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Quantum and disorder effects in Davydov soliton theory
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Within the simple displaced oscillator state ansatz of Davydov [Phys. Scr. 20, 387 (1979)], called the
D2 ansatz state, the soliton remains stable against strong disorder in the sequences of masses, spring con-
stants, and coupling constants. However, weak diagonal disorder or disorder in the dipole coupling con-
stants destroys the solitons. Within the D& ansatz, in which the quantum nature of the lattice plays a
greater role than in the classical D2 state, the soliton appears only from nonlinearities roughly 3 to 4
times larger than those in D2 models. The sensitivity of such solitons to disorder is practically opposite
that for the D2 state. Within the partial dressing model we find only dispersing solitary waves, no real
traveling solitons. The sensitivity of such waves to disorder is similar to the D& case.

I. INTRODUCTION

For the explanation of a wide variety of chemical and
physical phenomena the introduction of nonlinear forces
turned out to be necessary, e.g. , a lattice bound by linear
forces (harmonic) would have an infinite heat conductivi-
ty [1]. In a channel near Edinburgh a nondispersive lo-
calized wave packet was observed as the first example of
a solitary wave [2]. Solitary solutions can only occur for
nonlinear wave equations, since linear wave packets
disperse rapidly. As some examples for an introduction of
soliton concepts in physics and chemistry let us mention
the dynamics of magnetic materials [3,4], rotations
around carbon —carbon bonds in polyethylene [5], phase
changes in solids [6,7], dynamics of the sugar-phosphate
backbone [8] or the nucleotide bases [9] in DNA, and the
spinless charge transport in trans polyacetylene -[10].

Many biological processes are associated with an ener-
gy transfer through proteins, where this energy is
released by hydrolysis of adenosine triphosphate (ATP).
The mechanism of this energy transport is not quite clear
[11]. As an alternative to electronic mechanisms [11]one
can assume that the energy is stored as vibrational energy
in the amide-I mode (CO stretch) of a polypeptide chain.
Following Davydov's idea [12] one can take into account
the coupling between the amide-I vibration and the
acoustic phonons of the lattice. Through this coupling
nonlinear terms appear in the equations of motion. In
this way the energy can be transported in solitary waves.
Direct experimental evidence for the existence of such
solitons in proteins is still lacking. This is due to the
complex structure of proteins, which makes such mea-
surements very difficult. However, in acetanilide crystals
a substructure with chains of hydrogen bonds similar to
proteins is present. In low-temperature infrared and Ra-
man spectra of this material a new band in the amide-I
region appears. Up to now this band could only be ex-
plained with the help of a model similar to the Davydov
soliton concept in proteins [13]. In this case the CO os-
cillators are coupled to optical phonons and the soliton
would be pinned. Recent experiments, however, suggest
a conventional mode strongly coupled to the phonons to

be responsible for the observed new band [14].
A very important feature of most nonlinear systems,

especially proteins, is disorder. However, this problem is
seldom discussed in the field of soliton dynamics. It was
done numerically for solitons in trans-polyactylene [10]
by several groups, for classical molecular dynamics of
peptide units moving in a Lennard-Jones potential [15],
and in model potentials of cubic and quartic nature [16],
for example. For Davydov solitons in the displaced oscil-
lator state ansatz (D2 ansatz) we have performed such a
study [17—19]. Also in a model for a stacked system we
have considered impurity molecules [20]. However, there
exist more sophisticated ansatz states than D2 for
Davydov solitons, in which the quantum nature of the
lattice is more pronounced. Thus after a short review of
our previous results on D2 dynamics we want to focus
mainly on disorder effects in the more sophisticated mod-
els.

