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Effective potential for quantum correlation functions

A. Cuccoli and V. Tognetti
Dipartimento di Fisica dell'Universita di Firenze, 50125 Firenze, Italy

R. Vaia
Istituto di Elettronica Quantistica del Consiglio Nazionale delle Ricerche, 50127 Firenze, Italy

C,'Received 21 December 1990)

A method for calculating quantum averages and static correlation functions of configurational observ-
ables is introduced, by extending a variational method, which permits the reduction of the problem to
the computation of classical-like averages. This approach opens the possibility of obtaining novel results
in many fields, and strongly shortens the computer time needed for numerical calculations. As an exam-
ple, the well-known sine-Gordon model is considered, and its relevant quantum correlation functions are
calculated on the whole temperature range.

In recent years growing interest has been devoted to
the statistical mechanics of quantum physical systems
with strong nonlinear interactions. The value of methods
that allow the reduction of the quantum calculations to
classical ones, through the introduction of suitable
effective potentials, is therefore apparent.

The best known procedures to obtain effective classical
potentials, introduced by Wigner [1] and Feynman [2],
undergo serious shortcomings when applied to solids. In
fact, the first one is essentially based on an expansion of
the quantum statistical distribution function in powers of
A' and P=T ', and therefore it rapidly becomes unreli-
able at low temperatures. On the other hand, Feynman's
original approach defines an effective potential for the
free energy, starting from the free-particle propagator,
which is definitely not a good approximation for the
bound particles in a solid.

Recently a strong improvement of Feynman's varia-
tional method [3—5] has been obtained using a quadratic
trial action. In such a way the quantum behavior of the
harmonic excitations of the system and the classical be-
havior of the anharmonic part of the potential are fully
taken into account in a self-consistent way, so that the
thermodynamic properties of solids at high and low tem-
peratures are exactly reproduced, while the quantum
anharmonic contributions are also taken into account in
a one-loop (Gaussian) approximation. The method gives
excellent results for the quantum thermodynamics of
chains with both local and nonlocal nonlinear potentials
[6—8], and very recently it was found quite useful also in
the case of rare-gas solids [9].

The effective potential defined in the previous works
has a global character and therefore it is not suitable to
obtain statistical averages of configuration-dependent
functions like the correlations. A correct variational ap-
proximation of the (configurational) density, able to take
into account the "local" quantum effects of the interac-
tion, must therefore be introduced; this was previously
done only for single-particle interactions [10,11].

In the case of many-body systems, we introduce here

an explicit way to evaluate quantum statistical averages
of any function of coordinates by means of classical-like
configurational integrals, and in particular static correla-
tion functions. Finally, we give explicit results for the
quantum correlation functions of the well-known sine-
Gordon model.

Let us consider a quantum physical system with coor-
dinates Q

= [Q i, . . . , qtt ] and Hamiltonian &. Its parti-
tion function is Z—:exp( 13F)= f d—x p(x), where
p(x) = (x

~
e ~

~
x ) is the (configurational) statistical

density at the temperature T, and F is the free energy.
The quantum statistical average of a configuration-
dependent observable C' =C(q ) is given by ( C' )=Z ' fdx C(x)p(x).

Within Feynman's path-integral formulation of quan-
tum statistical mechanics, the density is expressed by the
following integral:

p(x)= f 2)([q;(u) j }

X exp ——I du g q ', (u)
1 13& m. 2o,.

( 2

+ V([q, (u)I )

where f" means that we must sum over all closed paths
q(u },. u H [O,PA'], having as initial and final points
x = [x,. I, i.e., q(0)=q(PA')=x, and the argument of the
exponential is minus the Euclidean action S [q ( u ) ].

Long ago Feynman [2] used the free-particle model as
the starting point for a variational method. He intro-
duced a "trial" action So[q(u)] containing a parameter
function that has to be determined by minimizing the
right-hand side of the so-called Feynman-Jensen inequali-
ty [12]: F ~FO+T(S —So)0, where F is the "true" free
energy of the system, I'o is the free energy associated
with the trial action So, and ( ~ )o is the functional aver-
age calculated on the path distribution given by So.
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However, this approximation cannot account for har-
monic interactions, and it turns out to be of use only in
the range of temperatures higher than the Debye temper-
ature, where the system behaves almost classically, repro-
ducing the results of the Wigner expansion.

