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We present the basic equations for modeling a plasma column produced and sustained by a traveling
electromagnetic wave in the presence of a constant external magnetic field. The model consists of two

equations —a local-dispersion relationship and a wave-energy-balance equation —and a relation between

the absorbed wave power per unit length averaged across the column (proportional to the squared-wave

electric field) and the local electron number density. The dispersion relation and the balance equation
are derived in explicit forms and depend on two numerical parameters o. =coR /c (co being the wave an-

gular frequency, R the plasma column radius, c speed of light) and A=co, /co (co, is the electron cyclo-
tron frequency). The limit of an infinite external magnetic field (Q~ ~ ) is also considered. The
inhuence of the two parameters 0 and cr on the dimensionless axial profiles of the wave characteristics
and plasma column density, obtained by numerical solution of the basic equations, has been studied for
two different gas-discharge regimes. A three-dimensional wave structure has been obtained, and it is

shown that the wave can be a generalized surface mode, a pure surface, or a pseudosurface one. The re-

sults obtained are in agreement with the available experimental data.

I. INTRODUCTION

In recent years, increasing interest has been shown in
the study of rf and microwave discharges produced and
sustained by traveling electromagnetic waves. Due to
their stability and good reproducibility over a large pres-
sure range, such discharges have found many applica-
tions in various fields of technology and research [1—4].
Up to now, these discharges have been extensively stud-
ied mainly for isotropic plasmas, for various operating
conditions, namely gas nature [2—10], pressure
[7,8, 10,11], plasma radius [7,12,13], and wave frequency
[12]. The rf or microwave power, supplied by a high-
frequency generator, is coupled to the discharge through
a matched structure (sometimes referred to as surfatron
[14], surfaguide [15],waveguide surfatron [16],or Ro-box
[17]), and is carried by an electrotnagnetic wave simul-

taneously propagating and ionizing the gas. Note that
the physics of the phenomenon is the same for all these
wave exciters. In fact, the electric field of the wave heats
the electrons that ionize the gas, ensuring in this way fur-
ther wave propagation. The wave power axially de-
creases from the gap of the exciter to the end of the plas-
ma column, due to energy transfer of the high-frequency
field to the electrons. Thus, the electron number density
also decreases along the column.

It is natural to expect that a constant external magnet-
ic field should visibly change the conditions for plasma
column production, as well as the structure of the column
itself. First, in a magnetic field, the plasma becomes an-
isotropic, which rejects in a change of the propagation
characteristics and field structure of the electromagnetic
wave. Second, a relatively strong axial magnetic field

must reduce the radial electron diffusion, which leads to a
decrease of the axial plasma density gradient and the
electron temperature, too. There are few experimental
results concerning the inhuence of the magnetic field on
an electromagnetic-wave-sustained plasma column. Moi-
san et al. [18] state, from experiment, that a constant axi-
al magnetic field facilitates plasma production. In anoth-
er work by Moisan, Pantel and Ricard [19], the effect of
such a magnetic field on the density radial distributions
of excited atoms (in radiative and metastable states) has
been studied experimentally. Recently, Pasquiers et al.
[20,21] reported on an experimental investigation of a
low-pressure argon discharge produced by an electromag-
netic wave with an external magnetic field. Anghelova
et al. [22] have examined experimentally the axial
profiles of the plasma parameters (electron temperature
T, and the electron number density n) of a helium low-

pressure gas-discharge column sustained by a traveling
electromagnetic wave in the presence of a magnetic field.
It is found that the electron temperature is diminished
and the plasma density is increased (accompanied by a
decrease of its axial gradient) in comparison with the
magnitudes of the same parameters and characteristics of
an isotropic plasma column.

The modeling of a plasma column produced and sus-
tained by a traveling electromagnetic wave is a challeng-
ing task. Most of the observed axial structures of low-
pressure gas discharges in the absence of a magnetic field
are adequately described by the existing theories (Glaude
et al. [5] Mateev, Zhelyazkov, and Atanassov [23],
Zakrzewski [24], Ferreira [25,26], Zhelyazkov, Benova,
and Atanassov [27], Zhelyazkov, Atanassov, and Benova
[28], Boisse-Laporte et al. [8] Sa and Ferreira [29], Zhe-
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lyazakov and Benova [30], and Benova and Zhelyazkov
[31]) assuming that the sustaining electromagnetic wave
is an azimuthally symmetric surface TM mode. A
theoretical model of a plasma column produced by a
guided electrostatic wave in the presence of a constant
axial magnetic field Bo (Zhelyazkov, Benova, and Atanas-
sov [32]) shows that a significant influence of the magnet-
ic field on the properties of the plasma column occurs
only when the angular wave frequency co is lower than
the electron cyclotron frequency ei, ( =eBO/mc), that is,
when co, /e~=O& 1. The magnetic field (called a "strong
magnetic field" as II & 1) modifies the wave-field structure
(in the electrostatic limit the wave becomes a pseudosur-
face [33] mode) and decreases the axial plasma density
gradient. Moreover, it is predicted that for a given high-
frequency power emerging from the wave launcher, the
column length should increase with increasing 0, i.e., the
stronger the magnetic field, the longer the column length.
The characteristics of the plasma column should depend
also on the gas-discharge regime (a diffusion or recom-
bination one), specified by the gas pressure, the tube di-
ameter, and elementary processes in the ionized medium.
Recently, Pasquiers et al. [34] presented an experimental
investigation on the action of a static magnetic field on an
argon discharge produced by a traveling wave. Their pa-
per includes also some theoretical modeling based on an
electromagnetic treatment of the problem. Both their ex-
perimental and theoretical results generally confirm the
main conclusions of Refs. [22] and [32], pointing out,
however, the narrow range of applicability of the simplest
model [32] (at low electron number densities and low mi-
crowave frequencies).