II. THE Dq ANSATZ STATE: A SHORT REVIEW

The Hamiltonian used for this study is in the most sim-
ple form for the system investigated by Davydov [12];
however, it is extended for the possibility of disorder.
Disorder is present in any protein due to the 20 natural
amino acids which form proteins. More sophisticated
forms of the Hamiltonian which incorporate more details
of the protein structure have led qualitatively to the same
results [21]:

(Eo+E„)a„a„—J„(d„&„+,+a„+,8„)

+X„&„a„(g„—g„,)

In (1) &„(a„)are the usual boson creation (annihilation)
operators [22] for the amide-I oscillators at sites n (see
Fig. 1). From infrared spectra the excitation energy of an
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FIG. 1. Schematic picture of a hydrogen bonded channel (spine) in a protein helix (indicated by backbone, perpendicular to the
spine).

isolated amide-I oscillator can be deduced to ED=0.205
eV [23]. E„stands for the diagonal disorder. Usually for
all parameters in (1) site-independent mean values are
used. The average value of the dipole-dipole coupling be-
tween neighboring amide-I oscillators is J =0.967 meV
[23]. The average spring constant of the hydrogen bonds
is taken usually to be W = 13 N/m [23]. P„ is the
momentum and q„ the position operator of unit n Th.e
average mass M is taken as that of myosine (M = 114m;
m is a proton mass) [23]. The energy of the CO stretch
in hydrogen bonds is a function of the length R of the hy-
drogen bond (E =ED+X' ) [24]. For X the experimental
value is 62 pN [24]. Ab initio calculations on formamide
dimers usually lead to X =30—50 pN [25].

For the solution of the time-dependent Schrodinger
equation

(2)

we use the displaced oscillator state ansatz of Davydov
[12], the so-called D2 ansatz.

In the displaced oscillator state ansatz q„(t) is the ex-
pectation value of the position operator, p„(t) is that of
the momentum operator of site n, ~0) is the vacuum
state, and ~a„'(t)~ is the probability of finding an amide-I
vibrational quantum at site n, provided that
g, la,'(t) I'=1.

~g) =g a„'(t)&„exp[—S(t)]~0), (3a)

of (4). For this purpose a fourth-order Runge-Kutta al-
gorithm was used [27]. With a time step size of 0.01 ps in
the simulations the total energy was conserved up to 3
peV (0.015%). A possible imaginary part of the energy
which can occur due to numerical inaccuracies was zero
to an accuracy of 0.002 feV. The norm was conserved up
to 0.4 ppm (parts per million). Note that we used fixed
chain ends and as an initial excitation we put one quan-
tum at the site N —1, where N is the number of units
chosen to be N =200 in our simulations. For the lattice
q„(0)=p„(0)=0 was applied.

For the sake of comparison we show in Fig. 2 a survey
of the (X, W) parameter space for the D2 ansatz using or-
dered chains and in Fig. 3 a series of dynamics using
standard parameters in ordered chains but different
values of X [19]. For X =20 pN (3a) the system is disper-
sive; for X =60 pN (3b) a traveling soliton appears. This
holds between 40 and 80 pN for X [21]. For X = 100 pN
(3c) the soliton is pinned.

Turning to disorder we review shortly the results of
Refs. [18] and [19]. To introduce disorder we have used a
random number generator to create random sequences of
the different parameters along the chain. Disorder in the
mass sequence destroys the soliton only for a very large
disorder strength, with M„values 0.01M &M„&50M
[17]. For 0.01M (M„(10M the soliton velocity is re-
duced from 0.73 to 0.59 km/s, the sound velocity to 2.12
km/s. In the case of the mass variation of natural amino

S(t)= —g [P q (t) gp —(t)] .
m

(3b) 100

The equations of motion can be derived either by using
the expectation value of 8 as the classical Hamiltonian
function [12,21] or by quantum-mechanical methods [26].
After a gauge transformation one obtains

80

60

ilia„= —
(J„a„+,+J„,a„,)

+X„(q„—q„,)a„+E„a„,
P„=W„+,(q„+,—q„)—W„(q„—q„, )

+X„+,/a„+, /' —X„/a„/',

(4a)

(4b)

g 40

20

20 60 80 100 120 140

Pnq„=; a„' =a„exp( iEot/A) . —
n

(4c)

The complex equation (4a) was solved as a system of
two coupled equations for the real and imaginary parts of
a„. The system of units eV for energy, A for length, and
ps for time proved to be suitable for a numerical solution

x(pN)