In order to extend the method to very low tempera-
tures, it is necessary to treat the harmonic part of the
field in a fully quantum way. With this aim, the varia-
tional method was strongly improved, and extended to
many degrees of freedom, by Giachetti and one of us
[3,4], who assumed the general quadratic trial action:

So[q(u)]= —I du g q;(u)+w(q)o,. 2

+ [q(u) —q]2

X co (q ) [q(u) —
q ] (2)

where q =q[q(u)] is the average point of the path. The
functional character of q makes the trial action nonlocal;
i.e., we are looking for the best candidate to approximate
S within a very large class of functionals, whose path in-
tegrals can still be evaluated analytically, except the in-
tegral over q, which is left over as a configurational in-
tegral. For many condensed-matter systems, like quan-
tum solids, where the lowest-temperature state is well ap-
proximated in terms of quantum harmonic oscillators,
the improvement is apparent. The parameter functions
of So are the c number w(q ), already considered by Feyn-
man [2], and the NXN matrix co (q)= [co;J(q)]. The
minimization of the right-hand side of the Feynman-
Jensen inequality gives

w(x)= ( V(x+ U g) )H — gcok(x)ak(x ),
k

meek(x)5kI =+Uk;(x )(B„B„V(x+U 7)) )H UI~(x), (4)

(3)

where cok(x) are the N eigenfrequencies of the matrix
co (x), which is diagonalized by the orthogonal matrix
U(x), and ak(x) can be interpreted as the pure quantum
fiuctuation (i.e., the difference between the quantum and
the classical fiuctuations) of the "kth normal mode":

( 9k )H ~ ( 7k 9I )H ak(x )fikl (6)

The determination (3) also gives (S—So)O=O, so that
the approximation for F is Fo itself, and this eventually
makes it possible to define the "global" effective potential
VG(x) [3,4], by means of which the quantum free energy
is expressed in classical-like form:

sinhyk (x)
VG(x) =w(x)+ —g ln

X

1a„(x)= cothyk(x)—
2m cok x X

with fk(x) =pfgcok(x)/2. The notation ( )H denotes an
x-dependent Gaussian average over the quantum Auctua-
tion variables rl = [ gk ], defined by the moments

Using the trial action (2), the density p(x) can be
analytically evaluated [10] in terms of VG(x).

The final result for a many-body system turns out to be

' N/2

p(x) = Pl
e

—pvG(x+ U Y/)

2M P

xg
[2n.ak(x+ U r))]'~~

X exp
2

Qk

2ak(x+ U g)

(8)

(C(q)) =(C(x+ U'q))„, ,

where we have used the shortened notation ( ) G for the
classical-like configurational averages

(')G Z 2vrh P

' N/2

Jdx( )e (10)

with the further convention that ( )HG
—( ( )H )G.

For a generic C(x), the average (C(x+ UTg))H can
be readily evaluated by expanding C(x + UTg) in power
series around the point x, but the remaining average on x
is made difficult by the implicit dependence on x of uk
and U. The calculation is highly simplified in the so-
called "low-coupling" approximation (LCA), whose
meaning and range of validity were discussed in previous
works [4,6,8], where it was adopted successfully to obtain
the global thermodynamic properties of many-body sys-
tems. In fact, in the LCA, the cok(x) can be expanded
around their values in the self-consistent minimum
configuration xo of VG(x), so that the dependence on x
disappears in all quantities but VG(x), which eventually
reads

The following remarks can be made: (i) a further non-
Gaussian smearing (8) is added in respect to the definition
of the effective potential; (ii) as already done for the
effective potential (7), the expression for p(x) can be com-
pared with the results of the Wigner expansion [13],and
they agree up to terms of order fi and P [14]; (iii) as it is
implicit from the choice of the trial action, the result (8)
for the density is exact if the potential Vis purely quadra-
tic.

We present here very useful expressions obtained by
using Eq. (8) to calculate quantum averages of
configuration-dependent observables C(Q ) of systems that
are invariant under translations by a lattice vector and
under inversion of coordinates. For the sake of simplici-
ty, we consider the case of a one-dimensional lattice of
particles having only one degree of freedom per site: its
generalization to higher-dimensional lattices and more
degrees of freedom per particle is straightforward. From
(8) we indeed obtain
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VG(x)= g, g [V j
n=p I

- Jn

(x)

n +ij
nV,—, . . . , , (xo)]Q

1=1

»nba+ —g ln +O(vari ),
k

(c(x))= y, y (c, . . . , (x)), (g, .
g, )

(12)

where g;=gk Uk;rlk. The evaluation of quantum aver-
ages has therefore been reduced to those ones over the
quantum fiuctuation variables g, which have a Gaussian
distribution, and the classical-like ones of C(x) and its
derivatives with the effective potential VG(x). The form-
er averages can be performed analytically, while to the
latter all the tools developed for classical systems can be
applied.

Simple explicit formulas can be written for correlation
functions like (f(x, )g(x, + )):.

oo

(f(x; )g(x;+, ) ) = Dp

2

n+r

(D, )'

X(f' "+'(x )g' "+'(x . ))

where the subscripts denote derivatives with respect to
the corresponding components of x=[x;] and

a,.~ =gk Uk; Ukjak, uk and fk being expressed as in (5) in
terms of cok = cok (xo ). Here U = U(xo), and if the
configuration xo is translational invariant, U =

[ Uk; ]
turns out to be nothing but a standard real Fourier trans-
form [4], with k running over the first Brillouin zone.

In the LCA the averages ( )H and ( ) G can be disen-
tangled, giving

—
DG /2

—DoC„(j)=e '(coshD (5cosy, 5cosy, +. )G

+sinhDJ ( siny; siny, .+ ) G ),
C„(j)=e '(sinhDJ(5cosy, 5cosy, + )G

(16)

(17)

with Es, so that in the limit Q —+0, at fixed and finite t,
the classical results are recovered.

