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Monte Carlo simulations of space-charge-limited ion transport through collisional plasma silags
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Iterative Monte Carlo simulations are employed to study ion transport across the self-consistent elec-

tric field of a plasma sheath, under the influence of elastic collisions and charge-transfer reactions with

ambient neutral species. Invoking arguments from kinetic theory, we express the retarding effect of en-

counters with neutral species as a "dynamical friction" force, proportional to the square of the mean ion

velocity, whose coefficient ~(z) is a function of position in the sheath through its dependence on the ion

distribution f(v, z). We show that x(zl is determined by basic sheath parameters, such as the

ion —to —neutral-species-mass ratio m /M, the mean free paths A,, and A,, for elastic scattering and charge

transfer, and the ion distribution fo(v)= f(v, o) at the presheath-sheath boundary. When m/M ~ I or

k, (&A,„the Monte Carlo models indicate that sc(z) is a relatively weak function, amenable to approxi-

mation by simple functional forms using parameters estimated from the simulations. By substituting

such approximations into a simple continuum description —consisting of coupled ordinary differential

equations for the electric field and mean ion velocity —substantively accurate models of the sheath struc-

ture are obtained at nominal computational expense, for regimes ranging from the nearly collisionless to

the collision-dominated extremes.

I. INTRODUCTION

Low-pressure plasmas provide a means of achieving
"anisotropic" or directional etching of thin films in
integrated-circuit (IC) fabrication processes. The mecha-
nism of this directional etching involves the continuous
bombardment of a substrate by energetic positive ions
that are accelerated while traversing the strong electric
field of the plasma sheath. A collisionless sheath results
in ions incident nearly normal to the surface, at energies
comparable to the sheath potential, with only nominal
deviations due to the relatively low ion temperature. The
resulting narrow distribution of the ion incidence angles
0 and energies c.,

F(8,E)=F05(8)5(E—
q Vs ),

where q is the ion charge and Vz is the sheath potential,
gives excellent control over the etch anisotropy.

The operating pressures of process plasmas do not al-
ways guarantee a collisionless sheath, however. Col-
lisions in the sheath induce a broadening of the distribu-
tion (I), reducing the directionality of the etch. Since
higher pressures usually result in greater throughput, it is
desirable to gain a detailed knowledge of the incident ion
distributions that result from collisional sheaths. Such
information can be useful in predicting the sectional
profiles of surface features that evolve under ion bom-
bardment (see, for example, Refs. [I]—[3]).

The incident ion distribution function is determined by
the sheath structure (i.e., the variation of the electric field
and the ion number density and average velocity in the
sheath) and by the frequency and type of scattering
events. Previous studies of ion transport across plasma
sheaths have failed to incorporate models for the varia-
tion of the sheath electric field that are consistent with

the ion motions and density distributions they induce
[2,4,5], or have relied on simple phenomenological mod-
els for the cumulative effects of ion —neutral-species
scattering events [6,7].

Our current goal is to present a detailed first-principles
account of the role of collisional retardation of ions in
inAuencing the self-consistent sheath structure, under the
assumption of idealized models for the ion —neutral-
species interactions. Scattering events are assumed to be
elastic (hard-sphere) collisions or charge-transfer reac-
tions (i.e., the stripping of electrons from "cold" neutral
species by fast ions to yield fast neutral species and slow
ions), with cross sections that are independent of ion en-

ergy [8].
In Sec. II we discuss the ion transport problem in the

context of kinetic theory. A "dynamical friction" term
that arises on taking the first moment of the Boltzmann
equation accounts for the mean rate of momentum loss
due to ion —neutral-species collisions. Since this term in-
volves a second-order moment of the ion distribution
function f (v, z) in the sheath, Monte Carlo methods are
invoked to assess its behavior and to identify regimes in
which simple approximations are appropriate (see Secs.
III and IV).

Although process plasmas are usually rf discharges, we
shall concentrate on the dc transport problem in this pa-
per. In the dynamics of rf sheaths, the ratio of the ion
transit time to the rf period plays a key role, complicating
the formulation of quantitative self-consistent sheath
models (see, however, [9]). Nevertheless, an analysis of
the dc transport problem is pertinent to rf sheaths in the
limiting regimes where this ratio is small or large. In the
former case, an ion experiences essentially a "single
phase" of the rf cycle while traversing the sheath, and we
may hope to model the transport problem "phase by
phase. " For the latter case, ions suffer many rf cycles
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(where q and m are the ion charge and mass, J is the con-
stant ion current density, and ep is the permittivity of free
space) is often quoted as a model for the electric-field
profile in low-pressure plasma sheaths (e.g. , [17]). It cor-
responds to a self-consistent solution of the collisionless
ion equation of motion, the continuity equation, and
Poisson's equation, under the assumption that the electric
field E(0) and ion velocity u (0) at the presheath-sheath
boundary are both zero [18].

A generalization of (2) to more realistic (nonzero)
values for E(0) and u (0) is described in [19]. If n, and
T, are the electron density and temperature for the plas-
ma bulk, we have typically

during transit, and it is appropriate to model their trans-
port in terms of an equivalent (i.e. , time-averaged) dc
sheath [7].

In terms of the plasma physics, we treat the sheath in
isolation and make no attempt to solve the "complete
plasma-sheath equation" (see [10]) governing the poten-
tial distribution for the entire discharge. The shortcom-
ing of this approach lies in the introduction of certain ad
hoc boundary conditions at the presheath-sheath inter-
face, which must be regarded as adjustable "parameters"
of our sheath models. Introducing these parameters al-
lows us to focus on the ion transport problem within the
sheath. Models of complete dc discharges may be found
in, for example, [11]—[13]. For sheath models that focus
on the electron transport problem, including the effects of
elastic and inelastic (excitation and ionization) collisions,
and secondary electron emission from the cathode, see
[14,15].

Before proceeding to the kinetic theory and simula-
tions, we briefly review some continuum models ap-
propriate to limiting regimes. We consider one-
dimensional (planar) sheaths of negligible electron density
[16]. Ions enter the sheath at z =0 from the presheath
and are accelerated (between collisions with neutral
species) by the sheath field, impinging on the cathode at
z =d. A small ionization fraction is assumed, so that
discrete Coulombic ion-ion encounters are ignorable and
collisional heating of the neutral gas is insignificant.
Furthermore, the thermal velocities of neutral species are
taken to be negligible compared to ion velocities in the
sheath, so that neutral species may be assumed at rest in
collisions with ions.

In the collisionless limit, the familiar Child-Langmuir
law

for the electric field [assuming again that E(0)=0 and
u(0}=0]. In the context of plasma sheaths, however,
constant ion mobility is not a credible assumption.

Constant-mobility models of charged particle transport
are generally satisfactory for systems in which the as-
sumption of a constant mean free time is appropriate.
For elastic collisions with velocity-independent cross sec-
tions, this assumption is always valid at suKciently low
field strengths, such that thermal velocities dominate the
field-induced drift velocity. For ions colliding with am-
bient neutral species of the same mass in a plasma sheath,
however, a constant mean free path model is more ap-
propriate for cross sections that are independent of ion
velocity.

Conventionally, the constant-mobility approximation
holds when the inequality

+
M m

(6)

is satisfied [21,22], where m and M are the ion and
neutral-species masses, A, is the mean free path for ion-
neutral-species collisions, k is the Boltzmann constant,
and T, is the ion "temperature" (i.e., when the kinetic en-

ergy acquired from the field over one mean free path is
small compared to ion thermal energies). Note that A. is
inversely proportional to the neutral-species gas pressure

pg at a fixed gas temperature. The criterion (6) is violated
at the high field strengths and relatively low pressures
characteristic of plasma sheaths; notwithstanding col-
lisions with neutral species, the mean ion velocity u (z) is
better described as a "stream" velocity rather than a
"drift" velocity.

