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We present the basic equations for modeling a plasma column produced and sustained by a traveling
electromagnetic wave in the presence of a constant external magnetic field. The model consists of two
equations—a local-dispersion relationship and a wave-energy-balance equation—and a relation between
the absorbed wave power per unit length averaged across the column (proportional to the squared-wave
electric field) and the local electron number density. The dispersion relation and the balance equation
are derived in explicit forms and depend on two numerical parameters 0 =wR /c (o being the wave an-
gular frequency, R the plasma column radius, ¢ speed of light) and Q=w, /® (@, is the electron cyclo-
tron frequency). The limit of an infinite external magnetic field (21— o) is also considered. The
influence of the two parameters () and o on the dimensionless axial profiles of the wave characteristics
and plasma column density, obtained by numerical solution of the basic equations, has been studied for
two different gas-discharge regimes. A three-dimensional wave structure has been obtained, and it is
shown that the wave can be a generalized surface mode, a pure surface, or a pseudosurface one. The re-
sults obtained are in agreement with the available experimental data.

I. INTRODUCTION

In recent years, increasing interest has been shown in
the study of rf and microwave discharges produced and
sustained by traveling electromagnetic waves. Due to
their stability and good reproducibility over a large pres-
sure range, such discharges have found many applica-
tions in various fields of technology and research [1-4].
Up to now, these discharges have been extensively stud-
ied mainly for isotropic plasmas, for various operating
conditions, namely gas nature [2-10], pressure
[7,8,10,11], plasma radius [7,12,13], and wave frequency
[12]. The rf or microwave power, supplied by a high-
frequency generator, is coupled to the discharge through
a matched structure (sometimes referred to as surfatron
[14], surfaguide [15], waveguide surfatron [16], or Ro-box
[17]), and is carried by an electromagnetic wave simul-
taneously propagating and ionizing the gas. Note that
the physics of the phenomenon is the same for all these
wave exciters. In fact, the electric field of the wave heats
the electrons that ionize the gas, ensuring in this way fur-
ther wave propagation. The wave power axially de-
creases from the gap of the exciter to the end of the plas-
ma column, due to energy transfer of the high-frequency
field to the electrons. Thus, the electron number density
also decreases along the column.

It is natural to expect that a constant external magnet-
ic field should visibly change the conditions for plasma
column production, as well as the structure of the column
itself. First, in a magnetic field, the plasma becomes an-
isotropic, which reflects in a change of the propagation
characteristics and field structure of the electromagnetic
wave. Second, a relatively strong axial magnetic field
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must reduce the radial electron diffusion, which leads to a
decrease of the axial plasma density gradient and the
electron temperature, too. There are few experimental
results concerning the influence of the magnetic field on
an electromagnetic-wave-sustained plasma column. Moi-
san et al. [18] state, from experiment, that a constant axi-
al magnetic field facilitates plasma production. In anoth-
er work by Moisan, Pantel and Ricard [19], the effect of
such a magnetic field on the density radial distributions
of excited atoms (in radiative and metastable states) has
been studied experimentally. Recently, Pasquiers et al.
[20,21] reported on an experimental investigation of a
low-pressure argon discharge produced by an electromag-
netic wave with an external magnetic field. Anghelova
et al. [22] have examined experimentally the axial
profiles of the plasma parameters (electron temperature
T, and the electron number density n) of a helium low-
pressure gas-discharge column sustained by a traveling
electromagnetic wave in the presence of a magnetic field.
It is found that the electron temperature is diminished
and the plasma density is increased (accompanied by a
decrease of its axial gradient) in comparison with the
magnitudes of the same parameters and characteristics of
an isotropic plasma column.

