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Learning processes in neural networks
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We study the learning dynamics of neural networks from a general point of view. The environment
from which the network learns is defined as a set of input stimuli. At discrete points in time, one of these
stimuli is presented and an incremental learning step takes place. If the time between learning steps is
drawn from a Poisson distribution, the dynamics of an ensemble of learning processes is described by a
continuous-time master equation. A learning algorithm that enables a neural network to adapt to a
changing environment must have a nonzero learning parameter. This constant adaptability, however,
goes at cost of fluctuations in the plasticities, such as synapses and thresholds. The ensemble description
allows us to study the asymptotic behavior of the plasticities for a large class of neural networks. For
small learning parameters, we derive an expression for the size of the fluctuations in an unchanging envi-
ronment. In a changing environment, there is a trade-oft'between adaptability and accuracy (i.e., size of
the fluctuations). We use the networks of Grossberg [J. Stat. Phys. 48, 105 (1969)] and Oja [J. Math.
Biol. 15, 267 (1982)] as simple examples to analyze and simulate the performance of neural networks in a
changing environment. In some cases an optimal learning parameter can be calculated.

I. INTRODUCTION

In neural-network models, learning plays an essential
role. Learning is the mechanism by which a network
adapts itself to its environment. The result of this adap-
tation process, in both natural as well as in artificial sys-
tems, is that the network obtains a representation of this
environment. The representation is encoded in the plasti-
cities of the network, such as synapses and thresholds.

The function of a neural network can be described in
terms of its input-output relation, which in turn is deter-
mined by the architecture of the network and by the
learning rule. Examples of such functions may be
classification (as in multilayered perceptrons), feature ex-
traction (as in networks that perform a principle com-
ponent analysis), recognition, transformation for motor
tasks, or memory. The representation of the environment
that the network has learned enables the network to per-
form its function in a way that is "optimally" suited for
the environment on which it is taught.

The environment can be defined as a set of examples or
stimuli, and learning is usually modeled as the process of
randomly drawing examples from the environment and
presenting them to the neural network. Thus learning be-
comes a stochastic process. So far the learning process in
artificial neural networks has been considered almost ex-
clusively for the case when the network is given examples
from a fixed unchanging environment. The aim of these
learning algorithms has been to find the one static repre-
sentation of the environment, in terms of synapses and
thresholds, that optimizes the function of the network for
that specific environment. This requires that for large
times the learning parameter, which controls the amount
of learning, should go to zero, since otherwise Auctua-
tions in the representation will persist and thus optimali-
ty in the above sense is never achieved. Conditions for

convergence to an asymptotic solution are derived by
Ljung [1] and Kushner and Clark [2] for general stochas-
tic processes. More specifically, Ritter and Schulten [3]
discuss the convergence properties of Kohonen's topolo-
gy conserving maps and Clark and Ravishankar [4] give a
convergence theorem for Grossberg learning.

Such algorithms, for which the learning parameter
vanishes asymptotically, are clearly not the ones that are
used in natural neural networks. Natural adaptive sys-
tems always learn. Examples of such learning exist on
very large time scales (people learn with age) as well as on
short time scales (attention for details, discovery of regu-
larities). This constant tendency to learn accounts for the
adaptability of biological neural systems to a changing
environment.

In order to implement such behavior in artificial neural
networks, the learning parameter should not go to zero
asymptotically, but should take a constant nonzero value.
The adaptability of the neural network is best served with
a large learning parameter: The larger the learning pa-
rameter, the faster the response of the neural network to
the changing environment. On the other hand, a large
learning parameter gives rise to large fIuctuations around
the desired optimal representation. This has a negative
effect on the accuracy of the network's representation of
the environment at a given time. Given some criterion
for the network's adaptability and accuracy, there is an
optimal learning parameter that is certainly nonzero for a
neural network operating in a time-dependent environ-
ment. It is interesting to note that similar ideas have
been proposed by Wiener [5] in connection with his work
on linear prediction theory.

We propose to study the learning dynamics of a large
class of neural networks for constant learning parameter

In Sec. II, we define the class of learning algorithms
that we will consider. If the time between learning steps
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is drawn from a Poisson distribution, the dynamics of an
ensemble of learning processes is described by a
continuous-time master equation [6].

From this we can calculate in Sec. III the dynamics of
macroscopic quantities such as the expected representa-
tion and its Auctuations. We illustrate our formalism
with Grossberg learning [7], for which the evolution of
the macroscopic quantities is exactly solvable.

