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Chaotic renormalization-group trajectories
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Under certain conditions, the renormalization-group Aow of models in statistical mechanics can
change dramatically under just very small changes of given external parameters. This can typically
occur close to bifurcations of fixed points, close to the complete disappearance of fixed points, or in re-

gions where the renormalization-group fiow becomes chaotic. We present some explicit examples of
these phenomena for the case of a Lie group valued spin-model analyzed by means of a variational real-

space renormalization group. By directly computing the free energy of these models around the parame-
ter regions in which such nontrivial modifications of the renormalization-group flow occur, we can ex-

tract the physical consequences of these phenomena.

K =%(t )(K)

In particular, for the singular part of the free energy per
degree of freedom one obtains a recursive relation [I]

f(K)=g(K)+b f(%(b)(K) ) (2)

When a given theory is analyzed by means of a
renormalization-group (RG) technique, certain features,
not easily disentangled by other methods, can become ap-
parent. One typically wishes to focus on those aspects of
the renormalization transformation that contain informa-
tion about universal properties (critical exponents, certain
amplitude ratios, etc. ) of the class of theories one is
studying. This normally restricts attention to the linear-
ized neighborhood of critical fixed points (see, e.g. , Ref.
[I] for a review). But essentially all other thermodynamic
functions of any given model can be extracted from the
RG transformation for any range of couplings by com-
puting the free energy and its derivatives. Thus also the
RG fiow far from critical fixed points can be related to
physical observables. Still, it is also known that the actu-
al RG Row can change drastically without affecting the
physics.

A typical example illustrating the above remarks con-
cerns the existence of redundant operators [2]. The criti-
cal point Hamiltonian may be perturbed in redundant
directions without affecting any physical quantities. Such
perturbations away from the fixed point Hamiltonian are
simply unphysical. Thus although certain aspects of the
RG flow directly give us physical information, other
features are simply artifacts of the chosen RG transfor-
mation.

To make these general statements more concrete, we
define a real-space (RG) transformation A(„). H~H'
bringing us from Hamiltonian H to the renormalized
Hamiltonian H' (here b denotes the spatial rescaling fac-
tor). In the space of couplings [K]= IK&,K~, . . . ] we
can (in a slightly imprecise notation) write this as the
iterative equation

where d is the dimension of space. The function g(K) is
simply the constant term of the Hamiltonian. It will in
general be an analytic function.

Provided that f(AIb)'(K)) is suKciently bounded as
X—+ oo, the solution to Eq. (2) can be written as

f(K)= g b "g(AIbI(K) )
n=0

(3)

Already from these elementary considerations we are
able to discern certain features arising from a
modification of the RG Aow, and see how this neverthe-
less can lead to "invariant" physical results. What is re-
quired is clearly, as can be seen from Eq. (3), that a
change of flow [the behavior of AIbI(K)] is precisely
compensated by a change in the nonsingular function
g (K) of the free energy. In this way one can achieve that
a change in %(b)(K) and g(K) leads to the same physical
free energy for all couplings K;. This also makes it obvi-
ous that one should be very cautious about assuming that
radically different RG Aows necessarily should corre-
spond to different thermodynamic behavior. In particu-
lar, it follows from the often very rapid convergence of
the sum in Eq. (3) that details about the attractive fixed
points may have almost no inhuence on physical observ-
ables, as long as the initial coupling lies sufficiently far
from these fixed points.

In this Brief Report we shall consider some examples
of RG Aows that in certain regions depend very sensitive-
ly on an external parameter p. In particular we shall find
several of the phenomena known from the study of com-
plex dynamical systems: bifurcations of fixed points,
chaotic regimes, and intermittency. The object of our in-
vestigation is to see to what extent such drastic effects on
the RG Aow have any bearing on physical observables.

The model we shall focus on is defined by "spins"
Tr W with W E G (where G is a compact Lie group) and

j indicates a site on a hypercubic lattice in d dimensions.
We take the trace in the fundamental representation of
the group. The partition function is defined by
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Z = J (d W. )exp —,
' J g (Tr W, Tr W +Tr W, Tr W~ )

(i,j)
(4)

where the integral is performed over the left and right in-
variant Haar measure of the group G at all sites j. (The
model describes the deconfinement phase transition of
strongly coupled lattice gauge theories [3], but this appli-
cation is of no relevance for what follows. ) We shall re-
strict ourselves to the groups U(1) and SU(2). For U(1)
the model is equivalent to the d-dimensional XY model.

Our framework shall be that of Kadanoff's variational
lower-bound real-space renormalization group (LBRG)
[4,5] (see, e.g. , Ref. [6] for a well-written review). This
method, which combines bond moving with an optimiza-
tion of the free energy by means of a variational parame-
ter p, is known to be extremely accurate for a host of
discrete spin models [6]. Hierarchical lattices [7] can be
constructed for which it becomes exact.

