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Simple laser accelerator: Optics and particle dynamics
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When a laser is focused it develops a longitudinal component. This could be used to develop a laser
particle accelerator. A lens waveguide array is discussed, and it is shown that such a system could gen-
erate high-energy particle beams. The possibility of using a "di6'raction-free" Bessel beam is discussed,
and a possible configuration is suggested. To accelerate electrons from one to a few MeV seems possible
using a well-focused, 1-J, 1-ps laser pulse. This would provide a simple proof-of-principle experiment.
In order to accelerate heavier particles, such as protons, the injected particle beam would have to be ul-

trarelativistic such as that produced by the superconducting supercollider.

I. INTRODUCTION

The possibility of using high-power lasers to accelerate
particles is an area of active current research. Among
the more extensively studied proposals associated with
these devices are the inverse free electron-laser accelera-
tors [1] (IFEL) and the plasma-wave accelerator [2]
schemes.

In the case of the IFEL acclerator, the wiggler plus the
laser field yield a ponderomotive force that allows ex-
change of energy from the laser field to the particle beam.
While this is a realistic possibility, one notes that the par-
ticles are undergoing oscillatory motion in the transverse
direction in such a device. Therefore, particle accelera-
tion is limited to lower energies; i.e., extremely high ener-
gies will not be achievable by such an IFEL scheme, due
to radiation emitted as a result of these transverse oscilla-
tions.

The plasma-wave acclerator devices have been intense-
ly studied and are very interesting. They have already
been shown to lead to acceleration (in the few-MeV
range). There is, however, always the problem of plasma
instabilities and subtle features of plasma physics to con-
tend with.

Other possible proposals involve, for example, evanes-
cent waves [3], inverse Cherenkov acceleration [4], trans-
verse injection of particles [5], and ponderomotive poten-
tial (radiation pressure) schemes [6]. The present propo-
sal [7] is unique in that it is remarkably simple: we show
here that, in principle, the radiation field of a focused
laser beam has a longitudinal component large enough to
produce substantial acceleration if the particles are in-
jected with a high enough initial energy.

It is interesting to compare the present work with that
of Ref. [6], which considers acceleration of thermal par-
ticles by a focused laser field having a longitudinal com-
ponent. In that work the acceleration force is derived
from a ponderomotive force and thus the force density
acting on the particles goes as the laser field squared,
whereas in our scheme the particles are driven by the
Lorentz force eE„which is linear in the field.

In Sec. II, we show that a longitudinal electric-field
component is associated with a focused "transverse"
field, and we derive an equation relating the longitudinal
to the transverse component of the electric field. In Sec.
III we consider schemes to generate significant longitudi-
nal electric fields appropriate for the laser acceleration of
an injected particle beam. In particular, we consider a
scheme involving a lens waveguide array and another
scheme involving the so-called diffraction-free or Bessel
beams [8]. In Sec. IV, we briefly discuss the electron dy-
namics, investigate the conditions under which we are
able to extract net energy from the laser field, and address
the question of beam stability. Our main results are sum-
marized in Sec. V, where it is noted that a 1-J, 1-ps pulse
focused on an area of k could provide a proof-of-
principle electron acceleration experiment. In order to
accelerate heavier particles, e.g. , protons, the injected
particle beam would most likely have to be ultrarelativis-
tic, such as that produced by the superconducting super-
collider (SSC).

II. LONGITUDINAL FIELDS ASSOCIATED
WITH THE TRANSVERSE FIELDS

In this section we show that the longitudinal com-
ponent associated with a nominally transverse field, prop-
agating in the z direction, is given by

1E,(x,y, z) = . Vi.Ei,
ik

where the field propagates with wave vector k and Vj and

Ei denote the transverse gradient operator and field, re-
spectively. The existence of a longitudinal component is
a direct consequence of Maxwell equations. It was shown
by, for example, Lax, Louisell, and McKnight [9] that, in

general, a purely transverse field would be inconsistent
with the Maxwell equations.