For general learning rules, the asymptotic solutions
cannot be calculated. In Sec. IV we therefore make an
approximation valid for small Auctuations, as proposed
by Van Kampen [8]. If it is assumed that the asymptotic
solution is peaked around the "noise-free" limit, the ex-
pected representation and its Auctuations obey a coupled
set of linear differential equations of which the asymptot-
ic solution can be calculated. We compare our analytical
results with simulations for the Oja learning rule [9],
which calculates the principal component of the covari-
ance matrix of the input distribution.

In Sec. V we discuss the performance of learning rules
in a gradually changing environment. The formalism, as
developed in Secs. II and III is applicable to this case as
long as changes in the environment are slow in compar-
ison with the time scale of the learning algorithm. For a
simple changing environment and Grossberg learning,
the asymptotic solution can be calculated exactly, and il-
lustrates the convicting goals of accuracy and adaptabili-
ty.

In Sec. VI, the analysis of Sec. IV is repeated for a
changing environment. Again a set of linear differential
equations is obtained. The usefulness of the analytical re-
sults are illustrated with Oja s learning rule, which re-
ceives its input from a slowly rotating environment.

In Sec. VII, some conclusions are drawn.

II. THE LEARNING PROCESS

In this section we will define the class of learning algo-
rithms that we consider. Let the representation that the
neural network builds of the environment be given by a
X-dimensional vector w=(w„. . . , wz) . This vector w
contains all the synaptic strengths and thresholds of the
neural network, and completely specifies the state of the
neural network in the learning process. The environment
of the network is assumed to be a set of stimuli x to be
taken from a subset Q C R". Here n denotes the dimen-
sion of the stimulus space, which will often be equal to
the number of input neurons. The environment is fixed.
The probability that the network gets exposed to a
stimulus x is given by a probability distribution p(x),
which for the moment is time independent.

We consider the following learning mechanism. At
distinct points in time a stimulus x is presented to the
network and a learning step takes place. The network
changes its weight vector w to w' =w+ Aw, obeying

Aw=gf(w, x),
where f(w, x), the so-called "stochastic force, " is an arbi-
trary function f(w, x): R XR"~R (R representing the
set of all real numbers) and g is the learning parameter.
Equation (1) simply states that the new network state w'

after the learning step is a function of the state w before
this learning step and the randomly drawn input vector x.

Equation (1) applied to most of the learning rules in
neural network theory. Depending on the particular
choice of the stochastic force f(w, x), learning processes
of neural networks with quite different functionalities can
be described. A few illustrative examples are the follow-
ing.

Two other examples, Oja's principal component network
and Grossberg's "center-of-mass" network, will be used
as specific examples to illustrate our theory in the subse-
quent sections.

The learning process as defined in Eq. (1) is a stochastic
process since at each learning step the input vector x is
drawn at random. In order to describe this learning pro-
cess we must therefore talk in terms of probabilities, ex-
pectation values, and fluctuations. The most obvious
probability to look at is p; ( w ): the probability that the
network is in state w after i learning steps. Thus, the
learning process becomes a Markov process (see, e.g.,
Ref. [13]):

p;(w')= J d wT(w'Iw)p; 1(w), (2)

where T(w'~w) is the transition probability to go in one
learning step from state w to state w':

T(w'iw)= J d "x p(x)5 (w' —w —gf(w, x)),

=—(5 (w' —w —qf(w, x)))n . (3)

Equation (2) describes a random walk with discrete itera-
tion steps labeled by i.

It can be shown [1—4] that, under certain conditions
including a slowly vanishing of the learning parameter,

lim g; =0,

the learning process converges to a stationary solution

ps(w) =5 (w —w'), (4)

where the points w* are stable fixed points of the
differential equation

(i) Kohonen's topological feature map [10] as used in
Ritter and Schulten [3]:

bra; =g(x —w; )h (i,i,„(x)),
with i labeling the neurons, w; a set of feedforward con-
nections, i,„(x) the neuron that fires maximally when
stimulus x is presented, and h a bell-shaped function of
with o.

(ii) Hopfield's associative memory [11]: he@, =rex;x,
with i labeling the neurons, x; the stimulus value at neu-
ron i, and u; the lateral connections.

(iii) An input-output relation such as the multilayered
perceptron with backpropagation [12]: bw= —r)B E,
with w the weights and thresholds of the network, and E
an error function which should be minimized.
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dt
=(f(w(t), x))„=f(w(t)) .