In the collision-dominated regime, simple physical ar-
guments suggest an equation for the mean ion motion of
the form

the body of the plasma, i.e., is not subject to Debye
damping (e is the magnitude of the charge on the elec-
tron, and A,D is the Debye length for the plasma bulk).

At higher pressures, a "collisional" version of the
Child-Langmuir law has been cited in [17], based on the
notion that, in a collision-dominated sheath, ions pro-
gress with a "drift" velocity u (z) proportional to the lo-
cal field: u (z)=pE(z), where p is the (constant) ion
"mobility. " When this relation is substituted into
Poisson s equation by way of the continuity equation, it
gives (see [17],p. 109):

E(z}==
2J'"

1/2

PEp

u (0)=uii =QkT, /rn (3)
du du E

u —q Ku2
dt dz m

(7)

kT,
E(0)=

28 A,D
where A,t, =(eokT, /e n, )' (4)

E(0) being the magnitude of the field that "leaks" into

corresponding to the minimum incoming ion velocity (the
Bohm velocity) for the formation of a stable sheath [20],
and

the "drag" force —~u representing the retarding
inAuence of ion —neutral-species encounters. Such an
equation has been invoked in sheath models, for example,
in [6] and [7]. The justification for Eq. (7) and its range
of validity will be explored in detail below (where the na-
ture of the coefficient v will also be elucidated).

For the present, we note that if ~ is constant and the
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which we identify as the "collision-dominated stream ve-

locity. " Note that Eq. (8) implies a field depen-dent ion
mobility, p ~ E ', emphasizing the erroneous nature of
expression (5), which is based on the assumption of con-
stant mobility.

We can also solve for a self-consistent electric field us-
ing the collision-dominated drift velocity (8), under the
assumption that E (0)=0. This gives

1/3

( )
9maJ

4qep
(9)

a somewhat stronger power law than expression (5) for
the case of constant p. Further discussion of ion mobili-
ty, including empirical evidence for the nonlinear depen-
dence of mean velocities on the electric-field strength
may be found in the literature; see [21]—[25] and refer-
ences therein [26].

For sheaths of intermediate collisionality, however, the
asymptotic relation (8) may not be attained, and the as-
sumption ~=const is questionable. The relation between
u (z) and E (z) is then more involved, being defined by the
solution to the simultaneous, nonlinear, first-order equa-
tions

J du
E'pu dz

qE —mvu
mu

(10)

subject to the initial values (3) and (4). Here we use the
constancy of the ion Aux, qnu =J, to eliminate the ion
number density n from Poisson's equation dE /dz
=qn /E'p giving the first equation above; the second is the
momentum equation (7).

The coupled equations (10) may be regarded as defining
a simple continuum model that is capable of yielding
more accurate descriptions of the sheath structure at in-
termediate levels of collisionality (1 (d /A, (10, say) than
the models discussed above. The numerical integration
of Eqs. (10) as an initial-value problem is a straightfor-
ward matter, even with a nonconstant "dynamical fric-
tion" coefficient i~(z). By comparison with detailed
Monte Carlo simulations we shall verify in Sec. IV that,
in appropriate regimes, such integrations offer a good
semiquantitative description of the sheath [27].

A precise definition of a(z) will be given in Sec. II,
where we show that its variation is determined by the
evolution of the ion velocity distribution with distance z
into the sheath. The simulation data described in Sec. IV
indicate that when the ion —to —neutral-species mass ratio
is not less than unity, or when charge-transfer reactions
are dominant over elastic scattering in the ion —neutral-
species cross section, v(z) is a relatively weak function
that is amenable to simple approximations.

field E (z) is specified a priori, Eq. (7) can be integrated on
multiplying by the integrating factor exp(2') to give
u (z) [and hence u(z), since in the present context the
stream velocity is non-negative] as an integral expression;
see [6]. Moreover, it is clear that asymptotically
(z/A, ))1) the solution to (7) is approximately

u (z) =&qE(z)/m~,

Finally, we note that by setting E = —dV/dz and in-
tegrating any of the three equations (2), (5), or (9) from
z =0 to d, we obtain a corresponding expression relating
the total potential drop V& across the sheath to the ion
current density J and the sheath thickness d. Such a rela-
tion also holds, implicitly, for the somewhat more sophis-
ticated sheath model described by (10)—in general, we
cannot vary all three of the macroscopic parameters J,
V&, and d independently.

II. KINETIC THEORY

Before describing the Monte Carlo simulations (see
Sec. III), it is instructive to examine the collisional sheath
problem from the viewpoint of kinetic theory. We intro-
duce the ion distribution function f (v, z), defined such
that

f(v, z) =f (v, 8,z) or f (v„v„z) (12)

in terms of spherical or cylindrical coordinates in velocity
space, where

U= V U =V Z7 z'

Uz
O=cos

U
(

2 2)1/2 (13)

The volume elements d v of velocity space corresponding
to these coordinates are 2~ sinOd Ou du and 2~v, du, dv„
respectively.

A. Kinetic equations

In the steady state, the ion distribution function f (v, z)
in the sheath is governed by the time-independent
Boltzmann equation

rif qE Bf 5f' Bz m Bu 5t
(14)

coupled with Poisson's equation

dE qn

dz Fp
(15)

where the ion number density n at position z is obtained
by integrating (11)over velocity space:

n(z)= Jf(v, z)dv . (16)

dn =f (v, z)dv

represents the number density of ions at location z whose
velocity vectors lie within an element dv of velocity
space, centered on v. The total ion number density n (z)
at position z is obtained by integrating (11) over all veloc-
ities, while the mean value ( 4 ) of any function 4(v) of
ion velocity is obtained by multiplying (11) by 4(v), in-
tegrating, and dividing by n (z) (obviously, (4) depends
on z in general).

Let z be a unit vector in the field direction. Since the
system is axisymmetric about this direction, we may ex-
press the ion distribution function as
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X v' —V' o ( itj, y )d A d V, (17)

where (v', V') and (v, V) denote the velocities of an
ion —neutral-species pair before and after a collision, and
o (g, y) is the corresponding differential cross section for
scattering of the ion velocity, relative to that of the neu-
tral species, by polar and azimuthal angles P and qr, into
the solid-angle element d Q=singdfdy (in general, the
differential cross section will also depend on the relative
collision speed ~v' —V'~). The total collision cross section
o, is obtained by integrating cr(1', p) over all angles:

o., = f cr(Q, qr)d 0 . (18)

In (17), the precollision velocities (v', V') and postcol-
lision velocities (v, V) are related by a "scattering map"

(v', V') =S(v, V) (19)

which depends on the collision impact parameter b, and
possibly also on relative orientation angles, being deter-
mined by the details of the ion —neutral-species interac-
tion. The differential cross section o(P, y) is derived
from (19).

We consider here only two idealized forms for the
scattering map (19): elastic (hard-sphere) scattering, and
"ion-stopping" charge-transfer reactions. Thus the
difFerential cross section o.(g, y) is regarded as the sum of
components cr, (g, cp) and o, (g, y) that describe these two
forms of ion —neutral-species encounter. We denote the
total cross sections for elastic scattering and charge
transfer by o., and o.„so that o., =o., +o, Note that
the magnitude of the ion velocity relative to the neutral
species is conserved (i.e., ~v —V~ = ~v' —V'~) for both
these interactions.