The sine-Gordon (SG) system has been extensively
studied in the last years because, in the continuum limit
(R —+ oo), it is one of the simplest examples of an inte-
grable nonlinear field theory that admits solitary-wave
excitations. Moreover, many physical systems can be
mapped onto it, as for example the quasi-one-dimensional
easy-plane ferromagnet with in-plane Zeeman field [15].
The quantum corrections to the macroscopic thermo-
dynamic properties, like the internal energy and the
specific heat, of the SG model have been calculated by
the effective-potential method in [4,6, 16]. There it is
shown that the LCA contains the usual Hartree-Fock ap-
proximation for lowest temperatures, and that it is still
surely correct also for t))(2') 'Q In(8R), to be com-
pared with the Debye temperature t~ = QR, above which
the Wigner method begins to hold. The papers cited
above contain the explicit expression of the LCA effective
potential corresponding to the model (15).

As an application of Eq. (13) to the SG chain, we have
calculated the quantum average (cosy; ), and the quan-
tum correlation functions C„(j)=(5cosy;5cosy;+ )
and C„(j)= ( siny; siny, . +~ ) . If the SG equation is taken
as a model of a magnetic easy-plane chain, they
represent, respectively, the magnetization and the corre-
lation functions of the longitudinal and transverse Auc-
tuations of the magnetization (5 cosy; =cosy; —(cosy,. ),
and 5siny; =siny;, since, by symmetry, (siny, ) =0).
For these functions the infinite sums appearing in Eq. (13)
can be performed and the result is

(13)
+coshD (siny; siny;+ . .)G ) . (18)

where

1
D, = ( g, g, +. )H

=—icos(kj)ak&k
(14)

The above outlined method can be usefully applied to
the sine-Gordon chain model, described by the Lagrang-
ian

X= Aag
2

0
(y, —y;+, ) +Q, (1—cosy;)

(15)

The energy scale of the nonlinear excitations is settled by
the energy of the static kink E& = 8 Aa Q &Op, whose
length, in units of the lattice spacing a, is A =Op/0& and
it is convenient to define a reduced dimensionless temper-
ature t = T/E&. The nonlinear quantum character of the
system is ruled by the dimensionless coupling parameter
Q=h'0&/Es. Note that the reduced temperature scales

The explicit calculation of the classical averages ( )G has
been performed by using the transfer-integral method.
The most significant quantities that better reAect the
quantum effects as a function of temperature are not the
correlation functions themselves, but are rather the asso-
ciated correlation lengths, which are therefore reported
in the figures.

In Fig. 1 the value of the magnetization (cosy; ) as a
function of the temperature is reported for R =5.4 and
various values of the coupling parameter. The results for
the magnetization for R =10 and Q =0. 1 agree with the
previous ones [17], obtained by derivation of the free en-
ergy.

The quantum correlation functions C„(j) and C„(j)
show a large increase in their absolute value in compar-
ison with the classical ones for small values of j at low
temperature, where the quantum Auctuations are essen-
tial, but they decrease more rapidly with the distance j.
This is evident from Fig. 2, where the correlation lengths
of the fluctuations of the longitudinal and transverse
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FIG. 1. Temperature dependence of (cosy) for R =5.4 and
various values of Q. Solid line, classical result; dashed line,
quantum result for Q =0.01; dash-dotted line, quantum result
for Q =0.05; dotted line, quantum result for Q =0.1. 30—

components of the magnetization are reported together
with the corresponding results for the classical sine-
Gordon chain. In both cases there is a strong reduction
of the correlation length at low temperature, where it
correctly approaches the value given by the harmonic ap-
proximation, whereas, as expected, at high temperature
the classical results are approached. The behavior of the
correlation lengths for intermediate temperature shows
significant modifications: the position and intensity of
the maximum are changed. A physical explanation for
such phenomena can be guessed by noting that the pres-
ence of the peak is directly related to the thermal excita-
tion of kinks, as it is proven by the fact that the peak po-
sition is almost proportional to the static kink energy
[18]; the modifications displayed can therefore be related
to the quantum renormalization of the kink energy.

The above example has been given to show the power
of our approach, which applies regardless to the inte-
grable character of the model system. It has been done
for an integrable system in order to offer a possible com-
parison when exact results derived by another method
[19]will be available for the sine-Gordon model. Work is
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in progress in this direction, together with the application
to the dynamical correlations of rare-gas solids.

Useful discussions and contacts with Professor A. A.
Maradudin, Professor G. K. Horton, Professor V. E.
Korepin, and Professor A. G. Izergin are gratefully ac-
knowledged.

FIG. 2. Temperature dependence of the squared correlation
length g' associated with (a) C„and (b) C„ for R =5.4 and
Q =0.1. The definition is the usual one: g =g,j C(j)/
[Q,C(j)]. Solid line, quantum result; dashed line, classical re-
sult; dash-dotted line, quantum harmonic approximation; dotted
line, classical harmonic approximation.
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