These stable fixed points w' are, by definition of the
learning rule, locally optimal representations of the envi-
ronment. If a global energy function E(w) exists such
that f;(w)= —() E(w) for all w, then the stable fixed

t

points w* are local minima of this energy function E(w ).
Instead of the above approach, we will discuss learning

processes with small but nonvanishing learning parame-
ters. Therefore we need a continuous-time description
that is valid for all values of the learning parameter g.
Bedeaux, Lakatos-Lindenberg, and Shuler [6] showed
that such a continuous time description can be obtained
through the assignment of random values At to the time
interval between two succeeding iteration steps labeled by
i. If these At are drawn from a probability density

with definitions of the bias and the covariance matrix, re-
spectively,

m, (t) = ( w, ) -(,)
—w,*,

XJ(t)= ((W; (W; )=(i))(W) ( WJ )=(()) )-(()

Note that the error 6' as defined in Eq. (9) gives a mea-
sure of the performance of the network in the neighbor-
hood of w'. it does not give any information about the
global performance of the network. In order to compute
this error, we will focus on the evolution equations of the
macroscopic quantities ( w )=(,)

and X (t).
Using the master equation (6) and the definition (8), we

obtain

1
p(ht ) =—exp

T

the probability P(i, t), that after time t there have been
exactly i transitions, follows a Poisson process. Now the
probability P(w, t ), that a network is in state w at time t,
is defined

r dX;.(t)
=(f;(w)(wJ —( J )-„,))-„,

dt

+((w; —(w; )=„,)f;(w))=„)

+il(D J(w ) )=(,), (10)

—W(wlw')P(w', t)],
with the transition probability per unit time

W(w'Iw) = T(w'lw) . —1

(6)

(7)

This result is valid independently of ~, the average time
between two successive learning steps, and the learning
parameter g. Through ~ we have introduced a physical
time scale, which is also reflected in the transition proba-
bility rate W(w'Iw) in Eq. (7).

Through the assignment of random time values to the
learning steps, we have obtained a continuous time mas-
ter equation (6) describing the evolution of an ensemble of
learning neural networks. We will denote the distribu-
tion of states w at time t by =(t). The expectation value
for an arbitrary function g(w) at time t is written

(f(w))=(, )
——J d wP(w, t)g(w) . (8)

III. LEARNING IN A FIXED ENVIRONMENT

A consequence of an asymptotically constant nonzero
learning parameter is that fluctuations will persist and
the learning process, in general, will not converge to a
deterministic solution like the one in Eq. (4). So local op-
timality is not likely to be achieved. As an indication of
the deviation from local optimality, we define the error

P(w, t)= gP(i, t)p;(w) .
i=0

This probability function P(w, t) can be differentiated
with respect to time, yielding the master equation

dP(w', t )

dt
= Jd w[W(w'Iw)P(w, t)

with the drift vector f(w ) already defined in Eq. (5) and
the diffusion tensor D(w),

D, (w) = ( f;(w, x) f,.(w, x) )

In Eq. (10), ( w ) =(,) describes the "mean tendency" of the
learning system and X (t) the superimposed fiuctuations.
The difFusion tensor D(w ) is a positive definite matrix. It
contains the fluctuations in the learning rule.

The evolution equations in Eq. (10) are exact, i.e. , they
are valid for all values of g. The exact evolution equa-
tions for higher-order cumulants can be derived in the
same way. For our purposes, the expectation value of the
state and the covariance matrix provide adequate infor-
mation about the learning process. Note that, since
terms of order g and higher do not contribute to the
evolution of (w)-(, ) and X (t), Eq. (10) can also be de-
rived from a Fokker-Planck approach which results from
a Taylor expansion including terms up to order g .

To illustrate the dynamics of a learning process, we
consider Grossberg learning [7]. The network consists of
one neuron with n inputs. Its weight vector w follows the
learning rule,

bw=il(x —w) .

Obviously the dimension of the weight vector w is equal
to the dimension of the input space, the set of stimuli
x& OCR ". Since the different dimensions in Eq. (11) are
uncoupled, we can restrict ourselves to one dimension.
The convergence of the Grossberg learning rule in case of
equally spaced time intervals between the learning steps
has been studied by Clark and Ravishankar [4]. The
stable fixed point of Eq. (5) is the probabilistic mean of
the input distribution w* = (x )n.