From the scattering map (19) it is clear that the col-
lision integral (5f l5t )„i& is a function only of the ion ve-
locity v and location z within the sheath I'for brevity, we
suppress the z dependence of the distribution functions in
(17)]. This integral may be more conveniently expressed
[29] as a difference between integrals over the velocity
spaces V' and V of neutral species:

I

5t
= f f f (v')F(V')iv' —V'io. (g, (p)d 0 dV'

&(v)

The "collision integral" on the right-hand side of (14)
represents the net rate of change of the ion distribution
function, at a given location z in the sheath and point v
of velocity space, due to two-body collisions with neu-
trals. For collisions between ions of mass m and neutral
species of mass M, with distribution functions f (v, z) and
F (V,z), this integral is usually expressed [28] in the form

r

6 v'FV' — vF V6t

3
c)(v')

i

v' —V'i

a(v) [v —V [

(21)

We shall consider here only the case of spatially uni-
form cold neutral species, whose distribution function is
taken to be

F(V', z) =ns5(V'), (22)

coll6t

(23)
where the ratio v'/v, as a function of the scattering an-
gles (P, y), is embodied in the symbolic expression (19).
The system of equations (14)—(16), together with expres-
sion (23) for (5f /5t)„ii, define an initial-value problem
for the ion distribution function, requiring a form

fo(v)= f(v, 0) (24)

for f (v, z) at z =0 for its integration [30]. It should be
noted, therefore, that the system of equations (14)—(16)
does not, without further information, determine the
sheath thickness d.

In addition to the sheath thickness, the important mac-
roscopic parameters are the ion current density J and
sheath potential V&, given by

J =qn (0)u (0), Vs= f E(g)dg, (25)

where n (0)u (0)=I u,f0(v )dv and the initial stream ve-
locity u(0) is assumed to have the Bohm value (3). As
noted in Sec. I, the three quantities J, Vz, and d are inter-
related; only two of them may be freely chosen. If d is
specified a priori, the integration of Eqs. (14)—(16) is sim-
ply truncated at z =d. Otherwise, d must be regarded as
being specified implicitly through the expression (25) for
V~.

B. Scaling laws

ng being the (constant) number density of neutral species.
Now (22) has been written in terms of the neutral velocity
V' before a collision; after a collision, of course, the neu-
tral velocity V is not zero in general, and formally it is in-
consistent also to write F(V,z)=ng5(V) in the second
term of (20). Our justification for doing so is based on the
assumption of an extremely small ionization fraction, and
a correspondingly small "hot" perturbation to (22) that
represents the true equilibrium distribution of neutral
species. ITo be precise, f(v, z) and F(V,z) are actually
governed by two individual Boltzmann equations, cou-
pled through their collision integrals —assuming the
form (22) for the neutral-species distribution allows us to
dispense with one of these equations. ]

Substituting (22) into (20) and integrating we obtain
4

I

=n cr, u f —f(v') ' d'0 f(v)—

—f f f (v)F(V)~v V~o(g, y)d QdV—, (20)

where we use the fact that d vd V =d v'd V', and the Jaco-
bian in the first integral has the form [29]

The system of integro-differential equations (14)—(16),
together with expression (23), is difficult to solve in closed
form, even under simplifying assumptions. In Secs. III
and IV we describe indirect "solutions" by means of the
Monte Carlo method. The goal of these simulations is to
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identify the principal physical effects governing the
sheath structure, and to explore the range of validity of
simpler models such as (10).

For the present, however, we can gain useful insight by
casting Eqs. (14)—(16) and (23) in dimensionless form.
We introduce the following transformations:

z
Z v=, f=, E=, 8'=v„' f, ' E„'

n

no
(26)

where A=(, n cr, )
' denotes the mean free path, no =n (0)

is the ion density at the presheath-sheath boundary, and
the remaining scale values in (26) are given by

np kqnpfg= 3 ~ Eg= (27)

co;=(q no/mom)'~ being the ion plasma frequency. In
terms of these dimensionless variables, Eqs. (14) and (15)
may be written as

df gdf
Bz Bv, coll5t

(28)

the dimensionless form (denoted by the asterisk) of the
collision integral on the right-hand side being equal to
(1,/v„ f, )(5f /5t )„», and

dE =n . (29)

Similarly, the dimensionless form of the normalization
condition (16) is

n(z ) = f f(v, z)dv . (30)

The initial distribution (24) is also scaled accordingly:
fo=fo/f ..

It is remarkable that the system of equations (28) —(30)
exhibits no free parameters. Its solutions f, E, and 8' are
therefore functions only of the dimensionless distance
z =z/A, into the sheath and the initial distribution fo.
The "collisionality" of the system is determined solely by
the value z: the inequalities z &&1 and z)&1 identify
"collisionless" and "collision-dominated" regimes.

The parameter dependence of physically interesting
quantities comes directly from the transformations (26).
For example, the ion stream velocity u = ( u, )
=n ' f u, fdv, and the electric field E and correspond-
ing potential V = —f o E(g)dg, may be expressed as

dependence of sheath quantities on presheath parameters.
The results of the numerical experiments (see Sec. IV) in-
dicate that, for ion —to —neutral-species mass ratios not
less than unity, (cos8) and p(8) approach a finite asymp-
totic value and a well-defined asymptotic function of 0,
respectively, as z ~ oo.

It is interesting to observe how the quantities (31) and
(32) scale with the gas pressure pg. For a fixed gas tem-
perature, the neutral density ng is proportional to pg and
the ion density np at the presheath-sheath boundary is
also proportional to p if we assume a constant ionization
fraction. Thus A, ~ 1/p and co; ~Qpg, and for a fixed
degree of collisionality (i.e., a given value of z =z/A, ) we
have

(v, ) ~+1/p, Vs ~ 1
g& S (33)

while E, (cos8), and p(8) do not depend on p . Con-
versely, if we vary the discharge parameters in such a
manner that p Vs=const, the degree of collisionality in
the sheath, and hence the angular and energy distribu-
tions of ions incident on the cathode, will remain un-
changed (assuming a fixed ionization fraction, electron
temperature, initial ion distribution, etc.). These observa-
tions arise purely from a dimensional analysis of the col-
lisional sheath problem, and thus apply equally to the
simple continuum models of Sec. I and the detailed kinet-
ic description defined by Eqs. (14)—(17); they are indepen-
dent of the relation between J, Vs, and d for the given
sheath model.

C. Dynamical fnction

As is well known, taking the integral of (14) over veloc-
ity space yields

„(n&u, ))=0,d
dZ

(34)

expressing the constancy of ion Aux. The left-hand side
of (34) corresponds to the integral of the first term in (14).
The fact that f~0 as u, ~ co ensures that the integral of
the second term in (14) will vanish, while the integral of
the collision term (5f /5t )„»—which represents the time
derivative of the ion density at a given position z —is also
zero (assuming a constant, steady-state ionization frac-
tion).

