the location of a zero of f'(z), which is a
genuine saddle point (in general, a sum must be taken
over all saddle points) and a is the angle such that
f"(z, )(z —z, ) e ' is real and negative. The function
f (z) in the present instance has a singular point, and the
significant issue will be the relative location of the critical
point z, to the singular point in f (z) since f"(z, ) is sensi-
tive to z, .

The model amplitude defined by Eq. (17) clearly is of
the form of Eq. (18), in which

s —co /u—:w
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The term involving the second derivative f"(z, ) in Eq.
(19) is found to be

isf "(z, )
b 1/2

1 —2 —12+1)3z4 Z

3/4

(21)

In these expressions the terms associated with binding
and polarization are the factors within the parentheses
1/co and unity, respectively. The critical point always
remains below the singular point. The effect of binding is
to move the critical point nearer the singular point, while
the effect of polarization is to move the critical point
away from the singular point and by a comparable
amount.

We note an important result from these expressions.
While the shift in the location of the critical point arising
from binding and polarization is of the order of
(Z~/ZT )/w, a very small quantity because w is assumed
large, the change in the value of f" is of the order of
Zp/ZT, which is much larger. This difference occurs be-
cause of the singularity in f (z) at z =ib, and emphasizes
the sensitivity of the value of the integral to the location
of the critical point.

In the case in which binding and polarization are eval-
uated at the distance of closest approach such that b, (R)
and g(R) take the constant values b(b) and g(b), Eqs.
(20) and (21) are replaced by

ibm 1

(w +1)' w +1
AE (b) ~((b)

and

b 1/2

2 3j4

3/4

Here the shift in the location of the critical points is
smaller than when the binding energy or wave-function
polarization is allowed to vary with projectile position.
b,E (R ) and b,g(R ) are evaluated at R =b rather than at
R =0, where they are smaller in magnitude. Thus, the
overall effect on the scattering amplitude from each is ex-
pected to be significantly smaller.

In this example the actual change in the scattering am-
plitude arising from the time-dependent treatment of
binding and/or polarization is seen to be rather small, of
the order of Zp/Zz-, which is perturbative in nature.
However, the earlier study [20] of binding alone showed
that detailed results depend strongly on the form of
V(R). The specific case of V(R) given by
( 1+R )exp( —R ), a case not so readily tractable to

more, at R =0, dg/dR is zero, and b, (R) and g(R) both
have the value Zz/ZT. Thus, correct through order of
Zz/ZT, the critical point z, is given by

ibm Zp 1 11+ ——1
(w +1)' ZT w +1 oo

analysis, was shown numerically to lead to a large
suppression of the amplitude. This suppression is larger
than what is obtained from using for V(R) an actual ma-
trix element of the potential, Eq. (13), for zero-energy
outgoing electrons, as an example. Another case was
studied in which a 0 developed in the amplitude.

In summary, the analysis of the integral of Eq. (17)
with V(R) given by g(R) ~ exp[ —g(R)R] shows that its
value for large m is dominated by the location of a critical
point relative to the location of a singular point, and that
the shift in the location of the critical point is larger for
the case of time-dependent binding and/or polarization
than for constant binding and/or polarization. For bind-
ing, the shift is towards the singularity, and for polariza-
tion it is away from the singularity. Because of the oc-
currence of the factor f"(z, )

~

' in Eq. (19), the value
of the integral is suppressed for binding or enhanced for
polarization, and this change is exaggerated because of
the nearby singularity in f (z). Recall that co is given by
Ef —E, ~

—,'. The shift in location of the singular point is
of comparable magnitude for binding and polarization
but is not the same. The effects of binding and polariza-
tion do not necessarily cancel.

V. DISCUSSION

The comparisons between experiment and theory
presented above reveal systematic discrepancies that in-
crease as Zz increases and appear to decrease as ZT in-
creases. Since the ratio Z~/ZT is fundamental in the
theory, it could be asked whether these discrepancies are
consistent with a dependence on this ratio. It should be
noted that Zz/ZT ranges from about 0.02 for p in Ag to
0.13 for Li in Cr, covering a range of about 6. A sys-
tematic dependence on Zz/ZT of the discrepancy in the
ratios of experimental to theoretical cross sections would
translate to a systematic dependence on (Z~/Zr)" of the
error in the amplitudes bf ( ~ ), where n is most likely 2 or
3. [Recall that bf( ~ ) already contains terms of the order
of Zp/ZT in lowest order. ] As the ratios now stand, such
a dependence is not clear. However, if these ratios were
increased by about 10% (i.e., theory decreased by 10%),
then one would find a rough proportionality between
these increased ratios minus unity and Z~/ZT, implying
an error of the order of (Z~/ZT) in the amplitude. For
p in Cu this error would be about 5—7%%uo. This certainly
is not unreasonable.