The evolution equations for the mean (w )-(,) and the
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standard deviation X(t) can be calculated exactly; Eq.
(10) yields

d( W )=(t) = —gm (t),
dt

= —(2—g)rtX2(t)+ q2m '(t)+ rI2y2,
d X'(t)

dt

(12) 0

with definition m ( t ) = (w—) -(,)
—( x )z and

= ((x —(x ) )n) n, the variance of the input distribution.
The solution of Eq. (12) is

m(t)=m(0)e
(13) 0.3

0 50
I

100
I

150 200

t (units of 7')

g2( t) 9 ~2+ g2(0) 1 ~2+ m 2(() )( 1 e
—9 t /w)

2 —
71 2 —

7l 0.2

—(2 —q)gt/~

So the ensemble of learning neural networks converges
for g (2 to the asymptotically stable solution

0.1—

(

50
I

100
)

i50 200

The expectation value converges to (x )n =co*. The er-
ror v is therefore equal to the final variance in the
weights m that is proportional to the variance of the in-
put distribution and for small learning parameters also to
the learning parameter. The standard deviation diverges
at 9=2.

We have simulated this Grossberg learning for an en-
semble of 10000 independently operating neural net-
works looking at an environment with p(x ) = —,

' l for
~x

~
(l and p(x)=0 elsewhere. Three examples of indivi-

dual networks and ( w )=(t)+X(t) are plotted as a function
of time in Fig. 1(a). Figure 1(b) shows the variance X (t),
both calculated and simulated. The results are in excel-
lent agreement with Eq. (13).

IV. A GAUSSIAN APPROXIMATION

Equation (10), which describes the evolution of the
mean and the covariance matrix, is elegant but in general
unsolvable. Therefore we make a Gaussian approxima-
tion valid for small fluctuations as proposed by Van
Kampen [8]. For this approximation to be valid, one
must assume that the learning process converges to a sta-
tionary solution of the master equation (6). Convergence
can be proved in case of a finite number of possible states
w (see, e.g., Ref. [13]). The convergence proof for a con-
tinuous state space requires the a priori existence of a sta-
tionary solution. We will show the existence of station-
ary solutions within our approximation scheme. This
justifies, a posteriori, the Van Kampen approximation.

Application of the approximation method introduced
by Van Kampen to the evolution equations (10) yields

d ( Wi ) =-(t) =f; ((w) =(,) )+—,'QQ, Jk(( w) =(,) )XJ'k(t),
7l dt

r dX2(t) = —gG;„( ( w )=(t) )X)„(t)dt

(14)

—gX;k(t)G~„((w) =(,))+21D,,((w)-(,)),
k

with definitions

Bf,(w) Bf;(w)
GJ(w) =—,Qp, (w) =

BN~ BN~ BWk

In Eq. (14) higher-order terms are omitted. According to
this approximation

~

X (t)
~

tends to become rt(D ~/~ G
~

for
tw ixt (by ~ ~

we mean the order of magnitude of the ten-
sor). This value can be used to check the self-consistency
of this approximation. The equations are approximately
valid if the largest neglected terms are much smaller than
the terms we take into account, i.e.,

t (units of v)
FIG. 1. Mean and standard deviation for time-independent

Grossberg learning as a function of time in units ~. Learning
parameter g=0.05. Standard deviation input g=1.0. Proba-
bilistic mean (x )„=—1.0. All 10000 neural networks started
with w=1.0, so (w)=(o)=1.0 and X (0)=0.0. (a) Three exam-
ples of individually learning networks (solid lines) and simulated
mean + standard deviation (dashed lines). (b) Variance X (t),
simulated (solid line) and calculated (dashed line).
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r dX',, (t) = —QG, X), (t) —QX,), (t)G ), +qD,
k k

(16)

with all tensors evaluated at w*. Note that the stability
of w* implies that the symmetric part of the matrix
G(w*) must be positive semidefinite. For convenience,
we will exclude matrices G(w*) with zero eigenvalues.
The analysis including "flat directions" should be re-
stricted to the eigenspace spanned by the eigenvectors
with nonzero eigenvalues.

In Eq. (16), higher orders are omitted and self-
consistency can be checked using ~X ( ~ )

~
=il ~D ~/~ 6

~

and )m(~)(=q)Q( )D(l[G) . The approximate validity
of Eq. (16) requires (15) and

If the drift term f(w) and the diffusion tensor D(w) are
suKciently smooth, we can always find a learning param-
eter g such that the requirements (15) are fulfilled. Equa-
tion (14) is a set of two coupled nonlinear difFerential
equations that describe the evolution of the expected
state and the superimposed fluctuations for small fluctua-
tions. Note that Eq. (14) is, strictly speaking, only valid
for t ( oo as long as X (t) is of the same order of magni-
tude as X ( ~ ). In many cases this is true for the entire
learning process [see, e.g. , Fig. 1(b)].