FIG. 2. A survey of the (X, W) parameter space in D2 dy-
namics for standard parameters otherwise. Each circle
represents a simulation (0, dispersive; Q, slowly dispersive trav-
eling solitary wave; 0, travelling soliton, , pinned soliton), the
solid line gives the threshold for soliton formation in continuum
theory.
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soliton is stable up to +10%W while at +20% W slowly
dispersive behavior appears. Finally, if X„alone is
aperiodic, or if X„ is aperiodic together with the natural
mass variation, X„can be varied up to +20%X without
destruction of the soliton. However, if disorder in 8'„ is
also introduced, X„can be varied up to +15%Xand 8'„
up to +40%&. Finally if all four parameters are ran-
domly varied the maximal possible disorder that would
still allow the existence of a soliton is +20% W, +2.5%J,
and +10%%uoX. For this disorder strength we have calcu-
lated 10 different randomly chosen sequences to find out
whether the soliton properties depend only on the magni-
tude of disorder or also on the individual sequences. We
found that only the soliton velocity is affected; in this
case it varies between 0.61 and 0.80 km/s.

In the case of diagonal disorder (E„) [19] we found
that for an isolated impurity in the middle of the chain
(E„=ED„,00) the soliton can pass the impurity only if
E &0.5 meV. In other cases it is rejected or destroyed.
In other cases it is refIected or destroyed. In the case of a
random sequence (E„=EP„, ~P„~ ~ 1, P„random) only
for E (1 meV can the soliton pass the chain. For higher
values of E the excitation disperses quickly.

However, the actual degree of disorder in proteins is
unknown. The disorder in effective masses should be
smaller than the mass interval of the natural amino acids
since they are not free particles but are covalently bound
in the main polypeptide chain. Disorder in the other pa-
rameters should be mainly due to small influences of the
side groups on the geometry of the main chain. Thus
one can conclude that the naturally occurring disorder in
the parameters should be smaller than the maximal disor-
der in which the soliton is stable. Natural disorder may
interfere with the soliton only when J„and E„are varied
since the stability interval in these cases is rather small.
We could not find any case where strong disorder stabi-
lizes the soliton as reported in [16] for model systems.

This ansatz allows dynamical phase mixing between pho-
nons (ph) and excitons (ex). Thus the quantum nature of
the lattice is more pronounced than in the D2 ansatz. If
one uses the expectation value of (6) with 8 as a classical
Hamiltonian function one obtains equations of motion
[28,29] which do not reproduce the exact solutions in the
transportless case (J=0) [30]. However, in contrast to
D2, for Di quantum-mechanical methods (QM's) give
equations of motion that do reproduce the exact special
case solutions [31,32]. In fact it was shown [32] that
different QM's lead to the same equations. These are (Re
and Im denote real and imaginary parts of their argu-
ments, B is real as mentioned in Appendix A)

i~an En 2t~y (bnkbnk bnkbnk )
k

+g&~k[2B„k Re(b„k)+lb„k '] a„
k

nDn, n +1an+1 n —1 n, n —1an —1

a„'(t)=a„(t)exp( iEot/—R),

(8)

D., „=exp —
—,'g [lb„k —b„k l'+» Im(b."kb„k )]

k

(10)

«bnk —&~k(bnk+Bnk )

J„D„„+,(—b„+, k b„k )a„+—, /a„

J„—iD, , —i(b„—i I, b„k )a„

To avoid numerical difficulties due to the denominators
a„(t) in (11) we use the same initial excitation as in [31]

1/2

a„(0)= 1 —g ~e„~ (1 —5„„)
n=1

III. THE Di ANSATZ STATE
+e„(1—5„„), (12)

In Appendix A we brieAy derive the disordered Hamil-
tonian

(Eo+E„)it„d„—J„(a„+,a„+&„a„+,)

where no is the excitation site and e„=0.005 [31]. As in

[19] we work with a Runge-Kutta method correct up to
fourth order to solve (8) and (11) numerically. The mo-
menta p„of the units are (see Appendix A for definition
of U and cok)

+rf ~~kBnk(bk+bk@n~n +rf ~~kbkbk
k k

The matrix 8 is also given in Appendix A. The D1 an-
satz state as introduced by Davydov and also used to in-
corporate temperature effects [28] reads as