It is the purpose of this paper to present a general
model of the axial structure of a plasma column sustained
by an electromagnetic wave in the presence of an external
constant axial magnetic field, as well as the axial profiles
of all wave characteristics (wave number, wave power,
electric and magnetic wave-field components). If the
theoretical modeling of Pasquiers et al. [34] considers
only a particular experimental setup (given plasma ra-
dius, wave frequency, gas pressure and magnetic-field
ranges) assuming occurrence of diffusion gas-discharge
conditions, we study the dependence of the discharge
anatomy and wave characteristics on dimensionless pa-
rameters calculated on the basis of different plasma radii
R, wave frequencies co, external magnetic-field inductions
Bo, and gas-discharge regimes (free fall or diffusion and
recombination ones). Moreover, we examine the limiting
case of an infinite external magnetic field (Bo~ ), as
well as the possibility of creating plasma columns by
means of "zone-depending" electromagnetic wave modes
when the magnetic field is strong enough (A&1). The
latter directly follows from the possibility for multivalued
solutions to the wave dispersion relation [32].

It has been shown in Ref. [27] that the axial structure
of a plasma column produced by an electromagnetic sur-
face wave under the assumptions for weakly collisional
plasma ( v ((co, v being the collision frequency for
momentum transfer) and slow axial variations of the elec-
tron number density, the wave number, and the wave-
field components is specified by an equation connecting

the surface-wave dispersion characteristics and plasma
column parameters [Eq. (9) there]. In the zeroth-order
approximation with respect to all logarithmic derivatives
on z contained in that equation, one obtains a local-
dispersion relation, while the first-order approximation
(9) gives an equation for the balance of the surface-wave
energy in a column with weak longitudinal density inho-
mogeneity. The numerical solving of these two equations
with additional assumptions (concerning the gas-
discharge regime) specifying the relation between the
squared-wave electric field ~E~ and the local electron
number density n gives the axial structure of the column.
The same results follow from the solving of independent-
ly derived dispersion and energy balance equations
[35,28]. Further on, we will follow the concept used in
Refs. [28] and [32]—it is more convenient and more in-
structive to derive a local-dispersion relation and solve it
together with a wave-energy-balance equation assuming a
suitable additional condition between jE~ and n. As a
result, one obtains "universal" axial profiles of dimen-
sionless electron number density and all wave charac-
teristics depending on three numerical parameters. In
addition to our previous works, we give here the axial
dependencies of all electromagnetic wave-field com-
ponents as well as their radial distributions in order to
compare the latter with similar figures plotted by
Pasquiers et al. [34]. Finally, we apply our theoretical
results to particular experimental data.

The organization of the paper is as follows. In Sec. II
we present the formulation of the problem and the basic
assumptions. Section III is devoted to the derivation of
the dispersion relation and the wave-energy-balance
equation. In Sec. IV we expose the numerical calcula-
tions and results, and in Sec. V give the comparison with
the experiment. The paper ends with a discussion con-
cerning the future improvement of the model.

II. FORMULATION OF THE PROBLEM
AND BASIC ASSUMPTIONS

We consider a cylindrical plasma column of radius R
sustained by a high-frequency azimuthally symmetric
electromagnetic wave of angular frequency co excited at
the one side of the tube (Fig. 1). The plasma is immersed
in a constant axial magnetic field Bo=(0,0,8o). Since
the wave frequency cu and electron cyclotron frequency
co, are normally much higher than the ion plasma and ion
cyclotron frequencies, further on we can neglect the ion
dynamics. We assume that the electron number density
is radially constant:

R
n =n =(2/R )f dr r n(r),

0
but it may depend weakly on z. For simplicity, the
electron-neutral collision tensor is considered to be iso-
tropic, so we can use the usual collision frequency for
momentum transfer v. The electromagnetic wave propa-
gates without any reAection along the plasma column,
and the latter is assumed bounded by vacuum. At
present we ignore the effect of the plasma container (a
dielectric tube with given thickness and permittivity) and,
say, a metal screen on the dispersion properties of the
wave and on its energy outlay. The plasma anisotropy,
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FIG. jl. Schematic view of an experimental situation.

caused by the external magnetic field Bo, is taken into ac-
count by presenting the plasma permittivity in a tensor
form:

lg 0

Eg Zg 0

0

and

z r —R z~r —R& ~z r —R z r —R

III. DISPERSION RELATION
AND ENERGY-BALANCE EQUATION

ei= 1 cop(—co+i v)/co[(co+i v) co, —],
ail

= 1 co~ /co—( co+ i v ),
g —

CO& CO ~ /CO [ ( CO + i V ) CO ~ ]

In order to derive a dispersion relation and an energy-
balance equation for high-frequency electromagnetic
waves propagating along an axially inhomogeneous plas-
ma column, immersed in an external magnetic field Bo,
we take the wave dependence on space and time in the
form

Here co =(4trne /m)'~ is the electron plasma frequen-
cy.

An essential feature of the problem is that we consider
the plasma created as a weakly collisional one (v((co);
moreover, the wave frequency co is far enough from the
electron cyclotron frequency co, . Then by neglecting the
small terms of order v /co or v /(co —co, ), we have

ei—=Re(ei)=1 —co l(co —co, )=1 N/(1 —& —),
e—:Re(Z =1—co /co =1—X,
g—:Re(g) =co co, /co(co —co, ) =XQ/(1 —0 ),

6'~ ~, (r,z, t) =Re F~ ",(r;z) 6'(z)

X exp i cot+i—f dz'k (z')
ZQ

2Y', (r, z, t) =Re G~', (r;z)6'(z)

Xexp icot+i f d—z'k(z')
zo

(4)

with X = n /n, „(n,„being mco /4vre ), A=co, /co, and

Im(zi) =(v/co)co (co +co, )l(co —co, )

=(vlco)N(1+0 )/(1 —0 )

Im(e~~) =(v/co)co lco =(v/co)N,

Im(g ) = —2vco co, /(co —co, )

2(v/co)NQ l(1——fl )

The propagation of the electromagnetic wave along the
plasma column is governed by Maxwell's equations for
both media (p, plasma; U, vacuum):

V xE~ '= —— B~',1

c Bt

VxB '= — D~'1 a
c Bt

D=e E.

In (2) e~ is taken from (1) and e'=I the unity matrix.
The boundary conditions express the continuity of the ax-
ial and azimuthal components of the electromagnetic
field at the plasma-vacuum interface ( r =R ):

1a aG,
p

p ~p ~p

where
cz—: equi(x cr ei)/ei,2 2

pG Ia&~(IF =0

y= x cr ei(—1 —g—/ei),
a—:xog/gz .

where k is the wave number, F„,(r;z)6'(z) and

G„,(r;z)A'(z) are the wave electric- and magnetic-field
amplitudes, respectively, which depend slowly on z
[H '(c)H/c)z)((k, H being F, G, 8, k, or n]; the r
dependence is specified by the governing equations (2). In
(4), @(z) denotes ~6",(R,z)~. We note that for either
BO=O or infinite Bo, the electromagnetic wave is a TM
mode (8,=0), whereas for finite Bo it is a hybrid mode
($,%0 and 6,%0). It is straightforward by introducing
the dimensionless variables p = r /R, x=:kR, and the pa-
rameter cr—:coR /c to obtain from Maxwell's equations (2)
the following coupled equations for the dimensionless ax-
ial wave components into an ionized medium:

1 g BF
p +aF, +IaG, =0,

p ~p ~p
(&)
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In Eqs. (5) all terms of O((1/k)(ayaz)lnH) (H being F„
G„e~~, el, g, or k) have been neglected. We seek the solu-
tions to (5) using the ansatz

Jo(a,p)
F,(p)=f

Jo a

where a„=(x —o. )'~ . The azimuthal wave components
in vacuum have the simple form

K, (a„p)
F~(p)= C

a, Koa,

and
and

Jo(app)
G, (p)=h

Jll a„

K, (a,p)G" (p) =i Aa„K0 a,

while the radial ones, respectively, are
which immediately yields

Jo(a, 1P) Jo(ap2P)
FP(p») =f1

' +fz'
Jo(apl) Jo(ap2)

J (a,p) Jo(ap2p)
G.'(P) flxl J

'
+f2X2

0 apl Jo a 2

where

(6) and

. x
F„'(p)=i

a, Koa,

K, ( „p)
G„'(p)=-

a„K0 a„

(12)

h
X] =

a —Q
&

2

=iG(,
Q

h
X2 f

CX Qp2
2

Q
=iG

, ,=(—,'I —y [( +y)'+4 '
~~]' 'I)' ' Here Ko and E, are the modified Bessel functions of the

second kind, and 3 and C are constants. We notice that
one assumes that the argument Q, is a real number, which
means that the electromagnetic wave is a slow one-
Vph =CO/k (C.