The modeling of a plasma column produced and sus-
tained by a traveling electromagnetic wave is a challeng-
ing task. Most of the observed axial structures of low-
pressure gas discharges in the absence of a magnetic field
are adequately described by the existing theories (Glaude
et al. [5] Mateev, Zhelyazkov, and Atanassov [23],
Zakrzewski [24], Ferreira [25,26], Zhelyazkov, Benova,
and Atanassov [27], Zhelyazkov, Atanassov, and Benova
[28], Boisse-Laporte et al. [8] Sa and Ferreira [29], Zhe-
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lyazakov and Benova [30], and Benova and Zhelyazkov
[31]) assuming that the sustaining electromagnetic wave
is an azimuthally symmetric surface TM mode. A
theoretical model of a plasma column produced by a
guided electrostatic wave in the presence of a constant
axial magnetic field B, (Zhelyazkov, Benova, and Atanas-
sov [32]) shows that a significant influence of the magnet-
ic field on the properties of the plasma column occurs
only when the angular wave frequency w is lower than
the electron cyclotron frequency w, (=eB,/mc), that is,
when o, /w=Q>1. The magnetic field (called a “strong
magnetic field” as ) > 1) modifies the wave-field structure
(in the electrostatic limit the wave becomes a pseudosur-
face [33] mode) and decreases the axial plasma density
gradient. Moreover, it is predicted that for a given high-
frequency power emerging from the wave launcher, the
column length should increase with increasing Q, i.e., the
stronger the magnetic field, the longer the column length.
The characteristics of the plasma column should depend
also on the gas-discharge regime (a diffusion or recom-
bination one), specified by the gas pressure, the tube di-
ameter, and elementary processes in the ionized medium.
Recently, Pasquiers et al. [34] presented an experimental
investigation on the action of a static magnetic field on an
argon discharge produced by a traveling wave. Their pa-
per includes also some theoretical modeling based on an
electromagnetic treatment of the problem. Both their ex-
perimental and theoretical results generally confirm the
main conclusions of Refs. [22] and [32], pointing out,
however, the narrow range of applicability of the simplest
model [32] (at low electron number densities and low mi-
crowave frequencies).

It is the purpose of this paper to present a general
model of the axial structure of a plasma column sustained
by an electromagnetic wave in the presence of an external
constant axial magnetic field, as well as the axial profiles
of all wave characteristics (wave number, wave power,
electric and magnetic wave-field components). If the
theoretical modeling of Pasquiers et al. [34] considers
only a particular experimental setup (given plasma ra-
dius, wave frequency, gas pressure and magnetic-field
ranges) assuming occurrence of diffusion gas-discharge
conditions, we study the dependence of the discharge
anatomy and wave characteristics on dimensionless pa-
rameters calculated on the basis of different plasma radii
R, wave frequencies w, external magnetic-field inductions
By, and gas-discharge regimes (free fall or diffusion and
recombination ones). Moreover, we examine the limiting
case of an infinite external magnetic field (By— ), as
well as the possibility of creating plasma columns by
means of “zone-depending” electromagnetic wave modes
when the magnetic field is strong enough (Q2>1). The
latter directly follows from the possibility for multivalued
solutions to the wave dispersion relation [32].

It has been shown in Ref. [27] that the axial structure
of a plasma column produced by an electromagnetic sur-
face wave under the assumptions for weakly collisional
plasma (v<<w, v being the collision frequency for
momentum transfer) and slow axial variations of the elec-
tron number density, the wave number, and the wave-
field components is specified by an equation connecting
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the surface-wave dispersion characteristics and plasma
column parameters [Eq. (9) there]. In the zeroth-order
approximation with respect to all logarithmic derivatives
on z contained in that equation, one obtains a local-
dispersion relation, while the first-order approximation
(9) gives an equation for the balance of the surface-wave
energy in a column with weak longitudinal density inho-
mogeneity. The numerical solving of these two equations
with additional assumptions (concerning the gas-
discharge regime) specifying the relation between the
squared-wave electric field |E|? and the local electron
number density n gives the axial structure of the column.
The same results follow from the solving of independent-
ly derived dispersion and energy balance equations
[35,28]. Further on, we will follow the concept used in
Refs. [28] and [32]—it is more convenient and more in-
structive to derive a local-dispersion relation and solve it
together with a wave-energy-balance equation assuming a
suitable additional condition between |E|? and n. As a
result, one obtains ‘‘universal” axial profiles of dimen-
sionless electron number density and all wave charac-
teristics depending on three numerical parameters. In
addition to our previous works, we give here the axial
dependencies of all electromagnetic wave-field com-
ponents as well as their radial distributions in order to
compare the latter with similar figures plotted by
Pasquiers et al. [34]. Finally, we apply our theoretical
results to particular experimental data.