A simple way of proving Eq. (1) is to first expand the
field components, which obey the wave equations
(p2+ kz)E =0, in the usual Fou. rier representation [10]
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E (x,y, z)= f dk dk dk, E (k„,k, k, )

—i(k x+k y+k z)
(2)

It is convenient to introduce the direction cosine nota-
tion k =kp, k =kq, so that

where j=x,y, z, and k =co/c. From the wave equation
we have

k'+k'+k' —k'=o .x y z

This imposes a 5 function constraint into Eq. (2), i.e.,

E (k„,k, k, )=AJ(k„,k )5(k —k„—k —k, ) .

E (x,y, z) = f f A„(p,q)e

X ~~ + P+& ~d d (57

(xyz) f f A (pq)e ' ~&~+&&~

Xe 'k'e~'k "P +q 'dp dq (5b)q,
We also make the paraxial approximation wherein

k, k„«k, so that

k +k
k =(k' —k' —k')'"=k 1 ——

z x k

Under these conditions Eq. (2) becomes

E,(x,y, z)= —f f [pA, (p, q)+qA (p, q)]

Xe —ik (px +qy) —ikze

X (ik/2)(p +q z (5c)

Ej(x,y, z)= f dk, dk A (k„,k )

Xexp —i k x+k y+kz

kx+ k

2k
(4)

where (5c) follows from the divergence condition P' E=O
and we neglected terms in (5c) of order p and q . Equa-
tion (1) is seen to follow by direct inspection of (Sa)—(5c).

In a similar manner the angular spectrum representa-
tion for the magnetic-field components in the paraxial ap-
proximation is as follows:

B (x,y, z)= —f f I [pqA„(p, q)]+[1+,'(q p)]A—~(p,—q)]e '"'~" ~~'e '" e'"' "~ ~ 'dp dq,

B (x,y, z)= f f [[1—
—,'(q —p )]A„(p,q)+pqA (p, q)Je '"'~ +~~'e '"'e'"'~ "~ +~ 'dp dq,

B,(x,y, z)= —f f [qA„(x,y) —pA (x,y)]e '"' "+ 'e '"'e'"'~ "~ +~ 'dp dq .

(6a)

(6b)

(6c)

E„(r,u)= g 2 "v"+'h„"~&(v)I„(r),
—n n+1 (1)

n=p ". (7a)

Another deviation of Eq. (1), this time in the short-
wavelength limit kz))1, utilizes Bessel-function expan-
sion of the fields [6]. As is shown in Ref. [6], for light
that is x polarized, we may write

E,(r, u)= E„(r,u),=1 a
ik Bx

which is of course Eq. (1); however, we have arrived here
at this result in the limit kz ))1, instead of the paraxial
approximation ( k„+k ) /k ((1.

III. GENERATION OF LONGITUDINAL FIELD

E,(r, u)= — g 2 "u"+'h„"'(u)I„(r),—n n+i
k Bx„on/ (7b)

A. Lens waveguide

lim h„'"(u) = exp[iu —i—n.(n +1)/2],1

U~oo v

and therefore in this limit

h„'"(u) = ih„"', (u) . —

Inserting (Sb) into (7) we find

(Sa)

(Sb)

where v = —kz, h„'" is the nth-order spherical Bessel
function of the third kind and I„(r) is an integral whose

exact form is not important; the only point we care about
here is that it appears in the equations for E and E, in

the same way.
Now, the asymptotic form for h„"'(v) in the limit v )) 1

1S

ikz+2i g(z)— (10)

It is well known that a focused laser beam in a confocal
resonator or a lens waveguide array has a transverse field
with a Hermite-Gaussian distribution. Here we consider
a lens waveguide array as shown in Fig. 1. The field dis-
tributions between alternate pairs of lenses are different.
We consider only the propagation of the Hermite-
Gaussian (0,1) mode, as it is the lowest laser mode with a
nonvanishing longitudinal component on axis. The x-
polarized (1,0) mode is given by [11]

4MpEpx —ik 2E„(x,y, z)=
2 exp (x +y )

2nw (z) 2q(z)
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FIG. 1. Laser linac via lens guiding array. Drift tubes and "phase shifters" A4„bN&, etc., are indicated only as possible ways of
dealing with conceivable problems.