By imposing the boundary conditions (3) we find the
following local dispersion relation of an electromagnetic
wave traveling on a plasma column immersed in a con-
stant magnetic field:

Having derived the I', and G, components, from
Maxwell's equations (2) one can obtain all other wave
components, in particular

fl, , Jl«pip»)
F„(p)= — (

' —„')
x ap,

P' Jll(ap, )

f2 Jl «,2P)+ (a g e'1cT )
Qp2 Jo ap2

1 Kl(a ) &(~ Jl(a 1) 1 Kl(a ) 1 Jl (a 2)U + P +
a, Ko(a, ) a

1 Jo(a, ) a, Ko(a„) a 2 Jo(a 2)

K, (a„) e~~ J, (a z) 1 K, (a„) 1 J, (a , )+ +
a„K0(a, ) a z Jo(ap2) a, Ko(a, ) ap, Jo(ap, )

(13)
Gi

G2

f~ Jl ap2P

a 1 Jo(a 1) ap2 Jo(ap2)

fl Jl apl fz Jl ap2p

apl Jo(apl ) apz Jo(ap2)

fl Jl(aplp») f2 Jl(ap2P)
Gp(p) = i~1~ '— +

1 Jo( pl) ap2 0( p2)

(9)

and

b(co, a 1)f2.
=—

(14)

Boundary conditions (3) allow us to obtain also the ex-
pressions for the coefficients f, and f2, namely

b (co, ap~)f
E~~b, (a „a 2)

In (6) and (9) Jo and J, are the Bessel functions.
For vacuum, from Maxwell's equations one obtains the

wave equations, whose solutions yield the axial wave-field
components

where

1 Jl(a 2) 1 Jl(a 1)b(a „a 2)=
ap2 JO(ap2) apl Jo(apl)

and

Kll(a, p)
F,'(p)= 2

Ko a„

(10)

and

1 Kl (a )
b(co, a )—= " +

a„K0(a, ) a Jo(a )

Kll(a„p)
G,"(p)=iC

Ko a,
We note that the equation A(co, ap )=0 would give us the
dispersion relationship of pure TM surface of pseudosur-
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face waves propagating along the column.
Dispersion relation (13) govern the propagation of a

generalized surface mode in cylindrical geometry .Re-
cently Ivanov, Alexov, and Malinov [36] presented the
dispersion relation of symmetrical electromagnetic waves
in a partially filled plasma waveguide (Eq. (4) in Ref.
[36]). In the limit of absence of any metal tube their
equation is equivalent to our (13) if, however, one
corrects three misprints: namely, the comma on the first
line of Eq. (4) is superfiuous; on the second line a factor of
e2 should be inserted in front of p3;, and the index i of k
in the expression P0(k, a) must be replaced with 3 i —We.

note that it is straightforward to generalize (13) for the
case of a plasma column of radius R surrounded by a

I

metal tube or screen of radius R& —in that case, by as-
suming the basic wave-field components in the vacuum in
the form

K0(a„p) I0(a,p)
F,"(p)= A +B

K0(a„) I0(a„)

K0(a„p) I0(a„p)
G,'(p)=iC +iD

K0 av I0 a,

and by imposing the additional boundary condition

F,"=F"=0 at p=g,
where 21 —=R, /R, one arrives at

ell J, (ap, )
V(a, )+

a, ' a , J0(a , )

Ji ( 2)
V(a„)+

p2 0( p2) av

Ji(ap2)
W(a„)+

a, '"
a, 2 J0(a,2)

1 1 p 1J(a )

a i J0(a i)

Gi

G2
(15)

where

V(a„)= [Ki (a„)+K0(gaia, )I,(a„)/I0(ria, )]/[K0(a„)—K0(gaia, )I0(a„)/I0(ria, )],
W(a, ) = [K,(a, )

—
K i(2ia„)Ii(a, )/I, (isa, )]/[K0(a, )+K i(2)a, )I0(a„)/I, (ala, )],

and Io and I, are the modified Bessel functions of the
first kind. Obviously, Eq. (15) is more compact and read-
able than Eq. (4) in Ref. [36]. Now, the equation

1 pe Ji(a )

a, "
ap J0(a )

would present the dispersion relation of a pure surface or
pseudosurface electromagnetic mode in a partially filled

plasma waveguide —in the limit ri~ oo, V(a„) and

W(a, ) tend to Ki(a, )/K0(a„), i.e., (15) passes into (13).
Equation (13) naturally includes the simpler cases as fol-

lows.