The organization of the paper is as follows. In Sec. IT
we present the formulation of the problem and the basic
assumptions. Section III is devoted to the derivation of
the dispersion relation and the wave-energy-balance
equation. In Sec. IV we expose the numerical calcula-
tions and results, and in Sec. V give the comparison with
the experiment. The paper ends with a discussion con-
cerning the future improvement of the model.

II. FORMULATION OF THE PROBLEM
AND BASIC ASSUMPTIONS

We consider a cylindrical plasma column of radius R
sustained by a high-frequency azimuthally symmetric
electromagnetic wave of angular frequency w excited at
the one side of the tube (Fig. 1). The plasma is immersed
in a constant axial magnetic field B;=(0,0,B,). Since
the wave frequency w and electron cyclotron frequency
o, are normally much higher than the ion plasma and ion
cyclotron frequencies, further on we can neglect the ion
dynamics. We assume that the electron number density
is radially constant:

n=n=2/R> ["drrn(r,
0

but it may depend weakly on z. For simplicity, the
electron-neutral collision tensor is considered to be iso-
tropic, so we can use the usual collision frequency for
momentum transfer v. The electromagnetic wave propa-
gates without any reflection along the plasma column,
and the latter is assumed bounded by vacuum. At
present we ignore the effect of the plasma container (a
dielectric tube with given thickness and permittivity) and,
say, a metal screen on the dispersion properties of the
wave and on its energy outlay. The plasma anisotropy,
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FIG. 1. Schematic view of an experimental situation.

caused by the external magnetic field B, is taken into ac-
count by presenting the plasma permittivity in a tensor
form:

€ g o0
€= —ig e 0, (1)
0 0 %
with
g =1-w)(ot+iv)/ol(o+iv)’—al],

§=1—0}/o(w+iv),
§=w}2,wc /ollo+iv)?—w?] .
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Here (op=(417-ne2/m) is the electron plasma frequen-

cy.
An essential feature of the problem is that we consider
the plasma created as a weakly collisional one (v <<w);
moreover, the wave frequency o is far enough from the
electron cyclotron frequency w.. Then by neglecting the
small terms of order v /w? or v* /(0> —?), we have

€,=Re())=1—w}/(0*—0)=1—N/(1-0Q%),
e,=Re(¢)=1—w,/0*=1—N,
gERe(g'):wza)C/w(wz—w%)=NQ/(1-—92) ,
with N =n /n,, (n,, being mw?/4me?), Q=0 /o, and
Im(z)=(v/0)oi(0*+ol)/(0*— o)
=(v/0)N(1+0%)/(1-0%)?,
Im(g))=(v/0)w} /0*=(v/o)N ,
Im(g)=—2vo 0, /(0’—o})
=—2(v/0)NQ/(1—Q%?*.

The propagation of the electromagnetic wave along the
plasma column is governed by Maxwell’s equations for
both media (p, plasma; v, vacuum):

VxErv=—1 oo,
c at
vxpre=1 O po, @
c ot

D =€E.
In (2) €7 is taken from (1) and €=1, the unity matrix.
The boundary conditions express the continuity of the ax-
ial and azimuthal components of the electromagnetic
field at the plasma-vacuum interface (» =R):
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65ir=R:6’;lr=R’ $g|r=R:Blz,|r:R >
and
&l =6%l > Byl =B, . ®