We now take the first moment of the Boltzmann equa-
tion, multiplying both sides by v, and integrating over v.
The first term on the left can then be rewritten as

Aqnp A, qnp
(v ) =leo;gi(z), E= g~(z), V= g3(z),

Eo E'p

(31)
f u, dv= (n(u, )),2a =d

Bz dz
(35)

(cos8) =g4(z), p(8)=g5(8, z) . (32)

while the average direction cosine for the ion motion,
(cos8)=n 'f (u, /v)fdv, and the angular distribution,

p (8)=2m sin8n ' ffu du, have the form

while the second term gives

qE f Bf qE
m Bv, m

(36)

The dimensionless functions g; for i =1, . . . , 5 also de-
pend on the initial distribution function fo, refiecting the

on integrating by parts. Thus we have the momentum
equation
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d q qE(n(v, ))=n —R
GZ t?l

where the quantity

R(z)= — f u, dv
1 6

n (z) ' 5r

(37)

(38)

Employing spherical polar coordinates in velocity
space and writing f (v', z) =f (U', 8', z) and f (v, z)
=f (U, 8,z), we change the dummy integration variable v
of (41) to v' and substitute U, =U cos8 into (41) and (42) to
obtain

—mR = f fm(U cos8 —U'cos8')
n (z)

represents the dynamical friction force per unit ion mass
at position z [which was written as x.u in Eq. (7), where
u =&U, &].

Now the z velocity of an ion may be expressed in the
form U, =u +m„where m, is the random component, rel-
ative to the stream velocity u, satisfying ( w, ) =0. Thus
we have (U, ) =u + ( w, ), and making use of the fact
that nu =const, the left-hand side of (37) becomes

If we interpret the second term on the right as the deriva-
tive of a "pressure'* P =nm ( w, ) in the z direction, we
see that the momentum equation corresponding to the
first moment of (14) has the form

du qE 1 dI'
8Z m Vl fl GZ

(40)

&», )R+= ' ' f U, uf(v)dv=
n(z)

(41)

Comparing (40) to the momentum equation (7) of our
simple continuum model, we see that in the latter the
pressure gradient term has been dropped, while the fric-
tion force R has been expressed as au . %'e defer
justification for neglecting the pressure gradient to the
discussion of the Monte Carlo simulations, where it is
verified empirically (in the case of ion —to —neutral-species
mass ratios not less than unity, at least) that this term is
of small magnitude compared to the other terms in (40).
As is well known, it is impossible to generate a finite,
closed set of continuum equations by taking successive
moments of the Boltzmann equation —an ad hoe as-
sumption must be invoked at some stage to ensure clo-
sure.

Consider now the dynamica1 friction force per unit
mass, {38). By use of (23), this may be written as the
di8'erence R + —R of the terms

Xv'f(v', 8', z)cr(g, y)d Qdv' . (43)

Oe
0(g, , q&)d2Q, = sing, dP, dy,c.m. (44)

where i)'j, denotes the polar scattering angle measured
in the center-of-mass frame, y denotes the azimuthal
scattering angle about the v' direction, and o., =ma is
the total elastic cross section (a being the sum of the radii
of the ion and neutral species).

By straightforward trigonometric arguments, the polar
angles 8' and 0 of the ion velocity with respect to the z
axis before and after a collision are related by

It should be noted in Eq. (43) that the expression
m (U cos8 —U' cos8') represents the z-momentum loss in a
single collision, while nzu'f(U', 8',z)a(f, q)d Q/n(z) is
the number of collisions per unit time that induce scatter-
ing into the solid-angle element d Q. These identi-
fications substantiate the interpretation of R given above.

Note that the term R+ in (41) depends only on the
total cross section. Thus elastic scattering and charge
transfer contribute to this term in proportion to their
respective total cross sections, o., and o, However, the
term R cannot be expressed merely in terms of total
cross sections; a detailed specification of the relation be-
tween the velocities U, and U', in terms of the scattering
angles g and y, is required to evaluate the integral (42).

Now for the idealized model of charge transfer in
which ion —neutral-species encounters always yield ions
essentially at rest, the charge-transfer contribution R, to
(42) is obviously zero, since all ions satisfy U, =0 after an
encounter, regardless of their incident speed O'. The elas-
tic contribution R, is less trivial, and we need to specify
a definite form for cr, (P, y) in order to compute it. For
simplicity, we consider only the special case of hard-
sphere collisions, for which we have [31]:

I

R = f f u, u'f{v')cr(g, y)d Q dv
n z Bv v=p

f f U, u'f(v')cr(g, q&)d Qdv',
n (z)

(42)

where in the second expression we have used the fact that
(U'/U) =B(v')/B(v)~v o to convert the integral for R
from the space v to the space v'.

Physically, the dynamical friction force —mR exerted
on an ion represents the mean loss of the z component of
its momentum per unit time, averaged over all possible
collision configurations. This may be seen in the follow-
ing manner.

cos8 =cos8' cosg+ sin8' sing cosy, (45)

M sing,
tanit =

m +M cosi(j,
(46)

It is useful to note some important specializations of Eqs.
(46). In the case of equal ion and neutral-species masses
(i.e., m =M) we obtain

where P is the polar scattering angle measured in the lab-
oratory frame. Denoting the ion and neutral-species
masses by m and M, we have the following relations [31]:

(m +M +2mM cosg, )'

U m+I
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u —u cos&lc.m. ~ 0 2 Pc m. (47)

whereas in both the limits m «M and m ))M we have
v =v', and either g=f, (m/M~O) or /=0
(m/M~ ~ ).

To simplify the expression for R, , we make use of (45)
and (46) and write the factor v, = u cos8 in (42) as

Uz

(m +M +2mM cosg, )'~

m+M
X u '( cos8' cosP+ sin8' sing cosy ) . (48)

This is the only factor in the integrand of (42) that de-
pends on the azimuthal scattering angle, and on averag-
ing over y it is clear that the contribution of the term
containing coscp will vanish. Thus, rewriting the second
expression in (46) as

m +M cosg,
cosg=

(m +M +2mM cosg, )'~

and noting that U'cosO'=U, ', we have

m +M cosset,
U de =2' Uz

0 m+M

(49)

(50)

R, n cr, &uu, ) .m+M
If we define mean free paths A,, =(ng o, )

' and
=(neo, )

' for elastic scattering and charge transfer, re-
spectively, and note that

(53)

we may then combine (52) with the result R, =0 and (41)
to write the total dynamical friction force R =R+ —R
in the compact form

R (z)= M 1 1+ &vu, ) . (54)

R is seen to be proportional to the moment & vv, ) of
the distribution function f (v, z), the coefficient of propor-
tionality depending only on the ion —to —neutral-species
mass ratio and the mean free paths for elastic scattering
and charge transfer. Note that the factor M/(m +M) in
the elastic-scattering component of (54) decreases mono-
tonically with the mass ratio m/M from 1 when m «M
to 0 when m ))M, being equal to —,

' in the case m =M.
The charge-transfer component, on the other hand, is in-
dependent of the mass ratio, and for a given distribution
f(v, z) it always exerts a stronger retarding force per unit

Making use of expressions (44) and (50) in Eq. (42), we
now find that the integral for R, may be written as

m +M cosf,
Re =ngoe c.m. c.m.

0 m+M

X I u'u, 'f(v')dv' . (51)
1

n (z)
On evaluating the first integral above and writing n & uv, )
for the second, we obtain

cross section than elastic scattering.
Identifying (54) with the dynamical friction term vu

used in our continuum model (10), where u =
& v, ), we

now see that the coefficient i~(z) may be defined precisely
in terms of the ratio of moments of the ion distribution
function f (v, z):

M 1 1 &vv )

m+MA, , A,, &v )~
(55)

III. THE MONTE CARLO SCHEME

The Monte Carlo method, based on integrating the in-
dependent trajectories of many ions subject to stochastic
initial conditions and collision events during the sheath
traversal, offers a practical means of "solving" Eqs.
(14)—(16), together with (23) and (24), for the ion distribu-
tion f (v, z) and the self-consistent field E (z).

