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Electric fields from steady currents and unexplained electromagnetic experiments
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It is shown that so-called "relativistic" electric fields [T. Ivezic, Phys. Lett. A 144, 427 (1990)] from
stationary current-carrying conductors are responsible for the existence of longitudinal forces that sub-
ject the conductor to tension. The exploding-wire phenomenon [P. Graneau, IEEE Trans. Magn.
MACy-20, 444 (1984)] is explained in terms of these longitudinal electric forces. Other unexplained elec-
tromagnetic experiments are also discussed.

I. INTRODUCTION

Different unexplained electromagnetic experiments
have been reported over a period of many years. Some
recent experiments are (i) the demonstration of the ex-
istence of a radial electric field E near a superconducting
wire [1], (ii) wire fragmentation by pulse currents [2], (iii)
railgun recoil experiments [3], and (iv) electrodynamic ex-
plosions in liquids [4].

Since the experiments mentioned above have never
been adequately explained within the standard elec-
tromagnetic theory (SET), some authors have tried to ex-
plain them (with the exception of the radial-field experi-
ments) in terms of the old Ampere action-at-a-distance
electromagnetic theory. An important example is the ex-
periment performed in Ref. [2] [see Ref. [2], Fig. 12(a)]
in which a straight aluminum wire of diameter 1.19 mm
was shattered into many pieces when a particular pulse
current level was reached in a circuit containing the wire.
But, in an arrangement as was used in Ref. [2], magnetic
forces act perpendicularly to the wire axis and cannot
produce tensile stress in the direction of the current.
Therefore, it is argued [2] that the experiment mentioned
gives the most conclusive evidence of the existence of
Ampere tension. Thus, according to Ref. [2], the whole
relativistic field theory is questioned in this type of exper-
iment.

It will be shown below that all the above-mentioned
unexplained experiments can be consistently explained
without invoking concepts, e.g., action-at-a-distance, that
were abandoned long ago. In our approach the longitudi-
nal ponderomotive forces observed in current-carrying
conductors (CCC's) in unexplained electromagnetic ex-
periments have an electrical origin, contrary to Ampere's
formulation, in which they are of magnetic origin. They
represent the longitudinal part of electric forces caused
either by the second-order "relativistic" electric fields
from stationary CCC's, predicted theoretically [5],
and/or by the well-known zero-order electric fields aris-
ing from surface charges that exist in conductors of finite
conductivity carrying steady currents (for surface charges
in circuits, see, e.g. , Ref. [6], and references therein).
Electric forces from "relativistic" electric fields alone
give a satisfactory explanation for many pulse current

events, which are dominated by longitudinal forces as
are, for instance, the explosion of wires and particularly
the previously mentioned explosion of straight wires
shown in Fig. 12a of Ref. [2]. In the following we shall be
mainly concerned with the explanation of that experi-
ment both qualitatively and quantitatively. Both the rel-
ativistic and the zero-order electric fields play a part in
almost all the other unexplained experiments, e.g. , in ex-
periments with railguns in which longitudinal recoil
forces produce buckling and distortion of rails.

II. FORCES BETWEEN CURRENT ELEMENTS

Let us start with a short review of the Ampere expres-
sion for the magnetic force exerted by the current ele-
ment i&dl& upon another current element i2dl2. This
force, acting on i2dl2 is

dF2, g
= ( pot it 2 ~4'�)(ri2~r i2 )

X [2(dl, dl2) —(3/r, z)(dl, ri2)(112r,2)] . (1)

It contains both a part that is perpendicular to the
current element i2dI2 and a longitudinal part that is
directed along the current element. It is argued by pro-
ponents of the Ampere force law that the longitudinal
part of Eq. (1) is responsible for the longitudinal internal
stresses observed in CCC's in many of the unexplained
experiments. They point that the relativistic field-
theoretical formulation of force on charges, i.e., the
Lorentz force, is correct only for charges traveling in vac-
uum, while for the currents in metallic conductors, and
perhaps in dense plasmas, one has to use the Ampere-
Neumann formulation of electrodynamics.

However, there is a difhculty with today's acceptance
of Ampere's force law, since that law is, as we have al-
ready said, an empirical action-at-a-distance 1aw. It
obeys Newton's third law and accordingly cannot be
based on modern relativistic field theory. Obviously,
from the theoretical point of view, one cannot be satisfi=d
with such an approach to the theory of electromagne-
tism, in which two basically different concepts, the
action-at-a-distance and the field-theoretical formulation
of forces, exist at the same time.