B. Electrostatic limit (80&0)

In that case o =0, a =0, a„,—:g=( —
ellx /ei)'

a 2=ix, a, =x, G, ~O, G2~ —~, and the wave disper-
sion relation becomes [32]

1 Ki (x) ell Ji (g)+- =0
x K0(x) g J0(g)

(17)

For A=co, /co) 1 the wave is a pseudosurface mode,
while for 0, & 1 it is a pure surface one. In both situations

f, = 1 and f2 =0, and the only wave components are

A. Absence of an external magnetic Seld (B0=0)

In this case g =0, ei=ell=e, api =ap2=i (x ecr )—2 212
G

&
+G2 —+0 as g ~0, and one obtains the dispersion rela-

tion of a pure surface mode [27]
and

J0( p))=
Z P J (g)

Ki(a„) e I, (ap)V + p

a„K0(a„) a I0(a„)
(16)

gp(p) =i
x J0(g)

C. In6nite external magnetic Seld (Bo~ ao )

with f i
=f2 =0.5. Now we have only three wave com-

ponents:
In this limit, ei~1, g~ —0, ap, =Q —ella„ap2=ia„,

G, =0, G2~ —~, and Eq. (13) reduces to

I0(ap )
' "

ap I0(ap )
K, (a„) =0,
K0(a, )

(18)

~( )
lecT i pp g

I (a )

a I0(ap )

which is the dispersion relation of a pure TM pseudosur-
face mode. Now f, = 1,f2

=0, with
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gp( )
0

ff UpJo( —e a,p)

Jo(V

balance equation is derived from Poynting's theorem for
both media making use of the boundary conditions (3). It
takes the simple form

x Ji(+ esca.p)6"~(p) =i —e
d S=-
dz

(19)

and

J,(Q —e'((a„p)
lla J (~ )

The high-frequency generalized surface-wave-energy-

where S is the wave power and Q is the absorbed power
per unit length. The former can be represented as a sum
of the axial components of Poynting's vector averaged
over the wave period 2~/co and integrated over the plane
normal to the plasma column, from the axis to inanity, at
a given axial position z. It is

= —R 6"
4

J, (a*2 )

J,(a,*, )

J, (a*, )

Jo(ar*, )

J)(a„*z)

Jo(a„*z )

[(a~*, ) +a (X —1)]+xGf Gz

[(a~*,)'+o'(n —1)]+x6,*G,

S= 2' Re f dr r(6'~*X~ 6'~*M—)+2' Re f dr r(e„'*S&—@+*X„'),
8m 0

[(a* ) +o. (X—1)]+xG&G,

f ffz 1

(a~*, )' —a~z a

fzfz 1

(a*, )' —a', Qpp

J, (a &)

a„, Jo(a~, )

a~, Jo(a~, )

J )(a„z)
a z Jo(a z)

a z Jo(a z)

+—(1+C*C) 1—1 ~ x
a

U

K, (a, ) 2 K, (a, )

ICzo(a„) a„&o(a, )
(20)

where C =f,6, +fzGz. As usual, the asterisk denotes a complex conjugate. Note that at any given position z along
the discharge tube S (z) is the wave power necessary to sustain the rest of the plasma column, as we assume that at the
end of the column S(z,„d ) =0. The absorbed power per unit length is

R . . Q7 + RQ=2~f dr r(j E) =i (e,* —e;)f—dr r"@,.4'*

=—f dr r[Im(F~)(J@, f /6 J ) (Z~~)J6' )~+i Im(g)(8~8~* —6~6~')]

vs 8—1

4
fff 1 1 Jl(ay*i )

(a,*i )' —a,', a,*i Jo(a,*i ) a, i Jo(a, , )

1+0 [(a", ) +o(N —1)][a,+o. (%.—1)l+a' Gt G,(1—0) 'x

—[G,*[az, +oz(X —1)]+G,[(a*, ) +~ (% —1)]]

fzf, 1 J)(a~z) 1 J)(a~))+
Z 2

p2 ) a&~ a&2 0(a@2 ) az& Jo(az&)

z z z f(a~*2) +o' (%—1)][a &+~ (X —1)]+cr Gz6&(1—Q) x

, , —[Gz [a~)+a'(~ —1)]+G,[(a~; )'+o'(n —1)7]

apz . ate*i Jo«;&) &pz Jo(a, z)



MODELING OF A PLASMA COLUMN PRODUCED AND. . . 2631

1+0
2 2 2 [(a'i) +cr (N —1)][a 2+cr (N —1)]+o GiG2

(1—0) x

—2 2 2
—IG;[a~2+cr (N —1)]+G2[(a~*,) +o (N —1)]j

(1—02)2 x

f2f2 1 Jl(a 2 ) 1 Ji(a 2)+
(a&p ) a&p a&p Jp(a&p ) ap2 Jp(ap2)