Z
w(z)=wo 1+

Zq

q(z) =z+iz~,

(1 la)

(1 lb)

where Eo is the field amplitude, k =2m/1, is the propaga-
tion constant, and

' 2 1/2

1
E, =

kw o 6'pc
(14)

For X=10 pm radiation, beam radius wp-—0.5 mm, the
field E, =40&P V/m, where P is the power in watts.

The phase velocity for the field is given by

g(z) = tan
Zq

(1 lc)
k —2f'(z)

C

1 —(1/k)[2z /(zq+z )]

Here wp is the beam radius in the center at z =0 and

zq 7Tw o /A, is the Ray leigh

length�

. The longitudinal fie1d
associated with the (1,0) mode, Eq. (10), is then found
from Eq, (1) to be

=c 1+
2

kWp

2
+

Wp

2

4iEow
E,(x,y, z)=

2mw (z)k
ikx

1
q(z)

+2ig(z)

On axis, this reduces to

Xexp — (x +y ) —ikz
ik

2q (z)

(12)

(15)

Typically wp —-10 m and for 10-pm radiation, k =10
m '. We then have vo —-c(1+10 ). The phase velocity
of the field is therefore greater than the speed of light in
vacuum c by a small amount. Implications of this
"larger-than-c" phase velocity will be discussed later.
For now we may ignore this small effect and take Up =c.

The components of the magnetic field can be obtained
from Maxwell's equations. For the present x-polarized
(1,0) mode, we obtain

4'woEo
E (0 0 )

o 0 ikz 2+if—(z)

&2~w (z)k

It is clear that, at z =0, E, =Eo /kw o Since.
Eo-—(P/eocwo ) ~, where P is the power of the laser, we
have

8= 1+ 2

(kwo)

Up
1/2

The field distribution, after passage through a lens, is
given by [12]

E„(x,y, z)= E„(xi,y„f )exp (x, +y& ) exp [(x —x, ) +(y —y, ) ] dx, dy, ,
ik 2 ik —

2

2m z+ 2 2(z + )
(17)

where f is the focal length of the lens and, for simplicity,
we have chosen the origin z =0 at the forward focal
point. After carrying out the necessary integrations, we
obtain

4xEowo ikE'(x,y, z)=
~ exp — (x +y )

&2n.w' (z) 2q '(z)

I

where

w'(z) =wo 1+
q

2

q '(z) =z+
Zq

z z
2

2 1/2

(19a)

(19b)

ikz +2i f'(—z), (18)
ZZq

1i~'(z) =—+ tan
2 2 (19c)
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The longitudinal component along the axis is

—4iEO
(0 () z)

0 i—kz+2if'(z)
( /k )

&2mto (z)
(20)

and the phase velocity is

2z /k
U = 1 f'+(z, /f )'z'

AX I C ON 'd

2zg=c 1+ f +
k

2

2z (21)

It is clear that when the focal length f is chosen to be
equal to the Rayleigh length z, the field distribution be-
tween any pair of lenses is identical. However, for f )z,
the field is alternately well focused and weakly focused.

B. "Dift'raction-free" Bessel beams

In order to avoid the problems of beam spreading and
the z dependence of the phase velocity, an alternate "lens
guide" uses the "diffraction-free" Bessel beams discussed
by Durnin and co-workers [8]. It has been shown that a
beam whose field distribution is given by

f
LFNS

FIG. 2. An "in principle" scheme for producing a "Bessel
beam" without losing most of the laser energy. Laser light from
left passes through a phase conjugate element, reAects oA the
axicon, is collected by a cylindrical 45 mirror, passes through a
beam condenser, and is then passed through a "rim" aperture.
The resulting light is collected by the lens and focused on the
axis to generate a high-power Bessel beam. It is emphasized
that this is very schematic and is only intended to show that it is
not in principle necessary to waste most of the light in order to
generate a J '(o.p) beam.