Let us now see how the forces acting between current
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elements in CCC's are described within standard elec-
tromagnetic theory. First, we consider the case in which
CCC's are of infinite conductivity. The current element
i, dl& creates a magnetic field dB& at the place of the
current element i2dlz. This field acts only on the moving
electrons in d12 by the Lorentz transverse force
dF2=l, zv2XdBidlz (A,z is the negative charge per unit
length in dl2, v2 is the average drift velocity of the elec-
trons in dl2 ), producing the charge separation inside the
second element. Then, dF2 is transmitted to the material
of the conductor through the effect of the Hall field (EH )

on the stationary lattice of positive ions, giving the pon-
deromotive force dF2as described by the Biot-Savart
force law,

dF2, Bs= (poi ii 2/4m. )(l/r, 2)dl2 X(dli Xri 2) . (2)

This simple treatment is correct only for free electrons in
solid CCC's. Deviations from free-electron behavior due
to the electron-lattice interaction can be easily treated, as
described in Ref. [7]. This force is always normal to the
current density vector at the point of the current element
i2dl2

However, in addition to the magnetic field, an electric
field is created by the charges in dl& ~ It can be shown
(see, for example, Ref. [8]) that the moving electrons in a
CCC, in a steady state, produce an external electric field
that just cancels that from the stationary ions. This hap-
pens, in fact, since in SET the mean distances between
moving electrons in a CCC are the same as the mean dis-
tances between ions at rest.

Thus, using SET, in a CCC of infinite conductivity,
only the Biot-Savart magnetic force between current ele-
ments i

&
dl

&
and i2dl2 remains, d Fz «, =d F2 as Usually,

only this kind of conductor is considered theoretically.
In stationary homogeneous CCC's of finite conductivi-

ty, there are surface charges that are sources of an ex-
tremely weak axial electric field inside the conductor, a
field which drives a conduction current according to
Ohm's law. Simultaneously, the surface charges provide
a zero-order electric field, E,„„outsidethe wire, whose
tangential component is equal to the electric field inside
the conductor, while the normal component is deter-
mined by the magnitude of the surface charge density o,
E„=cr/eo. In contrast to the tangential component, E„
can be very high. It has to be mentioned that it is very
difficult, in most practical circuits, to determine the sur-
face charges in a quantitative way, since their distribution
depends on the detailed geometry of the circuit itself, and
even on its surroundings. Thus, in SET, for stationary
CCC's of finite conductivity, the force exerted by current
element i, dl, upon another current element izdl2 is given
as a sum of the Biot-Savart force, Eq. (2), and an electric
fo~~e dF, ~, caused by E,„„dp «gg] 2 as+dF2 ~.

Since it is difficult to calculate, or to measure, the sur-
face charge distributions and the corresponding external
fields, they are simply ignored in many experiments (for
example, in all experiments with recoil forces in railguns),
or even misunderstood. Thus, in the experiment de-
scribed in Ref. [9], it is argued that the highest value of
the electric field outside CCC's induced by surface

charges is the value of the axial electric field inside the
conductor, which is obviously wrong. Neither d F2 as nor
dF2+ can explain the tensile fracture of long straight
wires that carry high currents shown in Fig. 12a of Ref.
[2].

However, there is another source of electric field out-
side a stationary CCC of infinite conductivity, which has
been discovered [5] quite recently. The starting points in
work described in Ref. [5] were (i) the requirement of rel-
ativistic invariance of macroscopic charge in all cases,
i.e. , for a CCC too; and (ii) the requirement that a CCC
has to be globally and locally (section by section) charge
neutral in every inertial frame of reference (IFR), as is the
corresponding conductor without current. None of these
requirements is satisfied in SET. In order to satisfy the
mentioned physical requirements, which are based on the
principle of relativity, the mean distances 6, between
moving electrons in a stationary CCC have to be Lorentz
contracted with respect to the mean distances 5 between
ions at rest; 6, =b, /y. As a consequence, on an element
of length dl of the "wire, "or more precisely, of the lattice
of the ions, there is a negative charge 5Q =(1—y)A.dl,
Eq. (4) [5], which creates a real second-order ( CC v /c )

electric field, E,„,=[(1—y)A, /2vreor]r [Eq. (5) of Ref.
[5]], outside an infinite stationary wire with current; A. is
the positive charge per unit length, y =(1—P )

P=U/c, v is the average drift velocity of the electrons, r
is the unit vector in the r direction.