We will show that for small learning parameters there
exist stationary solutions of the master equation (6) that
are peaked in the neighborhood of the stable fixed points
w* of Eq. (5). We expand Eq. (14) with respect to the
blas m(t) —= ( w )=(() w

r dm, (t) = —gG; m (t)+ —,'QQ, ), X ), (t),dt

If the matrix G(w*) is symmetric, the error 8 defined
in Eq. (9) can be calculated yielding

Tr(G 'D ),
2 (19)

where terms of order q are neglected. Equation (19)
summarizes a few characteristics of the asymptotic solu-
tion of the learning process. First of all, the error is pro-
portional to the diffusion matrix D(w*) which contains
the "noisiness" of the environment. Second, the error is
inversely proportional to the curvature at the stable solu-
tion, i.e., the steeper the valley of the minimum, the
smaller the error.

The "perfectly trainable" neural networks form a spe-
cial class of learning neural networks. These networks
have a stable fixed point w* such that f(w*,x)
=0 V„HQ. In this point, the difFusion D(w*)=0, so
there are no fluctuations. Since there is no way to escape
from this point, as can be seen from the transition proba-
bility T(w~w*)=5 (w —w*) in Eq. (3), w* acts like a
sink. In this particular case there is no harm in choosing
a relatively large learning parameter. An example is a
backpropagation network [14] that obtains a representa-
tion w* of the environment such that all input vectors
xE.A are transformed exactly into the desired output
vectors, i.e., for which the backpropagator error
E(w) =0.

The set of equations (16) describes the exponential de-
cay of the expected bias and fluctuations in the represen-
tation of the neural network. The I"esponse time, the typi-
cal time constant of these exponential decays, is different
in the different eigenvector directions of the matrix G.
Let us denote the response time in the eigenvector direc-
tion o, with corresponding eigenvalue k by 9; then,

0 =
a)Re(k )

(20)

Under these conditions, the set of linear differential equa-
tions (16) gives an approximate description of the conver-
gence of the learning process [Eqs. (6) and (10)] to a sta-
tionary state.

The stationary solution of Eq. (16) obeys

QG; m ( oo ) = —,
' QQ, ), X~„(oo ),

J j,k

)+g&o«™)Gp, nD;, . —
k k

In closed form the asymptotic solution is

m(")=~X « ');, &,'(f +(e ")~ D .(e '').i0

(18)
X,~( ~ ) =ilg f dy(e «), ),D&&(e «) . .

k, l

The existence of this stationary solution of the master
equation (6) a posteriori justifies our approximation
scheme as outlined in this section. Note that in this ap-
proximation the asymptotic mean representation
(w )-( ) deviates from the locally optimal representation
w* proportional to ~ The asymptotic standard deviation
is proportional to &g, which is significantly larger than g
for small learning parameters.

The response time, which is an indication for the adapta-
bility of neural network to a changing environment, is in-
versely proportional to the learning parameter. Combin-
ing Eqs. (19) and (20) we see that in order to reduce the
response time by a factor of 2, the learning parameter
must be increased by a factor of 2, yielding twice as large
an error D.

We conclude this section by calculating the asymptotic
solutions m(ao ) and X ( ~) for the nonlinear learning
rule of Oja [9]. This algorithm computes the principal
component of the covariance matrix of the stimulus set
Q. The network consists of one neuron with n inputs. Its
weight vector w follows the learning rule

bw=gw x[x—(w x)w] . (21)

With the definition of the covariance matrix of the input
distribution C—:(xx )ti, it is easy to show that the nor-
malized eigenvector of C with the largest eigenvalue is
the only stable fixed point w* of Eq. (5).