III. DISPERSION RELATION
AND ENERGY-BALANCE EQUATION

In order to derive a dispersion relation and an energy-
balance equation for high-frequency electromagnetic
waves propagating along an axially inhomogeneous plas-
ma column, immersed in an external magnetic field By,
we take the wave dependence on space and time in the
form

&2l (r,z,t)=Re

nhe,z

FP?Y (r;z)6(z2)

nLe,z

X exp —iwt+ifzdz'k(z')] ,
Z0
(4)
By (rz,t)=Re | GPp ,(r;2)6(z)

Xexp

>

—iot+i [“dz'k(z")
Zo

where k is the wave number, F, . (r;z)é(z) and
G, .(r;z)6(z) are the wave electric- and magnetic-field
amplitudes, respectively, which depend slowly on z
[H YdH /3z)<<k, H being F, G, &, k, or n]; the r
dependence is specified by the governing equations (2). In
(4), 6(z) denotes |62(R,z)|. We note that for either
B,=0 or infinite B, the electromagnetic wave is a TM
mode (B,=0), whereas for finite B it is a hybrid mode
(8,70 and §,70). It is straightforward by introducing
the dimensionless variables p=r /R, x =kR, and the pa-
rameter 0 =R /c to obtain from Maxwell’s equations (2)
the following coupled equations for the dimensionless ax-
ial wave components into an ionized medium:

1 3 .
S P ap’ +aF,+iaG,=0,
5G (5)
1 3 z . _
;—a; p 3 —yG,—iagF,=0,
where
a=—¢(x*—o%) /¢, ,

y=x’—o% (1—g2/€),

a=xo0g/€ .
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In Egs. (5) all terms of O((1/k)(9/9z)InH) (H being F,,
G,, €, €, &, or k) have been neglected. We seek the solu-
tions to (5) using the ansatz

Jola,p)
F (p)=f—21—
2(p) fJo(a,,)
and
Jola,p)
G,(p)=h—21—,
-(p) Jolay,)
which immediately yields
Jola,p) Jola,,p)
Fp)=f, b, B
J()(apl) JO(apZ) ©)
Jo(a lP) Jo(a zp)
G?(p)= A L e =T ,
pI=f1x Jola,) 72 Jgla,,)
where
a, ,=(Ha—y£[(a+y)*+4a%]"*})"? (7)
and
a—a
XIE% =i a"l—iGl,
P (8)
h .a_ap2 .
Xo=—7% = =iG
2 fla =a,, a 2
Having derived the F, and G, components, from

Maxwell’s equations (2) one can obtain all other wave
components, in particular

| 1 Jy(a,p)
P(p)=— | 21 (g2 2 2
FP(p) . apl(apl €0 Tola,)
f2 2 2 Jl(ap'zp)
+ap2(“p2 €,0°) Totay) |
Ji(a,p) Ji(a,mp)
Grp)=x | 6, L1 L) G T2 Til4ap)
ay Jola,y) ap; Jolay,) ©)
Jila,p) Jila,p)
Fg(p)z_a. l;f_l__l_l’_lp_ Z_fii ,
apl JO(apl) apZ Jo(apz)
Ji(a,p) J )
Gﬁ,(p)=—ie”a —f—l— 1 %p1P —J—ti 19p2P
a, Jolay)  ap Jolay)

In (6) and (9) J, and J, are the Bessel functions.

For vacuum, from Maxwell’s equations one obtains the
wave equations, whose solutions yield the axial wave-field
components

Ko(aup)
Ky(a,)
and (10)

v s Ko(avP)
GJ(p)=iC Ko(a,) ’

Fp)=4
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where a, =(x?—0?)!/2. The azimuthal wave components

in vacuum have the simple form

K (a,p)
v — ag 1'%y
Fo(p) o C————-—KO(av)
and (11)
K (a,p)
v _.0 1'%y
=L 44—
GolP) =i A% (@)
while the radial ones, respectively, are
K (a,p)
X 1'%y
Flp)=i—A———
AP A K ()
and (12)
K (a,p)
X 1%y
Gl p)=——C———
/P a, Kyla,)

Here K, and K, are the modified Bessel functions of the
second kind, and 4 and C are constants. We notice that
one assumes that the argument a, is a real number, which
means that the electromagnetic wave is a slow one—
voh=w/k <c.