ID, ) =g a„'(t)&tl0),„IP„(t)) (6)

p„=g (2fiM„oak)' 'U„k la l'Irn(b k),
k, n

q„=g (2&/~„oak)' 'U„kla l'Re(b k) .
k, m

The total energy is given by

E, =g (Eo+E„)la„ l

—g(J„D„„+ia„a„+i

(13)

(14)

with

~p„(t)) =exp[ —S„(t)]~0) i,

=exp —g (b„kbk
k

+J„,D„„,a„*a„ i )

+g Acok ~a„~ [ ~b„k ~ +2B„k Re(b„k ) ] .
n, k

(15)

In a typical run for N =50, @0=49 using as time step



2698 WOLFGANG FORNER

0. 5

0. )
50

100

80

—0 0 0 0 0 0 0 0 0 0 0 0 0
(a)

—0 0 0 0 0 0 0 0 0 0 0 0 0

40

20

—0 0 0 0 0 0 0 0 0 0 0 0 0

—0 0 0 0 o 0 Q )I( ~ ~ ~ ~

—0 0 0 4 4 ~ 4 ~
I I I I I I I I I I I I I I l I I I I I I I I I

50 100 150

x(pN)

200 250 300

100

—0 0 0 0 0 0 0 0 0 0 0 0 0
80 — (b)

—0 0 0 0 0 0 0 0 0 0 0 0 0

8

~40

—0 0 0 0 0 0 0 0 0 0 0 0 0

—0 0 0 0 0 0 0 )g Q )I( ~ ~

o/g ~ ~ ~ ~ aaae
I I I I I I I I I I I I I I I I I I I I I I I I ]

100

50 100 150
x(pN)

200 250 300

—0 0 0
(c)

0 0 0 0 0 0 0 0 0 0

60

—0 0 0 0 0 0 0 0 0 0 0 0 0

--0 0 0 0 0 0 0 0 0 0 0 0 0

20

-o o o o o o o o o o

-0 0 0 0 4 ~ ~ 4 4 ~
I I I I I I I I I I I I I I I I I I I t I I I I I

50 100 150 200 250 300
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FIG. 4. Time evolution of ~a„(t)
~

for the D, ansatz state as
in [31]for X = 174 pN (all conditions as in [31]).

~=0.01 ps through 12 ps the error in E, is less than 11
peV (=0.005%E, ) and the norm is conserved up to 0.5
ppm. The translational mode (co=0) was not populated.
To check our program we reproduced the results given in
[31] where slightly dift'erent initial conditions and param-
eters were used. In Fig. 4 we show ~a„(t)~ for one of
these runs.

Figure S shows our survey of the (X, W, J) parameter
space for ordered chains. Obviously traveling solitons ex-
ist only for W ( SO N/m independent of J in contrast to
D2 dynamics. Also the solitons occur for much larger
values of X. The threshold value of X increases with in-
creasing J or O'. Obviously one cannot expect soliton
formation below X=120 pN in D& dynamics. This value
is well above all estimates of X for proteins (=30—60
pN). However, there exists an experimental estimate of X
for the N —H vibration as large as 339 pN [33]. More-
over, Brown and Ivic [34] point out that the quantum na-
ture of the lattice may well be overestimated in D, . For
comparison we show in Fig. 6 some examples of D, dy-
namics (W=13 N/m, J=0.967 meV). For X =142 pn
[Fig. 6(a)] the excitation is still dispersive. Only at
X=174 pN [Fig. 6(b)] is a traveling soliton obtained
while between X =200 pN [Fig. 6(c)] and 280 pN [Fig.
6(d)] (in this case W = 10 N/m was used) pinning occurs,
in full agreement with [31]. The inclusion of temperature
effects into D

&
theory is given in Appendix B.

