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Multifractality of self-afFine fractals
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The concept of multifractality is extended to self-affine fractals in order to provide a more complete
description of fractal surfaces. We show that for a class of iteratively constructed self-affine functions
there exists an infinite hierarchy of exponents Hq describing the scaling of the qth order height-height

H
correlation function c (x)-x q. Possible applications to random walks and turbulent Aows are dis-

cussed. It is demonstrated on the example of random walks along a chain that for stochastic lattice mod-
els leading to self-affine fractals Hq exhibits phase-transition-like behavior.

Many recent investigations have demonstrated that a
wide class of processes lead to complex objects that can
be described in terms of self-affine fractals. The examples
range from plots of various kinds of random walks [1,2]
to interfaces developing in marginally stable, far-from-
equilibrium systems [3—6]. Growth processes resulting in
self-aKne interfaces have attracted particular interest
during the last few years because of their relevance to a
number of phenomena of practical importance, including
thin-film growth by vapor deposition, two-phase viscous
flow in porous media, formation of biological patterns,
and sedimentation of granular materials (see, e.g. , Refs.
[3—6] and references cited therein).

The properties of a fractal can be best characterized by
a set of exponents describing the scaling behavior of the
quantities defined for the fractal. Recent studies have
shown that in addition to the fractal dimension, there ex-
ists an infinite hierarchy of exponents that allows a much
more complete representation of the so-called fractal
measures [7—9]. Although this approach has been very
successful, up to now the related ideas (multifractality,
multiscaling) have only been applied to self-similar sets.
Here we intend to treat the self-afFine case and use an
analogous analysis for functions which, in general, can be
considered as complicated signals of arbitrary origin.

A single-valued standard self-affine function h (x )

satisfies the relation h(x)=A, h(Ax), where A, is a pa-
rameter and H is the Holder or roughness exponent. Al-
ternatively, the height-height correlation function c(h )

defined for h (x ) scales as c(x ) = ( [h (x ')
—h(x'+x)] )„-x . Characterizing h(x) with many
exponents instead of a single H is expected to result in a
more complete description of fractal surfaces and ad-
vance our understanding of their relevant features.

In this paper we extend the concept of multifractality
to self-affine fractals and demonstrate its applicability on
selected examples. We show that for a class of iteratively
constructed self-affine functions there exists an infinite
hierarchy of exponents H describing the scaling of the

qH
qth-order correlation function c (x )-x ', which is
defined through the qth moments of the distribution of
height differences. Furthermore, it is demonstrated on
the example of random walks on a lattice that any
discrete model of self-affine fractals (including surfaces in
growth models) results in a phase-transition-like behavior
ofH .

The multiscaling properties of the self-affine function
h(x) can be investigated by calculating the qth order-
height height co-rrelation function, which we define as

1V

c,(x)=—g lh(x;) —h(x;+x)l',

where N )) 1 is the number of points over which the
average is taken, and only terms with
~h(x;) —h(x;+x) )0 are considered. This correlation
function exhibits a nontrivial multiscaling behavior if

qH
cq(x )-x

with H changing continuously with q at least for some
region of the q values. For self-affine functions defined on
a finite interval the above scaling is expected to hold in
the x ((1 limit, while in the discrete case (where there
exists a lower cutoff length hx as, e.g. , in the lattice
growth models) Eq. (2) is satisfied in the x ~ oo limit. It
can be shown that a continuous spectrum of H values is
not consistent with the expression h(x)=A, h(Ax),
which is valid for standard self-affine functions with a sin-
gle exponent H. For self™affine functions with multifrac-
tal properties this expression is modified, since the local
scaling of the height differences depends on x in analogy
with the local scaling of the measure in a box for fractal
measures. A detailed analysis of this type of scaling be-
havior and its implications will be discussed in Ref. [10].

Let us examine the validity of the assumption (2) on a
recursively constructed fractal which is a straightforward
generalization of Mandelbrot s deterministic self-affine
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function [11],imitating the main features of a Brownian
plot with H= —'. The iteration procedure is demonstrated2'
in Fig. 1. In each step of the recursion the intervals ob-
tained in the previous step are replaced with the properly
rescaled version of the generator, which has the form of
an asymmetric letter z made of four intervals. During
this procedure every interval is regarded as a diagonal of
a rectangle becoming more elongated as the number of
iterations k increases. The basis of the rectangle is divid-
ed into four parts and the generator replaces the intervals
in such a way that its turnovers are always at analogous
positions (at the first quarter and the middle of the basis).
The function becomes self-aftine in the k ~ ~ limit. De-
pending on the parameter b I very difFerent structures can
be generated.

After the kth step, the number of intervals (boxes)
along the x axis is 4 and their length is equal to 4
D t n with N(hh) the number of boxes in whicheno ing wi

n k —n 2kCn~h(x) —h(x+bx) =Ah, we have N(b", b2 )=

bi oa

0.8

0.4

Q.2

where n 0, , k Thus
k

2 k—cnb nqb ( k —n )9 (3)cq
n=0

with b,x=4 ". Note that here c~(x) is given only for
discrete values of its argument; however, because of scal-

ding, this is not expected to influence the results obtaine
for H~. Since Eq. (3) can be written as
c~(bx)=[(b f+bf)/2]" we have

ln[(b'f +b ) )/2]

q ln( —,') (4)

c (4x)= f P(hh, bx)bh~dhhCq X

f u~e " d -Ibx'ii
&7r o

In the present approach the roughness exponent intro-
duced earlier is H=H&. Figure 2 shows H calculated
from (4) for b, =0.8 and bz =0.5 and its comparison with
the numerically determined data [using Eqs. (1) and 2 ]
for a prefractal obtained after k =9 steps of the construc-
tion. There is a good agreement between the results;
however, it is possible to carry out the numerical calcu a-
tions only for q )0 because of the large uncertainties.