The advantages of the Monte Carlo method lie in its
directness (i.e., the absence of essential assumptions or
approximations in describing the physics), and in the fact
that the level of detail at which f (v, z) is resolved —as
well as macroscopic variables dependent on it—is limited
only by the number of particles followed. The main
disadvantage is the computational expense, especially
since the present context requires iteration on Monte
Carlo runs to achieve self-consistency. Also, computa-

We shall verify directly from the Monte Carlo simula-
tions (see Secs. III and IV) that when the mass ratio
m /M is comparable to or greater than unity, the dimen-
sionless ratio &vv, )/&v, ) is only weakly dependent on
the distance z into the sheath.

[Note that if the distribution function f (v, z) is such
that &vv, ) =&u)&v, ) and &u, ) =&v) &cos8) at each z,
then the factor & uu, ) /& u, ) in (55) is approximately
I/&cos8). Physically it is reasonable to expect &cos8),
and any numerical factors incurred by these approxima-
tions, to approach asymptotic values over several mean
free paths. This expectation is borne out by the simula-
tion data. ]

It is interesting to observe how certain well-known
forms of space-charge-limited transport arise in limiting
cases of the momentum equation (40). In the vacuum
limit i~.—+0 (since A,„A,,~~), and we set R =0. Like-
wise dP/dz =0, since there are no collisions to induce an
appreciable z dispersion about the ion stream velocity.
Thus, solving udu /dz =qE /m together with dE /dz
=qn/e0 and qnu =J gives the Child-Langmuir relation
J oc d V&, where d is the sheath thickness and
Vs= J OEdz is the sheath voltage. In the opposite ex-
treme, we neglect the inertia and pressure gradient terms
in (40) and couple qE/m =lou (with @=const) to the
Poisson and continuity equations, thereby obtaining the
Forman relation [32] J ~ d ~

Vs for high-pressure
space-charge-limited current.

It should be noted that the dynamical friction term,
based on the assumption of a constant collision frequen-
cy, has often been included in continuum models of ion
and electron transport in discharges (see, for example,
[33,34]).
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tional efficiency favors simplified models of the ion-
neutral-species interaction.

duz qE dz ds=V, =V
dt m

' dt ' ' dt
(61)

A. Integration of ion trajectories

If the neutral species have a constant number density
n in the sheath, and the total ion —neutral-species cross
section o., is independent of ion velocity, the distribution
of free paths l between collisions will follow the exponen-
tial law

P ( l ) =—exp( —l /A, ),1
(56)

where A, =(n a, )
' is the mean free path for ion-

neutral-species collisions. Here o., is assumed to consist
of components o., and o., for elastic-scattering and
charge-transfer reactions; no other forms of ion —neutral-
species interaction are considered at present. If r is a ran-
dom variable uniformly distributed on the unit interval,

1 ifo&r&1
0 otherwise, (57)

the distribution (56) may be generated [35] by applying
the transformation

l= —
A, lnr . (5 &)

The ion velocity component v, orthogonal to the field
direction remains constant between collisions, while the
(signed) component u, in the field direction increases
monotonically with time. The total velocity u is given by

u
—(u2+ u2)i/2 (59)

Since the (curvilinear) free path l of an ion between col-
lisions is the principal random parameter of the Monte
Carlo simulation, it seems natural at first sight to formu-
late the equations of motion with respect to the intracol-
lisional arc length s of the ion trajectory as the indepen-
dent variable:

dvz qE dz vz dt 1

ds mv ds u ds u
(60)

It will be noted, however, that these equations become
singular as u ~0. This problem may arise under the fol-

lowing circumstances: (i) in nearly head-on elastic col-
lisions between ions and essentially stationary neutral
species of equal mass, the ions lose most of their momen-
tum; (ii) in charge-transfer encounters, ions strip elec-
tr'ons off thermal neutral species, transmuting them into
slow ions; and (iii) if, due to multiple scatterings, ions
arise in states with v, (0 and v, =0, the acceleration by
the sheath field causes points where v =0 to occur along
their trajectories.

Since truly stationary ions arise with vanishingly small
probability, an adaptive step-selection procedure can, in
principle, accommodate the numerical difficulties associ-
ated with the integration of Eqs. (60) for slow ions. In
practice, however, such an approach was found in gen-
eral to be less efficient and less robust than casting the
equations of motion in the more familiar form

with time t as the independent variable.
A fourth-order Runge-Kutta scheme with constant

steps was used to integrate the equations (61) between
collisions. As a nominal time step, we choose

1/2
q~s

where v = min 1,— (62)
d m

(d lu)ht=

d and Vz being the sheath thickness and potential (u is a
"typical" ion velocity in the sheath). In Eq. (62),
represents the approximate total number of steps re-
quired for an ion to traverse the sheath (the actual num-
ber of steps for each ion is, of course, influenced by the
number and nature of the collisions it suffers). Typically,
we have employed the rather conservative value N = 100.

Before executing each step, an estimate of the corre-
sponding increment in path length is made according to
the second-order expansion

bs=ubt+ — (bt)1v qE
2 v m

(63)

If s is the cumulative path length since the last collision,
and s +As exceeds the current free path l, the time step is
reduced accordingly [36] to the value

r

u mvbt-
v, qE

uz (l —s)qE
v mu

(64)

obtained by inverting (63), which brings the total path
length (approximately) to the desired value l. The ion
trajectory is complete after this step, and a new collision
must be invoked.

Sma11 fractional discrepancies between the nominal
and computed free paths of ions arise in this scheme, due
to the approximate formula (64) for choosing the final
time step. These errors can be eliminated entirely by re-
verting to Eqs. (60)—assuming the ion is not nearly at
rest —on the last step, but this measure was unnecessary
in practice, since the errors were determined empirically
to be quite insignificant and nonsystematic.

B. Treatment of collisions

A collision is invoked at the end of each computed ion
free path l. The collision is randomly determined to be
an elastic-scattering or a charge-transfer event according
to the probabilities I', =o., lo. , and P, =o., /o, .

In a charge-transfer encounter between an ion and a
neutral species, the net effect is to exchange the "identi-
ties" of these particles: a fast ion strips an electron from
a thermal neutral, producing a fast neutral species and a
thermal ion. Assuming a small ionization fraction, the
fast neutral species represent only a minor perturbation
of the ambient gas and we subsequently ignore them. Be-
fore commencing on its next free path, the "new" ion is
assigned a random velocity vector selected from a
Maxwellian distribution characterized by the neutral gas
temperature.

Elastic-scattering events are modeled on the collisions
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of hard spheres. If b is the collision impact parameter,
we introduce the dimensionless quantity P = b /a (where a
represents the sum of the ion and neutral-species radii:
o, =m.a ). The distribution of impact parameters is then
described by

2P if 0&P 1
P 0 otherwise . (65)

The neutral species is assumed stationary on impact,
while the ion velocities before and after the collision are
denoted by v' and v. Relative to its incoming velocity,
the ion is scattered by a polar angle

2/3 +(JR—1)
[4',P +(IM, —1) ]' (67)

where A, =m/M is the ion-to-neutral mass ratio. When
JR & 1, the scattering angle (67) decreases monotonically
from 1/ =~ to vr to 1/ =0 as p increases from 0 to 1; back-
scattering (1/1) —,'~) occurs for impact parameters satisfy-
ing

(68)

For W) 1 there is no backscatter, the angle (67) increas-
ing from /=0 at p=O, attaining the extremum value

' 1/2

The distribution (65) may be generated from the uniform
random distribution (57) by invoking the transformation

(66)

on making use of expression (45) for the direction cosine
after a collision.