The LBRG restricts all interactions to lie within one
d-dimensional hypercube. For a spin model of just a
discrete symmetry group this automatically guarantees
that the operator basis on which the LBRG is defined is
finite For a. Lie group valued spin model such as the one
of Eq. (4) this is not the case, and an operator truncation
is necessary [8,9]. Although this further approximation
can reduce the accuracy and reliability of the method
[9,10], it will not be our concern here. We shall simply
use the model to illustrate explicitly the issues discussed
above. In fact, we are almost completely certain that
none of the nontrivial modifications of the RG flow we
shall encounter below (even if they should have physical
consequences) would reflect true behavior of the thermo-
dynamic system described by Eq. (4). But the resulting
RG equations satisfy all thermodynamic requirements,
and they can therefore be used to perform reliable com-
putations.

We start by considering the model corresponding to
G =SU(2) in the case of d =2 dimensions. In a trunca-
tion to at most four spin interactions on the hypercube,
we can write on this hypercube the most general Z(2)
even (see below) SU(2) invariant Hamiltonian which is
symmetric under the exchange of any two spins as

h (W)=KO+K~, g W; +K~~ g W, W +K4, +W;
I,J

i &j

+K~~g'W~W, +K~3 g W; WJ

+K44 g' W; W. Wk
i,j, k

ij &k

+K4~ g W;W)Wi, Wi .
i,j,k, l

i &j&k &l

Here we have made use of the fact that the irreducible
representations of SU(2) are real, and we have defined a
new variable O'"':—Tr8'" . A prime on the summation
symbol indicates that equal spins are not included. At a
possible phase transition it is not SU(2), but only the

—=Po ' f (dZ, )Z, ' Z "R(Z,p),
where

exp[4(h (Z) Ko)—]%'(Z,p) =
Io 2p+Z; I~ 2—p+Z,

(6)

and I„(x)denotes the modified Bessel function of order n

The LBRG recursion relations then read [9]

Ko =4KQ +In(yQ K4$ = ( cy3i /3 esp(pi i )
p
2

2K'=P e21 2 2~
4

K' = (8 8 2cP —)—
K 22 p +11 K44 = (821i 28„—c ~8„),p

2
4

K41 (+4/3 +2) K45 p (+1111 3+11)
8

If the method did not involve bond moving or operator
truncation, all final results should be independent of the
variational parameter p, which here enters only from the
projection operator linking the initial and renormalized
Hamiltonians. Instead of optimizing the free energy with
respect to p, we shall simply treat p as a free parameter
with which we can "tune" the RG flow. For the present
purpose it is most instructive to focus on p values in the
neighborhood of p =0.39 ~ There are two attractive fixed
points ( A and B), and one critical fixed point C in an in-
terval 0.383. . . ~p ~0.395. . . . For p ~0.383. . . we
have just one fixed point ( A ), while for p ~ 0.395. . . we
again have only one fixed point (B). We illustrate this in
the flow diagram of Fig. 1. The present approximate RG
analysis thus leads to only one phase for both p values
chosen. But this single phase is evidently associated with
two different attractive fixed points, which one can shift
between by very tiny adjustments of the parameter p.
How does this change in the stability of the fixed points
reflect itself in the thermodynamics of the original model?
We answer this question by computing the free energy f
from Eqs. (3) and (7) for p =0.382 and 0.396. Only for
Kzz values around —0.36 do we find a (very small)
difference, which is simply caused by a mild p dependence
of the remnant of the phase transition that exists for all p
values inbetween. In order to see this more clearly, we
show in Fig. 2 the specific heat g=KzzB f/BKz~. The
whole effect is at the 1 —2% level, and is precisely as ex-
pected from the above remarks. It is not difficult to un-
derstand the cause of this insignificant change in f (K):
Whether one flows indefinitely toward the fixed point A
or first flows toward A and then, only after a very large
number of iterations, bends off toward B, is of no
relevance for the functional Eq. (3), on account of the

discrete global Z(2) invariance W;~+W; (alii) that gets
spontaneously broken. The Hamiltonian h ( W) above
contains only operators even under Z(2). The LBRG is
stable under the restriction to the symmetric subspace of
Hamiltonians.

First define &go= f (dZ, )%'(Z,p) and
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FIG. 1. The schematic How diagram of the model (4) for G=SU(2), with p =0.382 and p =0.396 for (a) and (b), respectively.
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+r2(p) [4K4, —u4(p)/4],
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FIG. 2. The specific heat y evaluated for the two different at-
tractive fixed points in the SU(2) model for the same p values as
in Fig. 1.

rapid convergence in this region. In effect, what we have
learned is that a shift between I'.ntermittent behavior
around A and true convergence toward 2 is not of great
import for the free energy.