X [(a*2) +o (N —1)][a 2+cr (n —1)]+o. G2G2
(1—0) x p2

—2 —[G2 [a 2+o (N —1)]+G2[(a'2) +o (n —1)]]

fifi
(a„*, )2 —a2,

fif2
(a~*, )'—a~2

, J, (a~*, ) J,(a, )
ap1 aplJp(a *i ) Jp(api )

r

, Ji(a "i ) J,(a, )
apl ap2Jp(a", ) Jp(a 2)

f2f&
(a~', )' —a~,

f2f2
(a "2) —a 2

J, (a~'~) J,(a, )
ap2 apl

Jp(a~'2 ) Jp(a~, )

J, (ai,*2 ) J, (a~2)
" J (a*, ) Jp(a 2)

(21)

Q
—

Q N 1+P (22)

where Q& is a constant of proportionality that does not
depend on the axial position. Q& may be determined
from an exact electron thermal energy-balance equation.
The different values of p correspond to different gas-
discharge conditions, namely p=0 (free fall or difFusion
regime) and 0&p 2 (bulk recombination regime). Rela-
tions (13), (19), and (22) constitute our basic set of equa-
tions.

Equation (19), with the help of expressions (20) and
(22), can be rewritten in a more convenient form by using
the dimensionless axial coordinate g= vz/cpR:

where e;. and e~; are the elements of the tensor ep. In
formula (21), the angular brackets denote an averaging
over the wave period.

In order to find out the axial distributions of the elec-
tron number density n, the wave number k, the wave-field
components, and the wave power S, we need one more
equation. Such an equation can be derived from the fol-
lowing considerations: the wave power absorbed per unit
length (Q) serves, under steady-state conditions, to main-
tain electron thermal energy, which is expended in excita-
tion, ionization, heating of the neutral gas, maintaining a
negative wall potential, etc. If the plasma is produced
primarily by single-step ionization (the rate of ionization
is then proportional to n) and if the main electron loss
process is the diff'usion of charged particles to the wall
(diffusion regime), in such a case Q ~n When .two-step
ionization and dissociative and/or bulk recombination
processes are dominant (the rates are proportional to n',
where 1 (s ~ 3), we have approximately Q ~ n', and the
gas-discharge regime is called a recombination one. All
these relations between Q and n can be incorporated into
one equation using the dimensionless variable N and the
number P=s —1 [32]:

N 1 +P
dg

(23)

where the dimensionless wave power S, =S/(cpRQ&/v)
1s

S~ =2E~L, (24)

L being the long expression in the large square brackets
of (20). Here, the normalized axial wave electric-field
component at the plasma-vacuum interface
E, (x,N) =8/(8Q&/vR )' is determined from (21) and
(22), and its square is

E, =N~/2H, (2&)

where H is the expression in the large curly brackets of
(21). Let us note that now the axial profiles of the dimen-
sionless electron number density N, the wave power S, ,
the wave number x, and all the wave-field components
are specified by the two equations (13) and (23).

The axial structure of the column plasma density as
well as the electromagnetic wave characteristics in the
limit of an infinite magnetic field (Bp~ ~ ) should be
determined by much simpler equations. In that limit,
first, the wave is a pure TM mode whose propagation is
governed by the dispersion relation (18). Secondly, the
expressions for S and Q, which follow from (20) and (21)
as Q~ ~, respectively, are

Ji( ) 2 Ji( )S =—R E (N —1) 1+
4 2a,' J'(g) k Jp(k)

K, (a„) 2 K, (a„)+1— +
&2p(a, ) a, Kp(a„)

(26)

and
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1, , 1 Ji(g)
(27)Q = vN—R 6' —1+

4

where g,
= y —

g~Ia, . The corresponding dimensionless
wave power ~ aS (and the squared normalized axial
wave-electric-field component at the plasma-vacuum in-
terface E,„),which should enter Eq. (23), now become

J', (g) 2 J, (g)S:Ex(N1)1+
Jo o

zoneo
20

I

I

16
I

I

I

12
1

I

N

1

8

zone 1 zone 2

where

E, (a, ) 2 IC, (a, )
+1— +

+o(a ) a, Ko(a, )

2a (28)

0
1

'

2 3
'

4
X

I I I I i I & I

5 6 7 8

E =N~j[1+J,(g)/Jo(g)] . (29)

Expression (28), with the help of dispersion relation (18),
may be reduced to the form

FIG. 2. Phase diagrams in the zero, rst, arst and second zones at
0=5 (strong magnetic field) for cu-r o.=0 (dashed curves) and
o.=0.5 (solid curves).

S~ =E~ xN/a, , (28')

h t 11 generalizes the simplest orm of S, in

the electrostatic limit cr~0 (c.f. expression
[32]).