One might speculate on the origin of a constant shift of
these ratios from reported calculations of Ford,
Fritchard, and Reading [6]. These authors had intro-
duced the use of Hartree-Fock wave functions, including
an accurate treatment of the exchange term, into the
problem in proton-induced K-shell ionization and con-
trasted these results (in the Born approximation) with
those obtained with screened hydrogenic wave functions
employed here. Cross sections obtained with Hartree-
Fock wave functions were found to be about 10% lower
than those obtained with screened hydrogenic wave func-
tions. This property relates to a ZT dependence and
could be roughly independent of Z ~ Thus the use of



TIME-DEPENDENT DISTORTION IN CALCULATIONS OF X-. . . 287

more accurate wave functions, such as Hartree-Fock
wave functions or, more elaborately, wave functions that
include the configuration interaction, could account for a
shift in these ratios.

There are several possible origins for error of the order
of (Z~/ZT) . The polarized wave function employed
here to describe the behavior of the initial-state electron
is clearly only an approximation. The nature of the ap-
proximation can be appreciated if it is recalled that Eq.
(11) would represent an exact expression for the scatter-
ing amplitude in the post form if the wave function
+,&(t) were replaced by ~p'+ '(t), the exact solution of the
Schrodinger equation satisfying the boundary condition
ip'+'(t)~p; exp( iE;t—) as t~ —~ (with due account
being given to an exp( iEft)—factor). In addition, no
distortion of the ejected electron (final-wave function) is
considered, either explicitly in terms of a Pf in the two-
state approximation or implicitly in terms of a more ac-
curate description of an assumed %"+'. In this regard it
would be quite interesting to employ the variationally
developed wave function of Kleber and Unterseer [31] as
a particularly appropriate approximation for +'+'; dis-
tortion of both initial and final states is implicitly includ-
ed in this approach.

And there is a subtle source of error. In the perturba-
tion theory used in the calculations, a unitary transfor-
mation, Eq. (8), is introduced to remove diagonal terms
from the right-hand side of the equations for the ampli-
tude. This transformation, from which the binding effect
follows, appears as a multiplicative factor in both the
monopole and dipole terms of the initial-state wave func-
tion. But in a derivation intended to motivate the pres-
ence of this factor at low velocities, Reading [48] has
shown, from a consideration of a class of terms in the
Born series, that this factor is associated with only the
unperturbed part of the initial-state wave function. It
would follow that, from the point of view of an expansion
of this term in Z~/ZT, only portions of it would multiply
the polarized parts of an initial-state wave function. This
includes both dipole and monopole parts. Thus, errors of
this type appear in the amplitude to order (Zp/ZT) .
This point should be kept in mind in the application of
approximation schemes such as the perturbation theory
employed here [Eq. (10)] or the two-state approximation
or the method of symmetric orthogonalization discussed
above. These methods might not be sufficiently accurate
for reliable solutions.

Another source of discrepancy between theory and ex-
periment is the omission of the contribution from the
capture of the K-shell electron by the projectile. This
cross section is always included in the experimental mea-
surements. Estimates of its magnitude can be made on
the basis of the strong potential Born theory of Macek
and Alston [49] with the inclusion of IC-shell binding.
For a Cr target the contribution is negligible for incident
protons, but it is of the order of 5% for He ions and
20% for Li ions. This magnitude, especially for Li, par-
tially negates the arguments made above relating the
dependence of the observed discrepancies on Z~/ZT.
However, application of this theory to p in Ne, a system
having a similar Zp/ZT and ZT/U as Li on Cr, predicts

electron capture cross sections that are twice as large as
values measured by Rodbro et al. [50]. The estimates for
Li in Cr could also be large. Thus, electron capture un-
doubtedly plays a role, but the main thrust on the conjec-
ture on the origin of the observed systematic differences
between theory and experiment outlined above should
still hold.

All calculations presented here have been performed
under the assumption that the K-shell electron responds
instantaneously to the motion of the projectile. This is
the basis of adiabatic perturbation theory, which is
indeed to apply at very low velocities, /~0, and which
formed the motivation [16, 51] of this work. The calcula-
tions here extend to /=1. 2. It would be expected that
there should be some breakdown of this approximation at
these velocities. A study of this issue [52], which rests on
a variational principle [53] designed to minimize the
effects of coupling to higher states, has been performed.
Results were presented by showing the behavior of the
effective charge of the target nucleus as perceived by the
K-shell electron g(t) as a function of projectile position
for several projectile velocities from /=0 to 50. These
results generalize that given for g(t) in Eq. (4), which is
appropriate for g close to zero. It was found that, for
(= 1, g(t) is sufficiently close to its values for /=0 that
the difference is not significant. For g'=50, g(t) is close
to unity for all t, thereby implying the Born approxima-
tion, in which the wave function does not respond at all
to the motion of the projectile. The effect of the transi-
tion from the adiabatic to the nonadiabatic region in the
present calculations remains a consideration for future
work.

In connection with this point, it is interesting to draw a
distinction between the K-shell electron binding energy
and velocity for the projectile located at the target nu-
cleus, R =0. The use of Eq. (3) for the binding energy
does not strictly correspond to the binding energy in the
united-atom limit: it predicts a larger binding. The
reason for this choice, also discussed in Ref. [52], was
that the outer electrons of the target atom are largely un-
perturbed by the passage of the projectile. Hence, no
change in outer screening is introduced, and the binding
energy of the K-shell electron is larger than that for a nu-
cleus having Z =ZT+ Zz. On the other hand, the use of
Eq. (4) for the effective charge g(t) does imply the K-shell
electron velocity exactly in the united-atom limit. The
electron velocity is directly related to its wave function,
which, as just discussed, is treated in the adiabatic limit.