We take n =2 and draw our stimuli at random from a
rectangle:

,'i. for Ixl «.
p(x„xz)=p, (x, )pz(xz) with p~(x)=
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with l, ) l2. The covariance matrix of the input distribu-
tion has the form

A) 0
C 0 2

where A =l /3. The eigenvectors of the covariance ma-
trix of the input distribution with the largest eigenvalue
A, are w* =(1,0) and w* = ( —1,0) . Calculation of the
stationary solution (18) is straightforward and leads to

7 = d LUT w wPwt —Pw, t
dP(w', t )

dt

With the obvious definitions

f(w, t)=( f(w, x))n~,),
D(w, t ) = (D(w, x) )z~,),

the evolution equations for the expectation value of w

0 0
& (oo)=+

A)A2
0

A( —A2

A 2m(oc)= —~ w',
4 A) —A2

(22)

0.04

0.03—

o.oz

(a)

J

In Fig. 2 ~~m( ac )~~ and Tr[X ( ~ )] are plotted as a func-
tion of the learning parameter t), both calculated [Eq.
(22), solid line] and simulated (with 5000 neural networks,
asterisk). The deviation between simulation and compu-
tation is less than lo%%uo up to about g =0.05.

The approximation scheme outlines in this section can
be extracted including higher-order terms of g. Since the
term ~~m(~)~~ is already of order g, one only has to
compute the second-order terms of Tr[X ( ~ ) ] to obtain a
second-order estimate of the error. Straightforward cal-
culation, using the first-order terms computed in Eq. (22),
yields

0.01

0
0

0.15

0.1

0.05 0.1

2 2 2A)A2 ~ A)A2 ~ A2+ +
2 A] A2 4 Ai A2 16 A) A2

2

0.05

This expression yields the dashed line in Fig. 2(c), which,
of course, gives a better prediction of the simulations
than the solid line that shows the error calculated up to
order g [according to Eq. (19)].

The stationary probability distribution for g=0.05 and
5000 neural works is plotted in Fig. 3(a). In Fig. 3(b) con-
tour lines are drawn. The contour lines of Gaussian with
bias and covariance matrix (calculated up to order g ) are
drawn in Fig. 3(c). It is clear that the real probability dis-
tribution is not a simple Gaussian, but nevertheless the
deviation of the simulated bias and variance from the
values predicted by theory is small (Fig. 2).

0.15

0 0.05 0.1

(c)

V. A GRADUALLY CHANGING ENVIRONMENT
0.05

We will now discuss the master equation describing the
learning process in a gradually changing environment.
By this we mean that we will assume that the set of
stimuli Q(t) and the probability density p(x, t ) change as
a function of time t. Therefore, the transition probability
for the network to go from a state w to a state w' at time
t becomes

T, (w'~w)= f d "x p( xt)5 (w' —w —gf(w, x)) .

For a gradually changing environment (i.e., such that
changes on a time scale r insignificant: ~rt), p~ (( ~p~ ), we
can write

0 0.05 0.1

FIG. 2. Asymptotic bias, variance, and error for Oja learning
as a function of the learning parameter. Eigenvalues of the co-
variance matrix of the input distribution, A& =2.0 and A&=1.0.
Simulations were done with 5000 neural networks. (a) Bias
~~ml ~ )

~~
computed from Eq. (22) (solid line) and simulated ( + ).

(b) Variance Tr[X'( ~ )] computed from Eq. (22) (solid line ) and
simulated {+ ). (c) Error 4 computed up to order g {solid line),
including all g contributions (dashed line) and simulated (+).
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W2 (b) 1

2
W1

2

X2(t) X2 X
( 2+ p2)

i)(2 —
7) )

with the typical constant

(24)

W2 (c)

o-

W1

FIG. 3. Asymptotic probability distribution for Oja learning.
Learning parameter q=0.05. Simulations were done with 5000
neural networks. (a) Simulated probability distribution and (b)
corresponding contour map. (c) Contour map of Gaussian
probability distribution with calculated bias and covariance ma-
trix including terms up to order q .

and the covariance matrix X (t) are written

d(;)=( ) =(f;(w, t) )=„, ,
7l dt

r dX,', (t)
(f; (w~ t )(wI. ( wI ) =(()) )=())dt

The time dependency of the environment leads to a
time dependency of the stable fixed points w*(t) Similar.
to the error defined in Eq. (9), we can define an error 8
indicating the performance of a neural network operating
in a time-dependent environment:

the ratio between the distance covered in the average
time between two learning steps and the standard devia-
tion. From Eq. (24) we see that, on the average, the rep-
resentation that the network has of the environment,
(w )-(,), lags a time rli) behind the best possible repre-
sentation, (x )(i(,). Second, the standard deviation
diverges at g=2, as in the static case, but diverges also at
g=0 for nonzero velocities.