Turning now to disorder we concentrate on a parame-
ter set (W = 13 N/m, J =0.967 meV, X = 180 pN,
M =114m ) which allows traveling solitons. In Fig. 7(a)

2the time evolution of ~a„~ is shown where the masses
have a random sequence between the lightest amino acid
(glycine) and the heaviest (tryptophane). Obviously the
soliton survives the mass disorder occurring in proteins.
If the unit in the middle of the chain has a spring con-
stant of 0.96W (or 1.04W) the soliton is able to pass the
impurity [Fig. 7(b)]. Only a small fraction of the excita-
tion is reflected. For an impurity with 0.93W(or 1.07W)
most of the excitation is rejected in a dispersive manner
and also the passing fraction broadens [Fig. 7(c)]. If the
sequence of spring constants is random, already for a dis-
order of +2%W [W„=(1+P„)W, ~/3„~ ~0.02, P„ran-
dom] [Fig. 7(d)] the soliton disperses slowly and is des-
troyed for 4% W [Fig. 7(e)]. If in addition to a disorder
of +2% 8' the mass disorder is present the soliton
disperses also. The situation for disorder in the non-
linearity (X) is similar. However, for an impurity of
0.93X in the middle of the chain [Fig.7(g)] the soliton
disperses, while an additional mass disorder seems to sta-
bilize the soliton somewhat in this case [Fig. 7(h)]. Up to
an impurity strength of 0.98X the soliton is able to pass
the impurity. Random disorder in X with or without
mass disorder destroys the soliton starting with a disor-
der strength of +2%X.

Obviously the quantum nature of the lattice destabi-
lizes the soliton considerably against disorder in X and 8'
compared with the D2 state. In the case of the dipole-
dipole coupling J the soliton is more stable. With or
without mass disorder it is able to override impurities up
to 0.85J (for 1.15J the picture is identical). A random se-
quence in J causes a slow dispersion from +15%J disor-
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E( =g[E +Eo5(2 5)f ] Ia
n

n n ~n

+g +~k( Ib' I'+-')
k

k

—ga„'*(J„a„'+,+J„,a„', )
n
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from X = 180 pN can one speak of a slowly dispersive sol-
itary wave. For X =260 pN a pinned soliton is observed.
In Fig. 10 we show our survey of the parameter space.
Obviously for the D state the parameter space which al-
lows soliton formation is very small and at rather large
values of X. Thus if the D state would be a better approx-
imation to the exact solution than Dz or D, , one would
have to conclude that the Davydov soliton cannot exist in
proteins already at T =0 K. However, the D states are a
subset of the D, states and the new D, equations [31,32]
are derived with the time-dependent variational principle
as well as the D states [34]. Therefore the D, dynamics
should be a better approximation to the exact ones than
the D dynamics. If the D dynamics would approximate
the exact solution better, then D, dynamics would nu-
merically reduce to D dynamics, which is not the case.

Turning to disorder effects, we show in Fig. 11(a) the
dynamics of a periodic chain for X =240 pN (W= 13
N/m, J =0.967 meV, M =114m ). Figure 11(a) em-
phasizes again that within the D states no real traveling
soliton is present, and one has to deal with dispersive soli-
tary waves or pinned solitons. Figure 11(b) shows the
case of mass disorder and we have already seen that mass
disorder destroys the solitary wave. For an impurity of
strength 0.96W (or 1.04W) in the middle of the chain the
wave is fully reflected [Fig. 11(c)]and even for 0.98 W (or
1.02W) most of the wave is reflected [Fig. 11(a)]. Conse-
quently for random disorder of strength +2% W the wave
is destroyed and most of the excitation remains at the
chain end [Fig. 11(e)]. For an impurity of strength 0.98X
(and 1.02X) the wave is already reflected and random dis-
order of +2 JoX leads to complete pinning. An impurity
of 1.02X acts completely identically to one of 0.98X.
Thus the solitary waves in the D state are even more sen-
sitive to disorder in M, 8', and X than the D& solitons.
For impurities up to 0.96J we find no inAuence on the dy-
namics. The same holds for random disorder of +4%J.
Thus we assume that for the parameter J the D state
behaves similar to the DI state. For a diagonal impurity
of 0.3 meV roughly 50% of the excitation is reflected. A
random diagonal disorder of +0.05 meV leads to
enhanced dispersion but the wave still exists, while for
+0. 1 meV the wave disperses rapidly [Fig. 11(f)]. Thus,
besides the fact that within the D state no traveling soli-
tons exist, the solitary waves are also more sensitive to
disorder than in the other ansatz states discussed.