E(x,y, z) =E0e '~'J0(ap), (22a)

where a +p =k, p =x +y, J0 is the zeroth-order
Bessel function of the first kind, and Eo is the field on
axis, represents a nondiffracting beam for 0&a;&k. It
would be impossible to generate such a beam over the en-
tire z plane as that would require an infinite amount of
energy. However, an experimental realization of such
beams in a finite domain has been realized and their
difFraction-free nature has been demonstrated. It is
shown, for example, that if laser light passes through a
circular slit of diameter d and width Ad then a lens of ra-
dius R at a distance equal to the focal length f (as shown
in Fig. 2) will generate a Bessel beam that will remain
diffraction free over a region [8]

However, it is maximum at a distance p=2. 4/o. , where
E„=O. The field E, is then

a 1
z P 0 k 0

where we have assumed a/k «1.
We note, however, that there is no reason we cannot

produce a Bessel beam having the characteristic asym-
metric form of Eq. (1). That is, the general form of the
nondiffracting Bessel beam is given, for x polarized light,
by

Zg —kR N (22b) E~(r, p, z, t ) =xE0e ™J(ap)e

Here the beamwidth t0=a '=(4f +d )' /kd, which,
for f ))d, becomes

2u=a
kd

This description of beamwidth assumes that the energy of
the beam is mostly concentrated between the axis and the
first minimum associated with the first zero of the Bessel
function. The slit width hd is chosen such that

bd «f/kR .

It is clear that if the laser beam producing the field dis-
tribution (22) is x polarized, then the z component of the
field E, is given by

E (r, p, z, t) =E e'~0J&(ap)e (25)

Inserting Eq. (25) into Eq. (23), using the elementary fact
that

B

Bx

and the Bessel function relation

where P is the azimuthal phase angle, J is the Bessel
function of mth order, and 8 is a constant.

The Bessel beam, which goes as J, , then has the
desired asymmetry. That is, we may arrange (by, e.g., ap-
propriate phase-retarding plates) and the x-polarized field
has the form

BE„
E,=

i f3 Bx
(23) J)(g)=J0(g) ——J)(g),1

The field component E, is therefore zero on the axis. we find
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E,(r, g, z, t)=
—E

e'~J&(ap)e '~' '+ '+I'a cosine'~ Jo(ap)—
p p

1 —i f pz —cot +8 )

ap
Ap (26a)

On or near the axis such that o.p &&1 we may use the
Bessel function expansions,

J (g)-=I — +

o.'Ep
ReE, (r, p, z, t ) =—— sin(pz tot ——6) . (26b)

+ 0 ~ ~

16

and find that we may write the real part of Eq. (26a) on
axis as

nately accelerated and decelerated. Hence, no net energy
will be transferred to the particle. It is therefore required
that the particles be removed from the field when they
pass from the accelerating part of the field to the de-
celerating part. Thus a particle entering the field at a cer-
tain phase will be allowed to travel in the field only for a
certain interaction length to realize a net extraction of
energy.

An estimate of the interaction length can be obtained
as follows. The "slip" distance traveled by the particle
with respect to the wave should be, at most, equal to A, /2
so that the maximum time of interaction

Thus the "nondiffracting" Bessel beams are, in principle,
able to provide a simple on-axis E, field component.

Let us return now to the question of application of
such beams to the present problem. It follows from a
comparison of Eq. (22b) with the corresponding expres-
sion of the Rayleigh length zz ——kwp in the usual case,
e.g. , confocal laser mode that the diffraction-free beam
propagates a distance R /wo larger without spreading.

In Fig. 2, we consider a possible experimental setup. A
Gaussian laser beam is incident on a conical axicon.
After reflection from the spherical mirror it is
transformed into an annular mode that is incident on an
appropriate circular aperture that fills the lens. For pur-
poses of discussion consider the case in which the particle
beam is sent in at a distance x =2.4/a away from this
axis where the field component E, is maximum. It fol-
lows that if k=10 m ', f=4 m, d=8 mm, and R=l
cm; then Ad =0. 1 mm, w =1 mm, and zm» ——10 m. We
thus obtain an order-of-magnitude longer interaction re-
gion as compared to the lens array discussed earlier.

Finally we note that the diffraction and/or optical
Aaws may prevent the attaining of a neat "diverging ring
of light. " Should this be the case one would hope that a
holographic element (or phase conjugator) such as indi-
cated in Fig. 2 may be used to "clean up" the beam.