C. Sampling techniques

In the Monte Carlo simulations, the stream velocity
u (z) = ( v, ) at position z is obtained by sampling the ve-
locities v, of individual ions in the field direction at equal
time intervals and averaging over all ions. Other mo-
ments of the ion distribution function of interest are ob-
tained in a similar manner.

For this purpose, the sheath domain z E [O,d] is discre-
tized into N, contiguous elements of width b,z=d/N, .
Since variations in the sheath profiles over length scales
comparable to the mean free path A. can be expected, X,
must be chosen such that b,z/A, is small compared to uni-
ty. At each sampling time, an ion contributes to the
average velocity u; corresponding to the element i in
which it is located (the value u, is to be identified with the
midpoint z, =(i —

—,
' )b,z of the ith element).

In addition to the stream velocity, other averages are
computed, such as the mean direction cosine (cos9) of
the ion motions, the quantity (vv, ) which appears in the
dynamical friction coefficient (55), the mean-square trans-
verse velocity (v, ), and the variance (iv, ) =((v, —u) )
of v„which may be determined once the profile for u (z)
converges, and is of interest in assessing the relative im-
portance of the pressure gradient term in (40).

The discrete velocity values [u;] give rise to discrete
number densities

(69) J
n, = for i =1, . . . , 1V,

qu,
(72)

v [4JNp+(At —1) ]',
v' %+1 (70)

Note that, for all A, , the ratio v/v' increases monotoni-
cally from ~A, —l~/(JR+1) at p=O to unity at p=1.
Thus v =0 when P=O and JN, =1 (i.e., head-on collisions
between ions and stationary neutral species of equal mass
leave the ions at rest).

After each scattering event, it is necessary to compute
the components v, and v, of the ion velocity v to serve as
initial values for the next free path. In terms of the polar
angle 0' of the incoming ion and the scattering angles
(P, y) we have

and then decreasing to /=0 at P= 1. Finally, when
Jll, =l, itt=cos 'p and the scattering angle decreases
monotonically from p= ,'vr at /3=0—to/=0 at p= l. Al-
though there is no backscatter in this case, a sequence of
collisions may nevertheless cause ions to acquire negative
velocities in the field direction.

The azimuthal scattering angle y about the incoming
ion velocity v is assumed to be random, with a uniform
distribution in the range 0 cp & 2m. The ion speeds v

'

and v before and after scattering are related by

through the continuity equation, where J is the (constant)
ion current density. The sheath electric field is then ob-
tained by integrating dE/dz =qn (z)/e0..

E(z)=ED+—J n(g)dg .
6'0 0

(73)

D. Iteration to a self-consistent solution

Here, ED=E(0) denotes the magnitude of the electric
field at the presheath-sheath boundary, given by (4).
Since only the discrete values (72) are available for n (z),
we compute discrete values E, of (73) at the points . z; by
numerical quadrature.

A number of options are available for interpolating be-
tween the discrete values E;, u, , and n; which character-
ize the sheath structure in the simulations. When the
total number of ions is large (10 —10 ) and sufficient ele-
ments (N, =50, say) are used in discretizing the sheath
domain, it has been found that higher-order schemes
(e.g. , cubic splines) offer little advantage, in terms of
speed of convergence or smoothness of the final profiles,
over the simplest (i.e., piecewise-linear) approach.

v, = v (cosO' cosi/+ sin8'sini/t cosy),

( v 2 2)1/2

(71)
A self-consistent sheath model is realized by iterating

the Monte Carlo simulations. This iteration begins by as-
suming an initial profile E0(z) for the electric field. Ion
trajectories, punctuated by collision events, are then com-
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f ~E;(z) E, ,
—(z) dz

J iE, , (z) idz
(74)

and a similar error measure can be defined for the veloci-
ty profile. Typically, no more than three or four itera-
tions were necessary to achieve convergence of the
electric-field profile to a fraction of 1% using approxi-
mately 10 ions. The converged result was also found to
be entirely independent of the adopted initial field profile
Eo(z), provided the corresponding potential drop Vs
across the sheath was reasonably commensurate with the
equilibrium value. [We have not been motivated to at-
tempt a convergence analysis for our method, being con-
tent with the empirical observation that manipulating
Eo(z) would influence the speed but not the fact of con-
vergence when the initial and final values of V& do not
diff'er by a large factor. ]

The initial velocity components (v„v, ) of ions entering
the sheath are selected from the normalized distribution

3P (v„v, ) =2~v,
2&& uB

3/2

3 (v~ Bs ) +v(
X exp

u B
(75)

which corresponds to an isotropic Maxwellian distribu-
tion superposed on the initial stream velocity u (0)=u~
in the z direction [note in (75) that —ao & v, & + co and
0& v, & + ~]. The root-mean-square random velocity as-
sociated with the Maxwellian component of (75) is a frac-
tion n of the directed Bohm velocity uB, corresponding
to an ion temperature at z =0 given by T; = ma uB /3k.

The normal distributions in (75) cannot be generated
by a simple mapping of just a single uniformly distributed
random variable —the required transformation involves
the inverse error function erf '(r). However, several
e%cient alternatives for sampling from normal distribu-
tions are available (see [37], pp. 117—127); we have relied
on a simple "rejection" method.

Expression (75) corresponds to our choice for the ini-
tial form (24) of the ion distribution function. The as-
sumption of an isotropic Maxwellian component is arbi-
trary, intended to account for the inhuence of collisions
in the acceleration of ions to the Bohm velocity prior to
entering the sheath [note that in reality we might expect

puted in this field and the resulting velocity profile uo(z)
is determined by the sampling procedure described
above. Equations (72) and (73) are then used to generate
a new profile E, (z) for the field, with which a new Monte
Carlo simulation may be performed.

This process is repeated until the sequence of field
profiles Eo(z),E, (z), E2(z), . . . converges to some
prescribed tolerance, at which point the ion motions and
density distributions —including the retarding effects of
collisions —will self-consistently generate the electric
field profile that induces them. The fractional change in
the field profile at the end of iteration i is taken to be

the dispersion of v, about us to diff'er in general from
those of the Cartesian components (v„v~ ) of v, about 0].

IV. RESULTS OF THE SIMULATIONS

We now describe representative results from the simu-
lations, and assess the simple continuum model (10)
against them. The primary dimensionless parameters
that determine the sheath structure are the ion —to-
neutral-species mass ratio m/M; the relative magnitudes
of the total cross sections for elastic scattering and charge
transfer, o, and o, , the value o.'that measures the ran-
dom component of the initial ion distribution function;
and the sheath thickness measured in mean free paths,
d /A, .

Note that the mass ratio is unimportant when charge
transfer is the dominant mode of ion —neutral-
species interaction (o, )&o., ). Also, as emphasized in
Sec. II, the sheath thickness d does not enter explicitly
into the sheath structure other than as a point of trunca-
tion in the integration of the sheath equations. Thus we
need only model the sheath as far as is required for a
well-defined asymptotic behavior to ensue, typically no
more than several mean free paths [38].