I conclude with a remark on the introduction of tern-
porally dependent quantities in approximate theoretical
descriptions, such as the present one. It has been shown
that the occurrence of such time-dependent factors can
lead to large changes in the scattering amplitude, and,
hence, in the cross section. In the present model, a large
suppression of the amplitude caused by time-dependent
binding is cancelled in part by a large enhancement
caused by time-dependent polarization. The observations
of the preceding paragraph, in which the quantity g(t) is
associated with the electron velocity, might suggest that
if the electron energy is treated in a time-dependent way,
the electron velocity must be similarly treated. This im-
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plies the temporal dependence of the monopole moment;
i.e., a time-dependent polarization. The mathematical
analysis discussed in Sec. IV suggests that exact cancella-
tion is not implied. It would, therefore, seem prudent to
exercise caution in the use of temporally dependent quan-
tities in approximate calculations. Nevertheless, it ap-
pears from Figs. 7—9 that the time-dependent approach
does yield a more stable behavior of the theoretical cross
sections in comparison with experimental data. Also, the
approach of utilizing approximate analytic wave func-
tions contains the possibility of including classes of terms
to all orders in Zp/ZT and allows the advantage of ob-
taining additional physical insight.
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The parameter A, (R) in %'~,
&

is determined by minimiz-
ing the total energy E, (t) with g fixed. With A, nonzero,
Eq. (3) generalizes to

E;(t)=(% „,H(t)% „)
=X(R)' —' +

2
11+—
2

2

2 2
ZP A, 2 k 3

v, (R)+— u~(R)+ — u3(R)+ — u~(R)R ' ggR

Here,

u, (R)=1—e ~ (1+JR),
u, (R)=1—e '~ (1+2(R +2/'R'+g'R '),
v3(R)=l —e ~ (1+2$R+2g R +~4( R

+—'g R "+—'g R ),
u4(R)=1 —e ~ (1+ ', gR+g R + 3g—R ) . —

[(C—3) +B ]' —(C —3)
—8

For the asymmetric case, Zp ~0.3ZTK, A is of the order
of ZTK, while B and C are of the order of ZP. Then one
may set

1 B—
2 C —A

E, can be put into the form

2 + (A, /g)B + (A, /g) C
1+(X/g)

where

which is Eq. (5).

APPENDIX B

1C ——1—
2

Zp
R gR

ZTK ZP

R u, (R),

u3(R)+13

$2R 2

For completeness, the following relations, which facili-
tate the evaluations of Eqs. (13) and (14), are noted [40].
In terms of the standard 3-j symbol,

l l' l"
I I

The extremum of E; is obtained when A, /g is given by
the integral over all solid angles for the product of three
spherical harmonics is given by
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fd&„&; (r)I'&

1/2
(3(2l + 1)(21'+1)

4~

R =So(EcoshQ+1)/(e+1),

t =So(e sinhB+ II ) /[(e+ 1)u],

(C3)

(C4)

in which So is the distance of closest approach, e is the
eccentricity parameter given by

l I' 1 l l' 1

0 0 0 —m m' m"

l' 1 I

m m m' m" m

5;,5 5(l', l, l ),1

where 5(l', l",l) equals 1 if l', l", and l satisfy the tri-
angular condition, and is zero otherwise. Finally, the fol-
lowing specific 3-j symbols occur:

l l —1 I

0 0 0
l

(2l —1)(2l + 1)

1/2

t I+1
1 )1+1

0 0 0
l+1

(21 + 1)(2l + 3 )

1/2

APPENDIX C

The Coulomb trajectory is characterized by the para-
metric equations [54]

z =So sinhO[(e —I)/(e+ I)]'~

y =So(coshQ+e)/(@+ 1),
(C 1)

(C2)

The required orthogonality relation for the 3-j symbols
reads

I+(5/So)
1 (b /—So )

and 0 is a parameter. So can be found from b by

So=d+(b +d )'i

where d is half the distance of closest approach for a
head-on collision,

e ZpZTd=
M~v

M~ is the reduced mass for the projectile-target system.
The basic expression for the scattering amplitude, Eq.

(11), is given in terms of an integration over time. Equa-
tions (Cl) and (C4) can be combined to yield

1/2
1 e So b z z~z+ —ln —+ +1
v @+1 b e b b~

So 1dt=- dz
u e+ I b 1 —(So/R)(e+ I )

These are the relations used in the evaluation of the
scattering amplitude. Notice that the effect of the
Coulomb trajectory is to replace the factor ~/v in the ex-
ponential exp(ico/uz) occurring in the scattering ampli-
tude by co/v So/b. Thus the rate of oscillation of the in-
tegrand is increased by the factor So/b near t =0.
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