Equation (24) is illustrated in Fig. 4, where the stimu-
lated probability distribution of the weight w is sketched
for three different cases: zero velocity, small velocity
(u =0.01/r), and relatively large velocity (u =0.01/r).
Simulations were done with 5000 neural networks for
g=0.05 and y=1. For zero velocity the probability dis-
tribution of the difference between the weights and the
probabilistic mean is symmetric around the origin. A
slowly moving environment gives rise to a small delay
and a slightly broader distribution. If the environmental
change is relatively large, the probability distribution sin-
cerely lags behind and is much broader.

The error defined in Eq. (23) yields in this example

i) (2—il)

For nonzero velocity the error diverges at g =2 and 0 and
has a global minimum for some 0(g&2. This error is
plotted in Fig. 5(a) as a function of the learning parame-
ter. For small learning parameters, the error is dominat-
ed by the bias, for large learning parameters by the stan-
dard deviation. The optimal learning parameter can be

( = lim —f dt ( ~~w
—w*(t) ~~')-(, )

= lim —f dt[([m(t)([ +Tr[X (t)]I, (23)

with m(t)—= (w)-(, )
—w*(t), as usual. The idea is that

minimization of this error leads to an optimal learning
parameter.

As an example we will discuss the performance of the
Grossberg learning rule [Eq. (11)] in a time-dependent
one-dimensional environment, where the input distribu-
tion is moving along the axis with constant velocity v and
constant standard deviation y: p(x, t)=p(x —ut), with
P(x )=—,'l for ~x

~
(l and p(x)=0 elsewhere. The aim of

this learning rule is to make m coincide with the mean
value of the probability distribution p(x, t ), i.e.,
w*(t) = (x )n(, ). The evolution equations for ( w )=(,) and
X (t) are given in Eq. (12), but now with definition

m (t) = ( w & =(,)
—w *(t)= & w & =(,)

—(x &„(,) .

The asymptotic solution of these evolution equations is

0
—4

I

I

(
(
(
(
(
(

(
I
I

FIG. 4. Simulated probability distribution for time depen-
dent Grossberg learning. Learning parameter g=0.05, stan-
dard deviation input y=1.0, 5000 neural networks. The input
probability distribution p(x, t) is drawn for reference ( ). Zero
velocity (solid line). Small velocity, V=0.01/~ (dashed line).
Relatively large velocity, U =0.01/~ (dash-dotted line).
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These conditions may be summarized as follows.
Changes in the environment of order v7. must be small
compared to the size of a learning step nf. Equation (25)
then gives an approximate description of the learning
process for times t ))~/g, i.e., such that terms of the
form exp( —rtt /r) can be neglected.

For symmetric G(t) we may rewrite Eq. (25) in the
eigenvector directions a of the matrix G(t). We make
some further simplifications by assuming that the envi-
ronmental changes are such that A, , v, D &, and Q &z
are independent of time. This is true for the moving dis-
tribution in the Grossberg example (Sec. V) and for the
example we will discuss next: an Oja network operating
in a slowly rotating environment. Furthermore, the fol-
lowing analysis can be viewed as a zeroth-order approxi-
mation, which is valid if the changes of these parameters
are insignificant on a time scale of 0, the response time
defined in Eq. (20). We can calculate the asymptotic solu-
tion

0
0

.X--
-X~'$ 'f----+---w-- ~

0.05 0.1

FIG. 5. Error as a function of the learning parameter for
learning processes in a changing environment. Squared bias
(computed, dashed line; simulated, +), variance (computed,
dash-dotted line; simulated, x), and error (computed, solid line;
simulated, +). Simulations were done with 5000 neural net-
works. (a) Grossberg learning. Standard deviation input,
y=1.0. Velocity, U=0. 1/~. (b) Oja learning. Eigenvalues of the
covariance matrix of the input distribution, A

&

=2.0 and
A2= 1.0. Angular velocity, co=2~/1000~.

found by minimization of this error 8. For small y the
optimal learning parameter is proportional to y

VI. NONLINEAR LEARNING RULES

r dX',, (t)
dt

+ —,
' QQ, ,„(t)X,'„(t)— v, (t), —

jk
(25)

= —QG,, (t)22k, (t) —QXL(t)G,„(t)+qD,,(t),

with definition v(t)—:w "(t) and notation G(t)
=G(w*(t)}, and so on. The approximate validity of
these equations requires not only (15) and (17), but also

In this section we will discuss the performances of
neural networks operating in a time-dependent environ-
ment with a nonlinear learning rule. We will show that
for slow changes and small learning parameters linear
di6'erential equations still give a useful description of the
learning process.