A number of cases, employing 10 ions each, were
iterated until they converged to a fractional error of
0.005 or less in the electric field. The parameters defining
these runs are enumerated in Table I. Run A3 may be re-
garded as a "reference" against which the results of other
runs are to be compared. (The nominal physical model
for this run is the time-averaged sheath of a rf discharge
in 02, with assumed neutral-species gas temperature
T =350 K, electron temperature T, = 10 K, ionization
fraction 10, sheath thickness d =2 mm, and total
ion —neutral-species cross section o., =150 A . The pres-

0

sure p =61.3 mTorr gives d/A, =5 in this case; p is
varied to adjust d/A, in other runs. ) The value of a for
each run was chosen in an ad hoc manner, attempting to
account for the importance of collisions in the presheath
region.

The first five runs (sequence A) illustrate the impor-
tance of the mass ratio m/M for the case of elastic
scattering only and a fixed degree of collisionality. In the
next three runs (sequence B), we examine the significance
of the ratio o., :o., of the cross sections for elastic scatter-
ing and charge exchange, for a fixed mass ratio
(m/M =1) and degree of collisionality (note that B3 is
identical to A3, being repeated in Table I only for nota-
tional convenience). Sequence C is intended to illustrate
the infiuence of the parameter d/A, on the angular and
energy distributions of incident ions.

Figure 1 illustrates in dimensionless form the con-
verged profiles for the electric field, the ion stream and
random velocities, and the ion number density in run A3
[with E scaled by the mean field E = Vs/d, u by the
maximum velocity u =(us+2qVs/m)'~ in the absence
of collisions, and n by the initial value no = n (0)].

A. Momentum balance

In Eq. (40) we take the dynamical friction and pressure
gradient terms to the left-hand side, and divide by the lo-
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TABLE I. Parameters for the Monte Carlo simulations. 2.0

run

A1
A2
A3
A4
A5
B1
B2
B3
Cl
C2
C3

m/M

0.25
0.50
1.00
2.00
4.00
1.00
1.00
1.00
1.00
1.00
1.00

O'e:&c

1:0
1:0
10
1:0
1:0
0:1

1:0
1:0
1:0
1:0

0.5000
0.3750
0.2500
0.1875
0.1000
0.1000
0.1750
0.2500
0.2500
0.2500
0.2500

1.5

E
lLI

1.0
LLI

0.5

0.0
0

I/ M = 1.0 ae .' ac

z l l
cal acceleration due to the electric field:

mu du mR 1 dP
qE dz qE qEn dz

(76)
0.8

Note that in the present context, the three terms in (76)
are all nominally non-negative. We can ascertain their
relative importance, as a function of distance into the
sheath, directly from the simulations.

These terms are to be interpreted as follows: the first
represents the fraction of the force on ions due to the
electric field that actually goes into accelerating them to
their mean (stream) velocity u; the second indicates how
much of this force is expended in overcoming the mean
momentum loss per unit time of ions due to collisions
with neutral species (dynamical friction); and the third
accounts for the need to overcome the backward trans-
port of momentum due to an increasing dispersion of the
ion velocities about the mean u with distance z into the
sheath (also a direct consequence of ion —neutral-species
collisions).

Figure 2 illustrates the measured behavior of these
terms for three runs from sequence A. Note that com-
puting the "inertia" and pressure gradient terms in (76)
requires a numerical differentiation of the profiles for u
and n ( w, ), a process that inherently magnifies any noise
in these profiles. Nevertheless, in all runs the sum of the
three terms in (76) was found to be within a few percent
of unity over the entire sheath extent once the profiles
had converged to a self-consistent solution.

Some common features of the behavior of the three
terms in (76) are noteworthy in the runs of sequence A.
Initially, the inertia term dominates, indicating that the
work done by the electric field goes into the directed ki-
netic energy of the ion stream velocity. As the latter in-
creases, however, collisions with neutral species dissipate
an increasing proportion of the directed motion, as in-
dicted by the rise of the second term in (76) and the decay
of the first. A quasiequilibrium state is attained, in which
the electric field acts principally to overcome dynamical
friction, and the ion stream velocity exhibits an apprecia-
ble increase only over many mean free paths. The extent
of the transient region required to establish this
"collision-dominated" regime increases monotonically
with the mass ratio m /M.

For mass ratios greater than or equal to unity, the

II velocity dispersion

0.6 — - - - - - - - - - l velocity dispersion

E

0.4
N

0.2

0.0
0

z l k

1.5

(c)

1.0

0.5

0.0
0

FIG. 1. Profiles for the converged self-consistent sheath
structure in run A3: (a) the electric field; (b) the ion stream ve-

locity and the longitudinal and transverse velocity dispersions;
and (c) the ion number density.
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inertia
dynamical friction
pressure gradient

(a)—

O
C3
cg 0—

m/M = 025

inertia
dynamical friction

pressure gradient

(b)—

"pressure gradient" term in (76) was found to be relative-

ly insignificant over the entire extent of the sheath, justi-
fying the neglect of this term in formulating the simple
continuum model (10) for collisional sheaths. When the
ions are less massive than the neutral species, however,
their longitudinal and transverse velocity dispersions be-

come comparable to the stream velocity, and the pres-
ence of an absorbing wall at z =d induces a significant
perturbation in their distribution function within the last
mean free path. As illustrated by the case m/M =0.25
in Fig. 2, this perturbation manifests itself in the momen-
tum balance equation through the development of a
strong negatiue pressure gradient and a sudden final ac-
celeration of the ions near the cathode.

If the charge-transfer cross section is comparable to or
greater than the elastic-scattering cross section, the be-
havior of the three terms in (76) resembles the high
mass-ratio runs of sequence A; Fig. 3 illustrates the
momentum balance for run B1. Note that the ions
will have a negligible transverse velocity dispersion
throughout the sheath when charge transfer dominates
and the parameter a of the initial distribution (75) is
small compared to unity.

Lawler [39] presents solutions of the Boltzmann equa-
tion for a dc sheath (or "cathode fall" ), for the case of
charge transfer only, with an assumed constant or linear-
ly increasing electric field E (z) and a plane ion source at
z =0 or a uniform production rate for ions over 0 z d
(see also [14]). From these solutions an "equilibration"
distance for the ions can be estimated, over which they
attain 90%%uo of their equilibrium drift velocity. For the
case most nearly resembling our self-consistent
simulations —a plane source and a linear field —this dis-
tance is roughly 1.7A, , in excellent agreement with the be-
havior seen in Fig. 3 if we interpret the equilibration dis-
tance as that required for the inertia term on the left-
hand side of Eq. (76) to drop below 10%%uo of the total.

O
o
65

0 =

m/M = 1.0

z/X,

B. The dynamical friction coefFicient ~(z)

Recall that the definition (55) of the dynamical friction
coefficient ~(z) involves the ratio of the moments ( vv, )
and (v, ) of the ion distribution function (see Sec. II).
Since the Monte Carlo simulations permit a direct mea-
surement of these moments as functions of position z in
the sheath, we can ascertain the variation of ~(z) and for-
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FICr. 2. The three terms of the momentum-balance equation
(76) for the case of elastic scattering with d/X=S and mass ra-
tios rn /M =0.25, 1.0, and 4.0 (runs A1, A3, and AS).

z/X

FICi. 3. The terms of the momentum-balance equation (76)
for the case of charge transfer with d/A. = 5 (run B1).
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~(z) =~o+(x —ao)[1 —exp( —kz/A, )], (77)

where the asymptotic value K is estimated from the
simulation and the factor k is adjusted to optimize the fit;
k =3 in Fig. 6. [In general, expression (77) was found to
give a good description of the behavior of a(z) when
m/M ~ 1 or o, )o „although the ad hoc choice of the
parameter a in (75) often results in an initial perturbation
from this idealized form. ]