By imposing the boundary conditions (3) we find the
following local dispersion relation of an electromagnetic
wave traveling on a plasma column immersed in a con-
stant magnetic field:

1 Kila,)) ¢ Jila,) || 1 Kila) 1 Jy(ay)
a, Kola,) a, Jola,) | |a, Kola,) a, Jolay,)
_I_Kl(av) ﬂ_Jl(apz) _I_Kl(a,,) _I_Jl(apl)
a, Kola,) a, Jolay,) a, Kola,) a, Jola,)
G,
=— . (13)
G,

Boundary conditions (3) allow us to obtain also the ex-
pressions for the coefficients f, and f,, namely

Alw,a,,)
fi= =
€18(a,1,ap,)
and (14)
Alw,a,,)
f2=__1—1’1 )
€Ala,,a,,)
where
Ji(ay,,) Jila,y)
A(appapz)EL,I_pz__Lﬁ ,
ap Jolayy)  a,y Jolay)
and
A(w,ap)ELKl(a”) € Jila,) .
a, Kola,) a, Jola,)

We note that the equation A(w,a,)=0 would give us the
dispersion relationship of pure TM surface of pseudosur-
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face waves propagating along the column.

Dispersion relation (13) govern the propagation of a
generalized surface mode in cylindrical geometry. Re-
cently Ivanov, Alexov, and Malinov [36] presented the
dispersion relation of symmetrical electromagnetic waves
in a partially filled plasma waveguide (Eq. (4) in Ref.
[36]). In the limit of absence of any metal tube their
equation is equivalent to our (13) if, however, one
corrects three misprints: namely, the comma on the first
line of Eq. (4) is superfluous; on the second line a factor of
€, should be inserted in front of B;_;; and the index i of k
in the expression Py(k;a) must be replaced with 3—i. We
note that it is straightforward to generalize (13) for the
case of a plasma column of radius R surrounded by a
J
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metal tube or screen of radius R, —in that case, by as-
suming the basic wave-field components in the vacuum in
the form

Ky(a,p) Iy(a,p)
Flp)=4
S AR ACR I
Ky(a,p) Iy(a,p)
Yp)=iC + ,
GAPI=iCy @ TP Toay)

and by imposing the additional boundary condition
F;=F,=0 atp=n,

where 7=R /R, one arrives at

LV(av)—i—iJl(apl) —1—~W(aU)+LJ1(ap2)
a, apl JO(apl) a, ap2 Jo(al’z) ___:__(_;_l (15)
‘LV(a )+_eLJ1(ap2) —l—W(aU)+—l—J1(apl) G,
ay; Jolay,) a, a,; Jola,)
where
Via,)=[K,(a,)+Ko(na,)l(a,)/Io(na,)]/[Kola,)—Ko(na,ola,)/Io(na,)],
W(a,)=(K(a,)=K1(na,)(a,) /I (na,)1/[Ko(a,)+ K (na,)o(a,)/11(na,)] ,

and I, and I, are the modified Bessel functions of the
first kind. Obviously, Eq. (15) is more compact and read-
able than Eq. (4) in Ref. [36]. Now, the equation

1 Jila,)
a, Via )+ Jo(a)—

would present the dispersion relation of a pure surface or
pseudosurface electromagnetic mode in a partially filled
plasma waveguide—in the 11m1t n— o, V(a,) and
W(a,) tend to K,(a,)/Ky(a,), i.e., (15) passes into (13).
Equation (13) naturally includes the simpler cases as fol-
lows.