It can be easily shown that this field agrees in a qualita-
tive way (an I dependence) and also quantitatively with
the electric field observed in the unexplained electromag-
netic experiment [1]. We remark that the experiment [1]
is performed with a superconductor, in which case there
is no zero-order electric field from surface charges. The
quantitative comparison with experiment [1] was per-
formed by generalizing the theory developed for an
infinite stationary CCC [5] to a closed CCC. It is given
elsewhere, but this generalization will be also briefly de-
scribed here.

When an infinite wire with a current in different iner-
tial frames of reference is considered (as in Ref. [5]) the
Lorentz contraction is relative. However, when a sta-
tionary ideal or superconducting loop is considered, the
electrons are accelerated and therefore the Lorentz con-
traction of the mean spacing between moving electrons
becomes absolute. This causes the moving-electron sub-
system to shrink to a smaller length in the laboratory
frame. The total negative and positive charge is of equal
magnitude and the loop as a whole is charge neutral. It
can be easily shown that again no radiation is emitted by
a closed CCC. The Lienard-Wiechert fields of X moving
electrons spaced by the distance b, /y will be again a stat-
ic, time-independent field. However, the electric field of
X stationary positive ions situated on a ring with length
L+ =L =2Rir (and the total charge bg+ =AL =¹),
will no longer cancel the electric field caused by X mov-
ing electrons situated on a smaller, contracted, ring with
the length L =L /y [and the total charge
b,g =( —yk)(L/y) = —¹= —b, g+ ]. The electric
field outside the closed CCC can be calculated as the vec-
tor sum of the fields produced by positive and negative
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charges situated on corresponding rings; this field is
found to be in quantitative agreement with experiments
[1] (actually, the potentials have been calculated). A very
long stationary straight wire with current can be con-
sidered now as the limiting case, for R ~ (x), of a closed
CCC. The electric field outside an element of length dl of
such a long straight wire can be then calculated taking
into account the presence of a negative charge 5g [Eq. (4)
in Ref. [5] ] on the element of length dl of the "wire. "

In this case, the total force exerted by current element
i&dl& upon the another current element i2dlz, for conduc-
tors of finite conductivity, is given as a sum of a magnetic
and two electric forces of different origin, dFi",„s—2(pO/4m)(i /ri2)dl, dl2 . (4)

face charges. In the third case the magnetic force d F2 zs
is ineffective and in this case the same happens with
dF2 z. Thus, the only remaining force exerted by i&dli
on charges in i2dl2 is dF2 @, dF2 z=(1—yz)A2dlzE, ,„„

where E, ,„,=(1/4rreo)(1 —y, Q.,dl, r, 2/r, 2. d F2 z is
directed along the separation vector r, 2.

Let the two current elements lie in the same straight
line, point in the same direction, and carry the same
current i. The only effective force in this case is the lon-
gitudinal component of d Fz z, given for P ((1, by
dFi",„=—,'( I /4vreo)(P A, dlidl2/r i2 ) or

dF~„,=dF2Bs+dF2~+dF2~ . (3)

The first two terms represent the total force on izdl2 in
SET, while the third term represents the electric force
caused by the second-order "relativistic" electric field.
Both the usual zero-order and the "relativistic" electric
fields are time independent and the forces they induce
obey Newton's laws. The normal components (to dl2) of
the electric forces acting on free electrons in dlz cause a
charge separation. Thereby a transverse electric field E;
is created in the interior of the wire. Since in a steady
state there are no transverse currents, the sum of the elec-
tric forces, transverse to the motion of the electrons,
must be zero. This condition determines E;. We men-
tion that, due to the validity of the principle of superposi-
tion, the effects of these electric forces on free electrons
can be treated independently of the effects of the previ-
ously mentioned magnetic force and the electric force in-
duced by EH. Then, as can be easily shown, the positive
ions of the lattice also experience zero net transverse elec-
tric force. Thus, only the effects of longitudinal com-
ponents (along dl2) of the external electric fields have to
be considered. Their inAuence on free electrons is of no
concern here. However, the longitudinal components of
dFz+ and dFz+, attached to the metal lattice of the
current element izdl2, are responsible for the internal
stresses observed in "troubling" experiments. For in-
stance, they can account in a natural way for the appear-
ance and the characteristics of longitudinal recoil forces,
which cause deformations of conductors used as rails in
railgun experiments. To make a quantitative comparison
with such experiments one would need to perform a
computer-aided finite-current-element analysis, similar to
the one carried out in Ref. [3], but which takes into ac-
count all three of the forces. However, this is out of the
scope of this letter.