IV. ELECTRON DYNAMICS

A. Particle acceleration

Next we consider the dynamics of particles in the elec-
tromagnetic field. For simplicity, we assume the field to
be a plane wave

2(c —u)
(28)

The distance traveled by the wave during this period is

2 2
mcl=ct,. — A, ,

mpc
(29)

where mp is the rest mass of the particle and we have
used the fact that

v 1—
C

2 1/2
mpC 1

2

2 2
mpC

mc
(30)

for relativistic particles. The energy transferred to the
particle during the interaction length [Eq. (29)] is then

2

8f ——eE, I =eE,A, (31)
mpc

It follows that for A, = 10 pm, wp ——0.5 mm, P =10 W,
we have 6f ——1 MeV for 10-MeV injected particles.

The simple calculation for the energy transfer underes-
timates the interaction length and the energy transferred,
as it assumes the same velocity for the particle during its
interaction with the field. In fact, as the particle picks up
energy it will "speed up" and the interaction length will
correspondingly increase. We can derive this result
rigorously as follows.

The equations of motion for the energy 6=ympc and
the phase z'=z —ct of the particle, which is moving with
a velocity v along the z axis, are found from the
differential expression dd=mpc dy=eE, sinkz'dz and

dz'=dz cdt, so that [7]—

z, (o,o, z) =tE, e""-"' (27)
m c = —eE sinkz',

dz
(32a)

where, according to Eq. (11), E, =Eo/kwo. In this ap-

proximation we have ignored the diffraction effects lead-
ing to the spreading of beamwidth and the phase varia-
tions. This approximation is valid for z zz. The phase
velocity of the wave is then equal to the speed of light.

The relativistic particle will generally be slipping
behind the laser field and, in the process, will be alter-

dz
dz

(32b)

where P=u/c and y= I/+I —P .
Equations (32a) and (32b) can be combined to yield

eE,
, 1

2
sinkz'dz' = 1 ——d y,

mpc p
(33)
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and upon carrying out the implied integration we obtain
[13—15] (p0c +m0c )' —p0c=

2eE,
(41)

eE,
H = (p c +m 0c )

'/ —pc — coskz', (34) We easily solve for pp by taking the ppc to the right-hand
side (RHS) and squaring; we find

f [c —v (t')]dt'=
0 2

(35)

where p is the momentum of the particle and the Hamil-
tonian H appears as a constant of integration. In deriv-
ing Eq. (34), we have used P=(y —1)'/ /y.

Now the correct condition for the net energy transfer
is [compare Eq. (2.8)]

m pc

2 2eE, /k

2eE,
0

(42)

Inserting Eq. (42) into Eq. (36a) we then obtain the im-
portant expression for the injection energy necessary to
ensure I~~:

Here the velocity of particle v is a function of time and it
is related to the particle momentum p via the energy rela-
tion

m c2 eE,0 0
@inject™0c 4 E /k

+
0

(43)

mpc —
(p 2c 2+ 2c4) i/2

( 1 2/ 2)i/2

which implies

U PC
c2 p2c2+m 2c4

(36b)

For 10 pm light with 8=10' W focused to 0.5 mm,
(mc )„;„.„i—- 10 MeV and the final energy is now deter-
mined by the Rayleigh length zR =mwz/A, , which taken
together with Eq. (14) yields

1/2 ' 1/2
e P

zR —— ——100 MeV .
kw 0 &pc Eoc

The constant (time-independent) Hamiltonian function
(34) yields the expressions for p as a function of z'

eE , 2 4 eE
2pc = —H+ coskz' +m c H+ coskz'

k k

(37)
Inserting Eq. (36b) into Eq. (37) we find v(z')=v(z —ct),
and Eq. (35) may then be written in terms of x =ct as

m0c —IH+(eE, /k)cos[k(z —x)]]
2 ~ dX

m0c + [H+(eE, /k)cos[k(z —x)]]2

For comparison if we had taken a "Bessel beam" for
the laser field then the e6'ective range

R R
z =2mw —=2z8 0 g R

wp

Hence, if we assume R = 10 cm and wp ——0.5 mm,
z& ——400zR and the final energy, in the above example, be-
comes many GeV. This comparison should not be taken
too seriously until further studied. There are many open
questions considering the use of Bessel beams, e.g., do we
lose too much power in using this approach [16]? It indi-
cates, however, the potential advantage of such a
configuration.