V. CONCLUSIONS

Therefore in Dz theory (adiabatic, classical lattice) soli-
ton formation occurs more easily than in D& theory
(quantum lattice). If the quantum nature of the lattice
were negligible, thus justifying an adiabatic approxima-
tion, D, dynamics would be numerically similar to Dz
dynamics. That this is not the case shows that for the
Davydov Hamiltonian an adiabatic description is not ap-
propriate. Only for large values of X and 8'is the lattice
able to follow and thus stabilize a soliton. However, as
will be shown in later papers [36,37] inclusion of temper-
ature shifts the stability region for solitons to parameter
values reasonable for proteins.

Further in D, states the soliton is very sensitive to dis-
order in parameter sequences along the chain that direct-
ly influence the lattice (W, X), while it is more robust
against disorder in the oscillator system (J). In the Dz
state the situation is reversed. This is due to the fact
that in ~D& ) theory a factor D„„+,appears in the terms
including J. This exponential factor effectively reduces J
and thus also the effects of disorder in J. However in Dz
the absolute values of disorder in E„against which the
soliton is stable are of the same order of magnitude as in
DI. Thus one has to conclude that solitons are more sen-
sitive to disorder in quantum systems (oscillators in D,
and Dz, oscillators and lattice in D, ) than in classical sys-
tems (lattice in Dz). However the large threshold value
of X in D, (160—180 pN) implies that if D, is approxi-
mately correct, the Davydov mechanism —coupling of
C=O stretch to hydrogen bonds —cannot function at
T=O K, since in proteins X=30—62 pN is estimated.
Moreover proteins are aperiodic by their very nature,
hence the sensitivity of the solitons to disorder points also
against the standard Davydov mechanism.

The equations of motion used for all ansatz states con-
sidered (D, ,Dz, D ) are obtained with the same quantum-
mechanical method, namely, the time-dependent varia-
tional principle. The same equations can also be obtained
by other quantum-mechanical methods [31,32,34], but in
the case of D, and D not by the standard Davydov
method [28,29], which is correct only for Dz [26]. Both
D~(b„k =bk) and D(b„k = 5B„k+—bk) are subsets of the
most general D, (b„k) states. Thus D, must be the best
approximation to the actual dynamics among these an-
satz states. If Dz or D would be the best approximation,
D, dynamics would reduce to Dz or D dynamics at least
numerically. However, it is known that although for D&

[32]

The basic conclusion from our calculations is that if
the quantum character of the lattice is allowed to play a
greater role than in the conventional Dz state, traveling
solitons occur at a much larger threshold values of X (D, )

or are not found at all (D ). In a traveling soliton a lattice
distortion has to follow the excitation in order to keep it
localized, i.e., the lattice distortion is needed to stabilize
the soliton against dispersion. However, a quantum sys-
tem following a slow lattice distortion (e.g. , an exciton in
Davydov theory or the electrons in the Born-
Oppenheimer approximation widely used in quantum
chemistry) is characteristic for adiabatic approximations.

D& l'A Di =0 (24)

holds, D& is exact only for the transportless case (J =0).
In all other cases one has

H iA D, )—=~P—)%0 if JAO
Bt

(25)

where (D, ~ p ) =0. Thus one would need a method that
would allow to study the error ~P) numerically. It may
still be possible that the exact dynamics contain more
stable solitons than D&. Further, temperature effects in
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D1 shift the stability region of solitons to parameter
values that are reasonable for proteins [36,37]. Finally, it
should be kept in mind that instead of the C =0 stretch
also the N—H vibration is coupled to the hydrogen
bonds with a much larger coupling constant (roughly 300
pN).

In addition neither accurate parameter values nor the
degree of disorder in the parameters for proteins are
known. Since exact measurements on biopolymers are
extremely difficult this problem could possibly be solved
by theory and work on this is already published (see, e.g.,
[33]). Thus the question of whether or not the Davydov
mechanism for energy transport and storage can function
in proteins is still a completely open one and a great deal
of further experimental and theoretical work is necessary
to reach a final answer.

and with b=km ' a, c=co 'a, H~h becomes

2Hph rf ~~k(ck ck +ak ak )
k

(A7)

1 /
ak —(bk+bk ), ck — —(bk bk—)

2 2
(A8)

which leads to

Hph =g Ro)k(bkbk+ —,')
k

and thus
' 1/2

(A9)