Making again the expansions described in Sec. IV, we
find

r dm, (t) = —gG, (t)m (t)
dt J

'PV a + YI + Qapy /3y
A

'gA~ 2k~ p Ap+A

gD p
aP

(27)

I

I a

2

+ilg (28)

The optimal learning parameter is the learning parameter
for which 6 is minimal:

Qoptimal

g(rv /A, )

gD /4A,

The optimal learning parameter is proportional to v

Substitution of this optimal learning parameter in Eq.
(28) yields 8;„~v ~ . For minimal error the contribu-
tions of the bias and the standard deviation are of the
same order of magnitude. Note that the requirements
(15), (17), and (26) are all fulfilled for small changes v and
I 9optimal

%'e discuss some simulations with the nonlinear learn-
ing rule of Oja [Eq. (21)j in order to see whether they sup-
port our analysis. The neural network consisting of one
neuron is still taught with random samples from a rectan-

If in the expression for the bias m the second term due
to the nonlinearity of the learning rule is much smaller
than the first term due the environmental change, this
solution corresponds to

(w )=~,~=w*(t —9 ),
with the delay 0 equal to the response time defined in
Eq. (20). The delay is inversely proportional to the learn-
ing parameter. In this special case we can also calculate
the error 8, defined in Eq. (23), neglecting terms of order
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Since in this example A, , U, D t3, and Q & are indeed in-
dependent of time, the results given by Eq. (27) are ap-
proximately valid if all corresponding conditions are
satisfied. We can calculate the squared bias and the vari-
ance up to order q:

1 co%

Ai —A2

'2 2

+
16 Ai —A2

2

2A, A2 ~~ A, A2

2 A, —A2 4 A, A2—
These terms are plotted in Fig. 5(b), together with the er-
ror 6 (solid line), which is just the sum of the squared
bias (dashed line) and the variance (dash-dotted line).
The computed values are reasonable estimates for the
values found by simulations for learning parameters
g) 0.02. For smaller learning parameters the conditions
(26) are violated and agreement is not to be expected.
From Eqs. (15), (17), and (26) it can be estimated that
0.01 «q «0.3. Substitution of all relevant parameters
in Eq. (29) leads to the optimal learning parameter
xf pt i 0.043 . The optimal learning parameter in simu-

lations is not much different.

VII. CONCLUSIONS AND DISCUSSION

We have set up a general framework for studying the
asymptotic solutions of a large class of learning neural
networks for nonzero asymptotic learning parameters g.
The conditions for the validity of the framework in a
fixed environment are given in Eqs. (15) and (17) and are
roughly equivalent to alt) f«1. If the network has ob-

gle as in Sec. IV. But now we are rotating the rectangle
with constant angular velocity co around the axis that
goes through the origin and is perpendicular to the rec-
tangle. The principal component of the covariance ma-
trix of the input distribution and thus w*(t) follows:

cos(cot )—+
sin(cot )

tained a stationary representation of the environment of
the network proportional to g and allows the network to
adapt to a new, different environment in a time which is
inversely proportional to g. The size of these effects can
be calculated analytically.

In a constantly changing environment, the analysis
holds approximately [see the conditions in Eq. (26)] as
long as the rate of change in the environment U is small in
comparison with the "learning rate" rif/~. There is a
trade-off between adaptability and accuracy: the more
adaptable the network is, the less accurate it is, and vice
versa. If an error criterion is defined that takes these two
effects into account, the learning parameter has an op-
timal value which is proportional to U

~ .
To be able to do the analysis above, we had to the

make the following essential assumptions.
(i) Learning is described by a first order process as

given by Eq. (1): the new network state w+b, w depends
only on the present network state w and on the training
pattern x.

(ii) At each learning step a training pattern x is drawn
at random from the probability distribution p(x, t), i.e.,
the value of the x drawn at time t is independent of previ-
ous values of x. This assumption, in combination with
the first assumption, enabled us to describe learning as a
Markov process. Violation of either of these complicates
the analysis significantly. For example, it is clear that
this analysis is not directly applicable to learning process-
es concerning the storage of temporal sequences.

(iii) A physical time scale is introduced by drawing the
time intervals between successive learning steps from a
Poisson distribution. This is an elegant way to transform
a discrete random-walk equation into a continuous time
master equation for any value of the learning parameter

It may also be applied to describe the dynamics of
spin states in Hopfield-type neural networks in
differential form, even for a finite number of neurons.
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