A. Absence of an external magnetic field (B,=0)

In this case g =0, €, =€, =€, a,,=a,,=i(x*—€d?)'?,
G,+G,—0 as g—0, and one obtains the dispersion rela-
tion of a pure surface mode [27]

K, (a,) I(a,)

L 1'%y € 1\%p =0 (16)

a, Kola,) a, Iya,)

with f,=f,=0.5. Now we have only three wave com-
ponents:

Iy(a,p) x I(ayp)
P(p)=— P" " P(p)= —j2- L P
GE(p) Io(a ) &, &8(p) a, Toa,)
and
I(a,p)
BP — 160 p
glp) a, Iyla,)

B. Electrostatic limit (By,70)

In that case o=0, a=0, ap,r—_§=(-—6“1\:2/el
ap2 =ix, a,=x, G;—0, G,— — «, and the wave disper-
sion relatlon becomes [32]

2
)1/ ,

lKl( )
xKO

€ J (§)

(a7
£ Jo(§)

For Q=w,/w>1 the wave is a pseudosurface mode,
while for Q <1 it is a pure surface one. In both situations
f1=1and f,=0, and the only wave components are

Jo(ép)
= &
EL(p)= To(E)
and
J(Ep)
/4 = _§_ é .
&h(p)=i FaATS

C. Infinite external magnetic field (By— o)
In this limit, €, —1, g——0, a,;=V —€q,, a,,=ia,,
G,=0, G,— — o0, and Eq. (13) reduces to

‘/_.._J (V' —e@,)
€ Jo(\/ €a,) Ky(a,)

=0, (18)

which is the dispersion relation of a pure TM pseudosur-
face mode. Now f,=1, f, =0, with
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balance equation is derived from Poynting’s theorem for

Jo(V —€,a,p) ) . o

E(p)=——F——6, both media making use of the boundary conditions (3). It
Jo(\/_euﬂu ) takes the simple form
R — d
&rpr=in/ e XTIV Zaap) o Ls=—0, 19)
2 Jo(V —¢a,)
and where S is the wave power and Q is the absorbed power
o per unit length. The former can be represented as a sum
Co— 1V —€,a,p) of the axial components of Poynting’s vector averaged
3Iq’J(P):"/_ell(l_—.,_(‘/?—)g . over the wave period 27 /w and integrated over the plane
voro €1 normal to the plasma column, from the axis to infinity, at
The high-frequency generalized surface-wave-energy-  a given axial position z. It is
J

s= [217' Re [ “ar (678~ 652 B+ 2w Re [ dr r (61 By~ 64*B)) ]

x _ Jak) 1 Jila,)
—opig| TS AN et oy 1)) +xGiG, | |t L )
JR6 (af P—al, [(a);) 4o ] I ap Jolad)  ap Jolay)
* _ Jiak) Ji(a,;)
*fzzfl 3 y 1[(0;2)2+02(N—1)]+x63‘611{ 1* ! 1;2 __1 Jiian
(apz) —apl apz JO(ap2) apl JO(apl)
* _ Ji(a}) J(a,,)
T2 IN=Ljon 102N —1)] 45676, e BhAL (LN s 2
(apl) —ap2 apl Jo(apl) apz Jo(apz)
* _ Ji(ak) Ji(a,,)
fifs \N Lltas) 2 4+0%n —1)]+x636, | |-tz L~
(a5 —ah ak Jolag) @y Jolay)
1 X Ki(a,) 2 Ki(a,)
2! )auz K3(a,) a, Kyla,) (20)

where C=f G+ f,G,. As usual, the asterisk denotes a complex conjugate. Note that at any given position z along
the discharge tube S(z) is the wave power necessary to sustain the rest of the plasma column, as we assume that at the
end of the column S(z,,4)=0. The absorbed power per unit length is
R . . R
Q=21rf0 dr r(]~E>=z%(e,*j—eﬁ)fo drré,6}

R
=4 [ dr rlIm(@)(| 6212+ 65+ Im(e))| 6217 +i Im(g (6262* — 62,62%)]