2
'

Recall that the parameter H is a constant determined
by the initial momentum pp and phase zp of the particle.

Now from Eq. (37) we see that if H=eE, /k, then

when kz'=m the momentum p ~~. This is manifest in
Eq. (38) in that, in this same limit, l must go to oo.

In order to find the particle injection energy that yields
this infinite interaction length, we return to Eq. (37) and
further consider the condition

B Beam stability

Assuming x polarized laser radiation, we may write

~0 —i {kz—cot)
2+2 2

E =—Ep e e
Wp

(44)

and, near the axis, the force in the x and z directions, as
calculated via the Lorentz force using Eqs. (5) and (6),
then goes as

1/2

eE,
0H (p0, z0 ) — coskz' =0, (39)

U UoF„=2e 1 ——
C C

—(x +y )/noE e 'cos( kz cot ), —
'w

0

(45)

or

eE,
(p0c +m0c )' —p0c — (coskz0 —coskz') =0 .

k

(40)

The maximum contribution from the field term comes
when kzp =0 and kz'=m. ,' in such a case we find the initial
momentum pp to be determined by the expression

1 (x2+y2) /~2F=—2e Ee
kw

sin(kz tot) . —
0

(46)

For maximum force, kz cot -=n. /2 and, as s—hown in Ref.
7, particles reaching this point will evolve to phase
kz —cot =~/2+ e. Hence the force (45) goes as

1/2
Up Ep —(x +y )/mo .F=— 2e 1 ——

2 e sin& 'x
C C c
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and the beam is stable as long as U Up & c .
We further note that the force F„vanishes for vvp =c

and is first order in x and e. Thus there is reason to be-
lieve that the "defocusing" effects of E and 8 can be
mitigated. This problem will be further discussed else-
where [17].

V. SUMMARY AND POSSIBX E PROOF
OF PRINCIPLE EXPERIMENT

Collecting together our main results, we have the fol-
lowing.

(i) Longitudinal electric field,

E, —= 10"t/P V/m .
km p

(ii) Interaction lengths z for (a) ordinary lens

7TW p
2

~Rayleigh

(b) Bessel beam

rlens
Z Bessel 2Z Rzyleigh

Np

where r&,„, is the radius of the lens.
(iii) Injection energy for "infinite" acceleration range,

Ipc eEpA,
@inject = o

(iv) Final energy of particle,

', 10&Pz .
kLU p

These results suggest a possible proof of principle elec-
tron acceleration experiment. In order to minimize the
injection energy we focus our laser beam to mp =k, then

E, = 10&P
277k

Once a pulsed laser having 1 J energy in 1 ps at A, = 1 pm
is well within the state of the art [17], then the field

E, =10' V/m. For a field of this magnitude, the injec-

tion energy is of order 1 MeV, and the particle energy
gained in one Rayleigh length is then given by

6„„„=5e&P=5 MeV .

Thus a 1-MeV electron will be accelerated to 5 MeV in
roughly one wavelength. Note, however, that Dz„,&

is in-
dependent of the focal area since the "gain" of a tightly
focused beam is offset by the "loss" due to a shorter Ray-
leigh length.

Finally we note that a focused laser, in perhaps a
Bessel-beam configuration, could be used to accelerate
protons to very high energies. However, this would re-
quire high-energy protons to begin with. Consider the in-
jection energy necessary to secure an extended interac-
tion length for protons,

2m c
inject p eE&

where m is now the proton rest mass, i.e., around 2000
times that of the electron mpc . If we take, as discussed
earlier, E=10' V/m and A, =1 pm then ejgjegt 1 TeV,
which is in the superconducting-supercollider (SSC) ball
park; and the possibility of using a laser linac as an SSC
booster is interesting.
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