Next we discuss the multifractal aspects of Brownian
lots. These self-aSne functions are obtained by plotting

the displacement h (x ) of a particle randomly walking in
one imen

'
dimension as a function of time (denoted here by x .

hh onIn this case the probability that h(x) changes by on
an interval of length hx is P(hh, hx ) = (1/
&2mb, x )exp( —hh /2b, x). Changing the summation in
(1) for integration and using the variable u =b, h / 2bx
we have

0
0 Q.2 Q.4 0.6 0.8

The integral for u is equal to I=1 [(q+1)/2]/2 if
q ) —1 while it is divergent for q & —1. This means that
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FIG. 1. Construction of a self-affine curve with a aeight-
hei ht correlation function that has multiscaling properties. In
each step of the recursion the intervals obtained in the previous
step are replaced with the properly rescaled version of the ini-
tial configuration shown in (a). The function becomes self-affine
in the kazoo limit [here the fourth step is shown in (b)]. De-
pending on the parameters b l different structures with arbitrary
roughness exponent H )0 can be generated.

FIG. 2. This figure shows the H~ spectrum calculated from
E . (4) for the self-affine fractal of Fig. 1 with b& =0.8 andq.
b2 =0.5 (solid line). The theoretical result is compared with the
numerically determined data obtained using qs.E s. (1) and (2) for
a prefractal generated in the ninth step of the construction. The
numerical calculations can be carried out only for q & 0 because
of the large uncertainties.
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H =
—,
' for all values of q larger than —1, below which H

is undefined. The same calculation can be repeated for
arbitrary fractional Brownian motion, leading to the
same result with H instead of —,'.

The situation is rather different in the discrete case,
where we can assume without the loss of generality that
the particle makes a jump of unit length at every time
step of unit duration. We studied this version by analyti-
cal and simulation techniques and found that the results
correspond to the following behavior:

08—
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sgn(q) qH,c (x)=exp x

with

(6)
p I I I I I I I I I I I » I I I I I

—4 —2 p 2 4

Ho for q& —1

H =' —Ho/q for q (—1, (7)

with Ho =
—,'. Thus, in this case Hq is defined for all q and

it tends to zero as q —+ —~.
It follows from (7) that H manifests phase transi-tion

like behavior in the vicinity of q = —1, at which point it is
not differentiable. Analogous phase transitions can be
observed in some dynamical systems as well. For exam-
ple, a singular point at q = —1 followed by a constant be-
havior for q & —1 was found in the D spectrum of some
simple dynamical systems described by a family of one-
dimensional, piecewise parabolic maps [12]. A similar
dependence of the multifractal spectrum was observed in
Ref. [13]. The above H spectrum is obviously not mono-
tonously decreasing, which is due to the fact that the dis-
tribution of the differences in h(x) is not a normalized
measure. Figure 3 shows the comparison of simulation
results with the expression (7).

Equation (7) for q ) —1 is just the standard scaling of
the distance of a random walker from the origin. For the
q ( —1 case the following argument can be used: The
terms in the sum for the height correlation function are
essentially the probabilities of a given sequence of length
x=n=k+l of "up" (k) and "down" (l) jumps multi-
plied by the absolute value of the resulting height
difference n —k in power of q. Thus, cq ( n )
= ( I /2)"gk~~o2n! /[k!(n —k )!] ~

n —k ~q. It is easy to
show (by taking the derivative of the logarithm of the kth
term of the sum) that for q (—1 the dominant contribu-
tion to c comes from the term with k=n/2 —1 (for
k =n/2, Ah =0, and these sequences are not considered
by definition). From this we get H =lim„ 1 /
(q inn )ln(2qn!/I2"[(n/2)!] I ). Using Stirling's formula
n!= (n /e )"(2mn )' leads to the required result
H = —1/2q. Thus, the origin of the phase transition in
our case is entirely due to the discrete nature of the h (x )

function for walks on a chain, and it is not analogous to
the phase-transition-like behavior observed for growth
models [14].

We expect that the formalism presented in this paper

FIG. 3. The Hq spectrum for the plot of displacements vs
time for a random walk on a one-dimensional lattice. The solid
line corresponds to expression (7) of the text. The simulation re-
sults are also indicated, where the error bars were determined
from the goodness of the fit to the numerical data.

will be useful in the analysis of various experimentally ob-
served physical quantities. As an important example let
us mention measurements of the distribution of (i) a pas-
sive scalar p(x) and (ii) the velocity in turbulent fiows. (i)
It has recently been shown that the dissipation field in
turbulent jets can be described in terms of multifractal
spectra [15]. Since the local dissipation rate is propor-
tional to the squared gradient of the passive scalar, on the
basis of Eqs. (1) and (2) [in which ~h(x;) —h(x;+x)~ is re-
lated to the local coarse-grained derivative of the func-
tion] we conclude that the distribution p(x) is a self-affine
function with multifractal properties. (ii) The definition
of the so-called velocity structure functions in turbulent
fiows is analogous to Eq. (1). There is experimental and
theoretical evidence for the q-dependent scaling of these
functions [16]. This means that the velocity field itself
has to be a multiscaling self-affine fractal and its proper-
ties can be investigated by the corresponding methods
developed for such geometrical objects.

The examples discussed in this paper demonstrate that
the multifractal analysis described above provides
relevant additional information about the scaling proper-
ties of self-affine functions. Furthermore, our approach
has potentially interesting implications concerning the re-
lationship of self-aKne fractals and fractal measures. The
elaboration of a complete multifractal-type formalism for
the self-affine case is in progress. Finally, it is straightfor-
ward to extend the present multiscaling approach to
higher dimensions.
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