=lvNR2c’5’2 fif LJl(ap*l)__l_Jl(apl)
4 (ap*l )2_ap21 a;l Jo(ap*l) a, Jo(apl)
2
——(lljgz)z %[(a,,*, )2+02(N—1)][ap21+02(N—1)]+02G’1"GI}

—2 (1‘3_3—2)2 %{Gf[apz‘ +0% N —1]+G[(a})*+oXN—1)]} ]

f3h

*\2__ 2
(apZ) apl

LJl(ap*Z) 1 Jila,)
a;z Jo(ap*z) apl JO(apl)

2
x l_lﬂl_ [%ua;z P+oXN —1)]la}; +oXN —1)]+02G3G,
X

(1—02)?
_2'—‘-—(1332)2 %{G;‘[apz] +o N —1)]+G,[(a} ) +0%n — 1]} }
f?fz J_Jl(ap*l)_ 1 Jl(apz)
(a7 —a} |a} Jolak)  ay, Jolay,)



44 MODELING OF A PLASMA COLUMN PRODUCED AND... 2631
1+ 02 1
[m ?[(ap*l)2+02(N-—1)][ap22+02(N—1)]+02G’{G2
—2—98 LG a2 40N —1)]+G,l(af P +oXN —1)])
(1_92)2 x{ l[apZ 4 2 apl
f;fz _l_Jl(ap*Z)___l_Jl(apZ)
(a;z )2_(1P22 a;z Jo(ap*z) ap2 Jo(apZ)
1+0% |1
l m [F[(a;z )2+02(N—1)][ap22 +o0%n—1)]+0%*G3G,
298 L1024 02N —1)]+G,[(a% 2 +o2n —D]]
(1_92)2 x[ 2[ap2 g 2 p2
fifi a*Jl(ap*l)_ Jl(apl) f3f1 a,,,Jl(ap*2)__ Jl(apl)
(ay )2_%21 leO(a;l) PIJO(apl) (ap*z)z—apzl p2Jo(ap*2) leo(apl)
n foZ *Jl(ap*l)———a J](apz) + f;fz *Jl(ap*z)—a Jl(ap2) 1)
(ap*l )2_ap22 pl Jo(ap*l) p2 JO(ap2) (a;z )2‘"(1;2 p2 Jo(ap*Z) p2 Jo(apz) )
r
where €}; and €, are the elements of the tensor €. In das, .
formula (21), the angular brackets denote an averaging _d_g =—N ) (23)

over the wave period.

In order to find out the axial distributions of the elec-
tron number density n, the wave number k, the wave-field
components, and the wave power S, we need one more
equation. Such an equation can be derived from the fol-
lowing considerations: the wave power absorbed per unit
length (Q) serves, under steady-state conditions, to main-
tain electron thermal energy, which is expended in excita-
tion, ionization, heating of the neutral gas, maintaining a
negative wall potential, etc. If the plasma is produced
primarily by single-step ionization (the rate of ionization
is then proportional to n) and if the main electron loss
process is the diffusion of charged particles to the wall
(diffusion regime), in such a case Q <n. When two-step
ionization and dissociative and/or bulk recombination
processes are dominant (the rates are proportional to n°,
where 1 <s <3), we have approximately Q <n°, and the
gas-discharge regime is called a recombination one. All
these relations between Q and n can be incorporated into
one equation using the dimensionless variable N and the
number =5 —1 [32]:

Q=0Q,N'*P, 22

where Qg is a constant of proportionality that does not
depend on the axial position. Qg may be determined
from an exact electron thermal energy-balance equation.
The different values of 8 correspond to different gas-
discharge conditions, namely 8=0 (free fall or diffusion
regime) and 0 <3=2 (bulk recombination regime). Rela-
tions (13), (19), and (22) constitute our basic set of equa-
tions.