IV. NUMERICAL SOLVING OF THE BASIC
SET OF EQUATIONS AND RESULTS

The axial structure of the plasma column density, elec-
trornagnetic wave-field components, and dispersion
characteristics are specified by the two basic equations
13) and (23). The manner of their resolution is the fol-

lowing: from the local-dispersion relation (13), for a fixed
value of z (or g), one can obtain the dependence of the i-
mensionless electron number density N on the normalize

b N=N(x). Further on, that relation is
tialintroduced into the right-hand side of the differentia

(23) d the latter is solved numerically. We
note that the equations (13) and (23) contain Besse unc-
tions with arguments a, 2 and a, . f,= — '~ isn a. Ifa =x —o. '~ is
always real, the values of a, 2 g y piven b ex ression (7)
mig t crea, ''

h b 1 imaginary, or complex conjugate, depend-
ingon eex eth t mal magnetic field Bo (respective y, e

r o. and the lo-wave frequency co and column radius R (or o ) an t e o-
cal magnitude of the electron number density n (or N).
As Q(1 (a "weak magnetic field" [32]) the arguments
ap J 2 are complex conjugate or imaginary depending on
the value of z. With high enough wave power (respective-
ly long co umns, a

& 2 nea1 ) ear the exciter should be complex
conjugate, becoming a somet ome z to the end of the column
imaginary. For short plasma columns it is possible for
the arguments a

& 2 to be only imag' y
'

inar in the whole re-
gion from the exciter to the column end. In the opposite
case 0 ) 1 (a "strong magnetic field" [32]) the situation is
more complicated —along the column length ap& 2 might
be corn lex conjugate, both real (or imaginary), and onee comp ex c
real, the other imaginary depending on the par

'
the articular

along t e co umn, eh 1 the wave changes its character and
may be a generalized surface mode, pure surface mode, or

a pseudosurface one [32,34]. For an infinite magnetic
field (Q,~ ~ ) the electromagnetic wave is a TM pseu-
dosurface mode everywhere.

Due to the specific character of the arguments a
& 2 ex-

ressions (20) and (21) for S and Q cannot be used direct-pressions an
ly for numerical calculations, since some of the denomi-
nators, for given a

& 2, become equal to zero. In t ose
cases the corresponding expressions, obtained from in-
tegrals of the kind f dw w J„(y,w)J„(y2w), must be re-

2placed with others calculated from fdw w J„(yw).
As in the case of electrostatic waves [32], 1,for 0) 1,

dispersion re a ion1 t' n (13) possesses multivalued solutions
N(x). In Fig. 2 we present the phase curves [N= x

fi d ~j

'
the zero, first, and second zones for A=5

and for two values of o: cr =0 (electrostatic hmit, as e
curves) an cr= . sand cr=0. 5 (solid curves). The infiuence of the

arameter o. is strongest in the zero zone and it decreasesparame er o. is s
with the increase of the zone num er. Ar. A similar situation
is valid for an infinite magnetic field (Q~ ao ), too.

The axial profiles of the normalized electron number
density N for the zero, first, and second zones in t e
diffusion gas-discharge regime (P=O) for the same values
of Q and u are shown in Fig. 3. As one sees from this

profiles of N is visible only in the zero zone —in the other
zones there is not practically any difference. The same is
valid also for the wave power S, . However, o. changes
the course of the wave number x (g) as well as the course
of the wave-electnc-field components

'
in all zones. The

situation is simi ar or'I f the case of a recombination gas-
~ ~ ~ ~ ~

discharge regime, as well as in t e limit of an infinite
external magnetic field (Q~ ~ ).

From an experimental point of view, yonl the zero
zone is interesting. p oU to now there have been no resu ts
concerning e susthe sustaining of a plasma column due to
waves cororresponding to the other zones. e axia

er densit,profiles of the dimensionless electron number d y,
wave num er, wave power,wer and wave-field components in
the zero zone have been calculated for two different gas-
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FIG. 12. Structure of the normalized ~E„(p,g}~ wave-field
component at o.=0.05 and 0=0.6 (weak magnetic field) in free
fall or diffusion gas-discharge conditions (P= 0).

FIG. 14. Structure of the normalized ~B (p, g)~ wave-field
component at o.=0.05 and 0=0.6 (weak magnetic field) in free
fall or diffusion gas-discharge conditions (P=O}.

one can see the structure of both type of waves in Figs.
11—16, where we show three-dimensional plots of the E„
E„,B„and 8 wave components as well as the total elec-
tric and magnetic wave fields —the view is from the end
of the column to the wave exciter. We note that the 8,
component, which is very small at the plasma-vacuum in-
terface, becomes much larger into the column.