Figure 6 shows the results obtained with x(z)=const
and the exponential fit (77); the linear approximation
gives a profile for the electric field that lies between the
profiles obtained in these two cases. Note that a slight
discrepancy persists between the converged Monte Carlo
profile for E(z) and that obtained from (10), even with a
relatively accurate fit for ~(z). This may be attributable
in part to the neglect of the pressure gradient in the

tegration of the continuum model equations (10), incor-
porating various simple approximations to the dynamical
friction coefficient. The following functional forms
were tested: (i) a(z) =const, corresponding to the crude
assumption ( uu, ) /( U, ) = 1 in (55); (ii) a linear fit
v(z)=~0+(Ki Ko)z/d, with initial and final values Ko

and K] determined empirically from the data of Fig. 4;
and (iii) the exponential form

momentum equation of the simple continuum model; it is
evident from Fig. 2 that with m/M =1 and pure elastic
scattering, this term accounts for about 5% of the field
acceleration qE/m. Indeed, for run A5 with m/M =4,
both the relative magnitude of the pressure gradient and
the variation of a(z) are much less significant, and a very
accurate agreement between the Monte Carlo simulations
and the continuum model is observed. For mass ratios
less than unity, however, we find that Eqs. (10) fail to pro-
duce a satisfactory quantitative agreement with the simu-
lations (unless charge transfer dominates).

D. Angular and energy distributions

As noted in Sec. I, the angular and energy distributions
of ions impinging on the cathode are of practical interest
in modeling the etching of microelectronic circuit
features. Our simulations facilitate a quantitative exam-
ination of the dependence of these distributions on the
various sheath parameters. We shall confine ourselves
here to presenting and briefly discussing some representa-
tive results; a detailed application of the incident ion dis-
tributions to etch models is given in [3].

Typical measured distributions are shown in Figs. 7
and 8. In the former we show the angular and energy dis-
tributions of incident ions for runs A1, A3, and A5, cor-
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FIG. 7. Angular and energy distributions of incident ions for the case of elastic scattering with d/X=5 and mass ratiosI /M =0.25, 1.0, and 4.0 (runs A1, A3, and A5).
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responding to pure elastic scattering with different mass
ratios. In the latter, the mass ratio is fixed at unity while
the ratio o, :cr, of cross sections is varied (sequence B).
In the angular distributions, the "spikes" at normal in-
cidence for cases where a, AO correspond to ions whose
final encounter with a neutral species is a charge-transfer
event (these spikes have been truncated in Fig. 8).

Note that with d /A, = 5, there is still a discernible frac-
tion of ions that traverse the sheath without encounter-
ing neutral species. These are apparent as a slight excess
in the angular distribution at t9= 0, and in the energy dis-
tribution at c =c,„, the kinetic energy corresponding to
the sheath potential [the Maxwellian component of the
initial distribution (75) induces a "smearing" of this eff'ect
in Figs. 7 and 8, and accounts for those ions with energies
slightly greater than E,„].

It is interesting to examine the relative contributions of
scattered and unscattered ions to the angular and energy
distributions as d/A, is increased. Figure 9 shows the
case of elastic scattering (sequence C); analogous results
hold for charge transfer.

When charge transfer dominates, all ions impinge on
the cathode with nearly normal incidence when the pa-
rameter a is much less than unity. In that case, it is pos-
sible to derive an analytic expression for the energy dis-

tribution [40] that reduces to an exponential decline with
E/s, „ in the case d/A, ))1. The distributions obtained
when o., :o,=O:1 (for d/A, =5 shown in Fig. 8, and for
other d/A, values not shown) are in good agreement with
experimental results [40].

When elastic scattering dominates the ion —neutral-
species cross section, it is also possible to derive closed-
form expressions for the angular and energy distributions
of those ions that actually suffer a scattering event in
sheaths of low collisionality (d/A, ((1) directly from the
Boltzmann equation. This derivation, and a comparison
with results from the Monte Carlo program, may be
found in [41].

Note that although the incident ion distributions
shown here are all normalized to unit area, they should
not be interpreted as probability density functions for in-
dividual ions to arrive at a given angle or energy. Since
the Monte Carlo simulations model a steady state, the to-
tality of ions that are followed sequentially in the pro-
gram must be interpreted as those that traverse the
sheath in a axed time interval For. example, with 10
ions, Figs. 7—9 would represent the ions received at the
cathode in an interval b, t =10 q/JA, where 3 is the
cathode area and J/q is the (constant) ion ffux in the
sheath. Thus the distributions obtained by a simple accu-
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FIG. 8. Angular and energy distributions of incident ions for m/M=1 and cross-section ratios cT, :cT,=1:0, 1:1, and 0:1
(sequence B).
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mulation of ions in discrete angle and energy bins as they
arrive at the cathode are proportional to the ion cruxes
per unit angle F(8) and per unit energy F(e).

In terms of the ion distribution function f (u, g, d) at
z =d, the total ion Aux F at the cathode is given by

F =J f uf (v, g, d)2n. singdgu du . (78)

The corresponding Aux per unit angle may be expressed
as

F(g)=2nsing J f (u, g, d)v du, (79)

while the Aux per unit energy is obtained by making the

substitution u =&28/m,

F(&)=
z f f(&2e/m, g, d)2m singdg .

m
(80)

Thus the distributions shown in Figs. 7—9 must be re-
garded as representing the quantities (79) and (80). Fur-
ther discussion of these matters may be found in [3].

It is not difficult to determine also the bivariate distri-
bution F(8,E) of ions with respect to incidence angle and
kinetic energy from the simulations, although large num-
bers are required to reduce sampling noise to an accept-
able level (see [2]). We omit these results for the sake of

brevity.
Finally, it should be emphasized that the distributions

shown in Figs. 7—9 arise from the very simple forms as-
sumed for the ion —neutral-species interaction, and might
be significantly altered by the use of more realistic col-
lision models (energy-dependent cross sections, etc.). Liu,
Huppert, and Sawin [42] give a detailed comparison of
ion distributions obtained from experimental measure-
ments and from simulations similar to those presented
herein; they ascribe observed discrepancies to the ideal-
ized separation of the cross section into distinct elastic-
scattering and charge-transfer components.

V. CONCLUDING REMARKS

The structure of collisional plasma sheaths is governed
by a system of coupled integro-differential equations for
the ion distribution function f (v, z) and the self-
consistent electric field E (z)—see Eqs. (14)—(17)—and in
general is not amenable to straightforward analytical
treatment. Our Monte Carlo simulations identify re-
gimes under which a much simpler and thus more tract-
able model of the form (10), formulated in terms of intui-
tive macroscopic quantities, can yield substantively accu-
rate descriptions of the sheath structure.
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FIG. 9. Angular and energy distributions of incident ions for the case of elastic scattering with mass ratio I/I = 1.0 and d /A, = 1,
2, and 4 {sequence C).
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Specifically, the simple continuum model is appropri-
ate when charge transfer dominates the ion —neutral
species collision cross section or, if elastic scattering is
important, when the ion —to —neutral-species mass ratio is
not less than unity. For elastic scattering with mass ra-
tios less than unity, a credible continuum model will
probably require higher moments of the ion distribution.

Furthermore, the strong perturbation of the distribution
function observed in the simulations near the cathode (as-
sumed to absorb all ions incident on it) suggests that in
such cases it is unsatisfactory to treat the sheath struc-
ture purely as an initial-value problem as discussed in
Sec. II.
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