~ ~ ~

Now creation (bk ) and annihilation (bk ) operators are in-
troduced in the usual way to obtain the phonon part of
the Hamilton operator:
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APPENDIX A: THE DISORDERED HAMILTONIAN

P„=i+(—,'AM„cok )'i U„k(bk bk ) . —
k

(A10)

Introducing (A10) into the full Hamiltonian we obtain
finally

H =g [(Eo+E„)a„a„—J„(a„d„+&+&„+1&„)]

We start with the classical equations of motion for a
chain of N harmonically coupled point masses (M„):

+X ~~k (bkbk +
2 )+X ~~kBnk(bk + bk @n~n

k n, k

Mq = —8'q, M„=M„5„
W'„= [ W'„(1—5„~)+ 8'„,( I —5„,) ]5„

—8'„(1—5„~)5 „+,—W„,(1—5„,)5

(Al)

(A 1 1)

Note that the creation (d„) and annihilation (a„) opera-
tors for vibrational quanta at site n and the quantities ak
in Eqs. (A7) and (A8) are not related to each other. B is
given by

where qn is the displacement of the unit n and 8„ the
harmonic force constant between units n and n + 1.
p„=M„q„are the momenta of the units. Using the trans-
formation

d= —Vd . (A3)

The Hamilton function is transformed as
~ t '~

2H~h=p M 'p+q 8'q=d d+df Vd . (A4)

(A3) can be further simplified by transformation to nor-
mal modes Uk with

d=+U„[U d(0)]kexp(i~kt)

V=M ' WM ' d —M' q p=M' d (A2)

we obtain

X„
B„k=

cok 2Acok

1/2
Un+1, k

QM„+,
Unk

QM„
(A12)

APPENDIX B: TEMPERATURE IN D
&

THEORY

Ia. l'b. , + (B2)

and HT of Ref. [29] generalized to the disorder case is
given by

To include temperature into the model one can use the
thermally averaged Hamiltonian HT of Ref. [39] together
with the Euler-Lagrange equations derived in Ref. [32]:

BHT
ih'a„+ a„y (b„/, b„*/, b„*/, b„/, )=—

such that

2 2 = 2
~kl ~k ~kl (A5)

Hr =g (Eo+E„)Ia„I

V can be numerically diagonalized to obtain the normal
modes U which can be chosen to be real. With b= U d
we obtain

nDn, n+1Qn Qn+1 n —1 n, n —1Qn Qn —1

+ Ia. I'g &~k [B.k(b.k+ b.*k )+ &k+ lb. k I']
k

2H h=b b+b co b, (A6) (B3)
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where

ACt) k
Vk = exp

8
(84)

Here the gauge transformation

a„=a„' exp —i Ep+y]]]cok V/, t/I
k

(87)

and
was used and a„' was replaced by a„again afterwards in
(86). Using (82) one obtains

D„„+]=exp g[( Vk+1)b„'kb„+] k+ Vkb„kb„'+] k
k

2 —aHT
i A'Ia„ I'b„k =

« 2
b„k(a„*a„+a„a„'). (88)

—
( Vk+-,' )( lb. /,

I'+ Ib.g],k I') ] . (85)

Together with c)Hr/c)a„* from [29] we obtain

y(b„kb„*k b„/, b„/, )+E,
k

n —] nn —$ n —) n nn+) n+]

Together with (86) one obtains

2
b„k(a„*a„+a„a„')

=-,'b„k J„(a„a„'+,D„+,„—a„*a„+,D„„+,)

+ ,'b„/, J„—](a„a„*]D„]„—a„*a„]D„„]).
(89)

+a„ghcok[ „k(b„„+b„*k)+Ib„„I] .
k

(86)
With BHr lc]b„*k from [29] we obtain finally

an an —iikb„k= tcok(B„k+b„k)—J„](b„]k —b„k) (Vk+1)D„„] + VkD„
+n +n

an+& an*+ i
+],k b k ) ( Vk+ 1)D, +] + VkD +l, n

an an
(810)

Applications of these optimized D& equations including
temperature and disorder are in progress [36,37]. Note
that the thermal average performed to obtain HT is
equivalent to the computation of dynamics for all states
populated with fixed phonon distribution and a subse-
quent thermal average of these results.