For a strong magnetic field (0) 1) at large cr's the
wave normally is a generalized surface mode, which, near
the end of the column, becomes a pseudosurface one. At
small o's and short columns, the wave is dominantly a
pseudosurface mode —for o- =0 the wave is a pseudosur-
face mode everywhere [32]. The structures of the E, and
E„wave components (for cr =0.2 and 0=2.5) are shown
in Figs. 17 and 18. The structure of the 8, and B„com-

ponents is similar to that for the case of a weak magnetic
field, but now their magnitude is of one order larger. The
total electric and magnetic fields are shown in Figs. 19
and 20.

We note that the E and B, wave components in both
cases are generally small quantities, and they have their
largest magnitudes at the plasma-vacuum interface, being
equal to zero at the column axis.

V. COMPARISON WITH THEORETICAI.
AND KXPKRIMKNTAI WORKS

The axial and radial profiles obtained here are in di-
mensionless quantities, while all known theoretical and

a)0Q.
0)50.
0)0Q.
Q10

0 g1
00&0.
000

g.0

E~.~a( 0-

OQ

FIG. 13. Structure of the normalized ~B,(p, s)~ wave-field
component at o.=0.05 and Q, =0.6 (weak magnetic field) in free
fall or diffusion gas-discharge conditions (}33=0).

FIG. 15. Structure of the normalized ~E„„,(p, g)~ wave field
at o.=0.05 and Q=0.6 (weak magnetic field) in free fall or
diffusion gas-discharge conditions (P=O}.
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mode (see Figs. 11 and 15). Figure 4(c) gives the radial
structure of the wave electric field at a strong magnetic
field (0=4) near the wave exciter where the wave is a
generalized surface mode (see Figs. 17 and 19), classified,
however, by Pasquiers et al. as a surface wave. Figure
4(d) illustrates the case of a pseudosurface mode (strong
magnetic field, end of the column), termed by the authors
a volume wave. For long columns (large N) near the
wave exciter, the wave is a generalized surface mode both
for weak and strong magnetic fields (see Figs. 15 and 19).
Such a situation is presented in Fig. 4(a), where the wave
is called a surface wave. In the case of a strong magnetic
field the A'„wave component is, however, much larger
than that for a weak magnetic field. At strong magnetic
fields, the 6, and 8„components are of the same
order —so Fig. 4(a) is relevant only for weak magnetic
fields.

VI. CONCLUSIONS

In this paper, we have presented a model of a low-
pressure plasma column sustained by a traveling elec-
tromagnetic wave in the presence of an external axial
magnetic field. The axial and radial structures of the
wave-field components as well as the axial profiles of the
wave number, wave power, and plasma column density
have been obtained in suitable dimensionless quantities.
This allows, for a given product wave frequency-plasma
radius coR at a fixed external magnetic field, the measure-
ments for different gas pressures to be presented by one
theoretical N g(or S„-g)-curve, i.e., the model might be
considered as a general one. We emphasize also that the
model is applicable for each gas irrespective of its nature.

We have studied the inAuence of the parameters
A=co, /co and o =coR/c on the axial profiles of the
wave-field components, wave number, wave power, and
plasma column density for two gas-discharge regimes—
free fall or difFusion (P=O) and recombination (P= 1)
ones. The results obtained show that only strong enough
magnetic fields (0 ~ 2. 5) change significantly the plasma
column and electromagnetic wave parameters. The case
of a weak magnetic field (0 & 1) does not represent any

practical interest. This model is not applicable as the
wave frequency co tends to the electron cyclotron fre-
quency co, (0=1).

The external magnetic field decreases the axial plasma
density gradient and increases the column length for a
fixed electron number density and/or wave power near
the wave exciter —the stronger the magnetic field, the
longer the column length. The magnetic field also
changes the structure of the electromagnetic wave. Due
to the plasma anisotropy, the wave is neither a TM nor a
TE mode —it possesses all six components. Nevertheless,
the 6, component is larger than the %, one, so the wave
should be classified as an EH wave. We emphasize that it
is not a pure surface mode —almost everywhere the wave
is a generalized surface mode, becoming at the column
end a pure surface wave (for weak magnetic fields, Q & 1)
or a pseudosurface one (for strong magnetic fields, Q ) 1).

This model shows that the electrodynamical treatment
is necessary for those experimental setups for which the
magnitude of the parameter o. =coR/c is large enough.
For small o's (say, cr &0.1), however, the simplest elec-
trostatic model [32] might be used. We note also that the
influence of 0. on the plasma column parameters is simi-
lar to that for an isotropic plasma [28].

The agreement between our model and the available
experimental data is acceptable. Obviously, for a more
adequate and self-contained description, the model
should include the presence of a dielectric container and
a correct theoretical calculation of the collision frequency
for momentum transfer v and the mean power 0 required
for maintaining an electron-ion pair in the discharge.
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