Finally consider the model (4) for the group U(1) in
d =2 dimensions. By again expanding on a basis of up to
four spin interactions, one can in this case obtain a closed
analytic expression for the recursion relations of the
LBRG [8,10]:

KD =41n[2vrID(2p)]+4ICD —QD(p)

+3I1—[r2(p)] ] [ —,'[8%2 —u2(p)] +16K4,

where the coupling constants are defined analogously to
Eq. (5) [10],

r„(p)=I„(2p)/ID(2p),

QD(p) =in[ID(4p) ],
Q2(p) =pII (4p)/2ID(4p),

and

u4(p) =p I2(4p)/8ID(4p) —[u2(p)] /2 .

For p ~0.704 we find the beginning of a bifurcation
route to chaos in the system of recursion relations (8). In
the chaotic regime the high-T sink is replaced by a
strange attractor [10]. Chaos begins at p =0.820. . . , and
ends at p =0.842. . . as the result of a boundary crisis
[11], where the critical hypersurface collides with the
strange attractor.

Thus for p ~0.704. . . we have a profound change in
the RG fiow as the high-T stable fixed point becomes un-
stable through period-doubling sequences, and eventually
becomes replaced by a completely chaotic attractor.
How does this infiuence the original model (4)'? In Table
I we show how the free energy is obtained from Eq. (3)
for three values of p: p =0.60 (only one attractive fixed
point), p =0.75 (a period-two limit cycle), and p =0.82
(the chaotic regime). We have chosen the K22 value at
which the difference is the largest, which as expected
occurs fairly close to the (former) attractive fixed point.
It is obvious that neither the oscillatory behavior due to a
stable limit cycle nor the chaotic behavior has any
significant effect. (Recall that the free energy in any case
is evaluated at different P values, which always leads to
some variation in f. ) The cause of this remarkable sta-
bility of f can again be found in the fact that all
modifications of the RG How occur in a region that is not
immediately reachable from the nearest-neighbor interac-
tion axis on which we evaluate the free energy. Of course
one can encounter singular situations in which this region
precisely coincides with the coupling-constant values at
which one wishes to compute the thermodynamic func-
tions. Only then may details of the fiow close to the at-
tractor become important for the free energy itself. This
conclusion cannot be extended to f '"', the nth derivative
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TABLE I. Convergence of the iterative solution f'"' from Eq. (3) toward the full free energy f of the U(1) model as a function of
the number of iterations n. The three different situations I, II and III correspond to p =0.60 (one stable fixed point), p =0.75 (a
period-two limit cycle), and p =0.82 (chaos), respectively.

1

2
3
4
5
6
7
8
9

10
11
12

K /2nd

1.7242
2.1130
2.2156
2.2407
2.2470
2.2486
2.2490
2.2491
2.2491
2.2491
2.2491
2.2491

—0.0225
—0.0392
—0.0326
—0.0365
—0.0347
—0.0357
—0.0352
—0.0355
—0.0354
—0.0354
—0.0354
—0.0354

f (n)

0.2155
0.2816
2.2989
0.3032
0.3043
0.3046
0.3047
0.3047
0.3047
0.3047
0.3047
0.3047

Ko /2"

1.8851
2.2892
2.4069
2.4321
2.4396
2.4411
2.4416
2.4417
2.4418
2.4418
2.4418
2.4418

II
K2

—0.0201
—0.0636
—0.0276
—0.0739
—0.0221
—0.0837
—0.0086
—0.0927

0.0083
—0.0968

0.0186
—0.0954

f(n)

0.2356
0.3072
0.3260
0.3307
0.3319
0.3322
0.3323
0.3323
0.3323
0.3323
0.3323
0.3323

K /2nd

1.9684
2.3766
2.5043
2.5278
2.5369
2.5380
2.5387
2.5387
2.5388
2.5388
2.5388
2.5388

III
K2

—0.0171
—0.0789
—0.0118
—0.1145

0.0475
—0.1337

0.1018
—0.0763
—0.0228
—0.1104

0.0327
—0.1424

f(n)

0.2460
0.3203
0.3399
0.3448
0.3461
0.3464
0.3464
0.3465
0.3465
0.3465
0.3465
0.3465

of f which eventually, for sufficiently large n, may reveal
details of the nature of the attractor.

Chaotic renormalization-group trajectories have been
observed earlier for related (but one-dimensional) real-
space renormalization maps [12,13]. They have common-
ly been viewed as signalling the existence of a spin-glass
phase [12],but an interpretation in terms of incommensu-
rate structures has also been suggested [13]. A study of

some of the physical effects of birfurcations and chaos
around critica/ fixed points (again for maps with just one
coupling constant) has been presented earlier in Ref. [14].
A general and systematic analysis of corresponding
phenomena in the case of higher-dimensional
renormalization-group transformations will be reported
elsewhere [15].
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