III. EXPLOSION OF STRAIGHT WIRES

In real-world circuits the second-order effects of rela-
tive motion found in Ref. [5] are completely masked by
the mentioned zero-order effects in almost all cases. The
important exceptions are (i) a superconductor, (ii) the
case of very high dc currents in conductors of finite con-
ductivity, and particularly, (iii) the explosion of straight
wires. In the first case E,„,is zero since there are no sur-

This force is always repulsive. In this way the remark-
able result is obtained that the long straight current-
carrying wires find themselves in tension. Comparing
this expression with Eq. (4) of Ref. [2] we see that they
differ only by a factor —,'.

All the theoretical results in Ref. [2] have been ob-
tained using Eq. (4) and the computer-aided finite-
current-element analysis. This means that if one applies
the same analysis to our Eq. (4), then the results will be
the same (up to a factor —,

' ). It also refers to the quantita-
tive comparison of theoretical results and experimental
findings performed in Ref. [2]. Thus we reach a con-
clusion that, not the longitudinal magnetic forces
(Ampere s forces), but the longitudinal electric forces, in-
duced by "relativistic" electric fields, explain the brittle
tension breaks in the solid straight wire, which has been
weakened by Joule heating.

Further, the approach of Ref. [5] explains in a natural
way the conclusion obtained in Ref. [2] that a current ele-
ment used in the computer-aided analysis must be of
finite size and that the analysis must involve not only
electrons but also lattice ions. This question has been re-
cently discussed in Refs. [10] and [11],which appeared
during the reviewing process for this paper. There
[2,10,11], it is shown that current elements cannot be al-
lowed to coincide, i.e., they must retain finite nonzero
volumes in order to avoid the possibility of self-
interaction. Therefore, the smallest distance between two
current elements in Eq. (4) from Ref. [2] has to be of the
order of the interatomic lattice spacing.

According to Ref. [5] a net negative charge 5Q for an
infinite wire appears due to Lorentz contraction of the
mean spacing between moving electrons, b,, =b, /y. For
the same reason a nonuniform charge distribution,
different from the one caused by the pinch effect, appears
for a closed loop. The electrons concentrate close to the
inside surface of the circuit. The resulting charge distri-
bution can be modeled with the previously mentioned
positively and negatively charged rings. In both cases,
(an infinite wire and a closed loop), the charges of one
sort have to be in motion relative to the charges of anoth-
er sort in a given IFR, so that the Lorentz contraction of
the mean spacing between moving charges can be
effective. It means that a current element must have
finite, physical size, at least of the order 5, and must be
comprised of ions and electrons.
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IV. CONCLUSION

It can be concluded from the theory presented that
longitudinal ponderomotive forces appearing in CCC's in
unexplained electromagnetic experiments are not of mag-
netic origin but of an electric origin. The proposed
theory is in complete agreement with the relativistic field
theory, which is not the case with the Ampere formula-
tion of the longitudinal ponderomotive forces. In the ex-
planation of a remarkable phenomenon, the fragmenta-
tion of long straight wires by pulse currents, the "relativ-
istic" electric fields arising from stationary wires with
steady currents are used. There are no such fields in the
usual formulation of electromagnetic theory, and there-
fore SET is unable to explain these electromagnetic ex-
periments.

Recently [11],Rambaut and Vigier derived in a com-
pletely different way the similar result that a steady

current around a loop generates a small electric field.
They have also discussed longitudinal forces and the
unexplained electromagnetic experiments, and pointed
out the importance of the existence of such electric fields
and longitudinal forces for tokamak devices. In their ap-
proach all the results are the consequences of the as-
sumed form for the four-vector potential of one charged
particle [Eqs. (6), (7), and (12) in Ref. [11]],which is
different from the standard one. To justify this change in
the standard form of the 4-potential they evoke a model
of an extended charged particle and a model of non-zero-
mass photons.

Obviously, our approach is conceptually much simpler
and uses standard notions of pointlike charges and zero-
mass photons. We believe that the explanation for longi-
tudinal forces given in this paper will have consequences
in many branches of physics, especially in plasma physics
and in hot fusion.
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