APPENDIX C: IMPLEMENTATION OF D DYNAMICS

For numerical simulations a suitably small time step t0
is introduced. During this time step (or half of it as in
the Runge-Kutta method) the integrand is linearly inter-
polated. Thus at time lt0 we obtain

bk(l)= Ak exp( icokltp)+Ck—(l)

icok exp—( icokltp—)g BnkD k(l),

The term which leads to technical difhculties appears
in the equation for bk(t) in [34]:

~k =bk(o) —5X B.k la„'(o)I'

f exp[icok(t t')]g B„k, Ia„'(t—')Idt' .
0 " dt' (C 1) ck(l) =5+ B„k I

a„'(I)
I

Integration by parts yields

icok f exp[icok(t —t—')]g B„kIa„'(t')I dt'
0

+g B„k Ia„'(t)
I

—exp( icokt)g B„k I
a„'(0)—

I

(C4)
D„k(I)=D„k(l —1)+(tp/2)[E„k(I)+E„k(I —1)],
D„k(0)=0,

E„k(l)=exp(icokltp) Ia„'(I)

Thus bk(t) is finally given by

bk(t) = bk(0) —5g B„k la„'(o)I' exp( —icokt )

(C2) For T =0 K the initial phonon data are bk(0) =0. After
computation of a„'(I) and bk(I) at time ltp the time
derivative of a„'(I) can be calculated;

i%a„'(I)= [Ep+E„—5(2 —5)f„]a„'(I)

+5y B„„Ia„'(t) I'
n

—icok f exp[icok(t —t')]g B„kIa„'(t')I dt' .
0

(C3)

—J„'a„'+,(I)—J„',a„',(I)

+2g 1 ]]Bco«kR [be(I k) ] '(aI )
k

+25(1—5)g AcokB„kB kIa' (1)I a„'(I) . (c5)
m, k
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From a„'(l) then a„'(l+1) can be computed and then
bk(l + 1). In practice, as usual, a gauge transformation is
performed,

flCOk
S„(T)= —,

' g (B„k B„—+, k ) coth (C9)

a„"=a„' exp(iEot /fi), (C6) and thus in J„' in the form of a Debye-Wailer factor

which removes the term containing Eo from (C5) and
thus the fast oscillating part of a„'. Finally from
b„k = 5B—„k+b/, the momenta p„and displacements q„
of the lattice units can be obtained:

p„(&)=g (2&M„cok)' 'U„t, la (l)l'Im[b~k(l)],
k, m

q„(l)=g (2A/M„coi, )' U„i, ~a (l)~ Re[b k(l)] .
k, m

(C7)

(C8)

Typically a time step of to =5 fs was used in our simu-
lations within a Runge-Kutta method correct up to
fourth order. In typical cases (M=114m, W=13 N/m,
J =0.967 meV, X =240 pN) for a periodic chain of 50
units within 70 ps the error in total energy was less than
50 peV (=0.02%%uoE, ) and the norm is conserved to better
than 4X10 . In this case 6=0.9016 and the transla-
tional mode was kept unpopulated.

As already discussed in the paper by Brown and Ivic
[34] the inclusion of temperature enters in the determina-
tion of 5, where a thermal average is involved, via the
quantity

J„'(T)=J„exp[—5 S„(T)] . (C 10)

Re[bi', (0)]=+(M„cok/2A')' U„kq„(t'), (Cl 1)

Im[bk (0) ]=g ( —,'AM„cok )' U„kp„(t') (C12)

and use these values as input for the time simulation.
Calculations along this line are in progress. As in the
case of D, dynamics one has to note that the larger X is,
the smaller the time step has to be chosen.

Further in the equations of motion temperature appears
directly in the phonon initial data bk(0). These can be
approximately obtained in the same way as for D2 dy-
namics. One can populate all modes (except the transla-
tional one) of the lattice corresponding to a Bose-Einstein
distribution and solve the dynamical problem of the
decoupled lattice [35]. With P„and q„at some arbitrary
time t' (the results do not depend on t' as shown previ-
ously [18],one can calculate
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