Equation (19), with the help of expressions (20) and
(22), can be rewritten in a more convenient form by using
the dimensionless axial coordinate {=vz /wR:

where the dimensionless wave power S, =S/(wRQp/v)
is

S,=2EL , (24)

L being the long expression in the large square brackets
of (20). Here, the normalized axial wave electric-field
component at the plasma-vacuum interface
E,(x,N)=6/(8Qz/vR*)!"? is determined from (21) and
(22), and its square is

E2=NP/2H , (25)

where H is the expression in the large curly brackets of
(21). Let us note that now the axial profiles of the dimen-
sionless electron number density N, the wave power S,
the wave number x, and all the wave-field components
are specified by the two equations (13) and (23).

The axial structure of the column plasma density as
well as the electromagnetic wave characteristics in the
limit of an infinite magnetic field (B,— ) should be
determined by much simpler equations. In that limit,
first, the wave is a pure TM mode whose propagation is
governed by the dispersion relation (18). Secondly, the
expressions for S and Q, which follow from (20) and (21)
as 1 — o, respectively, are

JAHE) o J(E)
W 5352 X 1 1
S.=2RE X (N—1) |1+ -2
~=% 22 | ’l THE € Tol©)

_Kia,) 2 K(a)

K3(a,) a, Kola,)
(26)

and
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where £=1/ —€,a,- The corresponding dimensionless

wave power S, (and the squared normalized axial
wave-electric-field component at the plasma-vacuum in-
terface E2 , ), which should enter Eq. (23), now become

JHE) o J (&)
Seo=E% x|[(N—1) |1+ —-=
x JAE) € Tol€)
K%(av) 2 Kl(av) 2
- = , (28
i K%((IU) a, KO(au) /av ( )
where
E2X, =NP/[1+J%E)/T5E)] . (29)

Expression (28), with the help of dispersion relation (18),
may be reduced to the form

S,.=E% _xN/a?, (28"

which, naturally, generalizes the simplest form of S, ,, in
the electrostatic limit o —0 (c.f. expression (23) in Ref.
[32).

IV. NUMERICAL SOLVING OF THE BASIC
SET OF EQUATIONS AND RESULTS

The axial structure of the plasma column density, elec-
tromagnetic wave-field components, and dispersion
characteristics are specified by the two basic equations
(13) and (23). The manner of their resolution is the fol-
lowing: from the local-dispersion relation (13), for a fixed
value of z (or §), one can obtain the dependence of the di-
mensionless electron number density N on the normalized
wave number x, N =N (x). Further on, that relation is
introduced into the right-hand side of the differential
equation (23) and the latter is solved numerically. We
note that the equations (13) and (23) contain Bessel func-
tions with arguments a,, , and a,. If g, =(x2—a?)?is
always real, the values of a,;, given by expression (7)
might be real, imaginary, or complex conjugate, depend-
ing on the external magnetic field B, (respectively Q), the
wave frequency o and column radius R (or o) and the lo-
cal magnitude of the electron number density n (or N).
As Q<1 (a “weak magnetic field” [32]) the arguments
a,, are complex conjugate or imaginary depending on
the value of z. With high enough wave power (respective-
ly long columns), a,; , near the exciter should be complex
conjugate, becoming at some z to the end of the column
imaginary. For short plasma columns it is possible for
the arguments a,, , to be only imaginary in the whole re-
gion from the exciter to the column end. In the opposite
case, 3> 1 (a “strong magnetic field” [32]) the situation is
more complicated—along the column length a,; , might
be complex conjugate, both real (or imaginary), and one
real, the other imaginary depending on the particular
values of Q, o, and z. This means that, propagating
along the column, the wave changes its character and
may be a generalized surface mode, pure surface mode, or

E. BENOVA, 1. ZHELYAZKOYV, P. STAIKOV, AND F. CAP

kS

zone O zonel zone?2

FIG. 2. Phase diagrams in the zero, first, and second zones at
Q=5 (strong magnetic field) for =0 (dashed curves) and
o =0.5 (solid curves).

a pseudosurface one [32,34]. For an infinite magnetic
field (Q— o) the electromagnetic wave is a TM pseu-
dosurface mode everywhere.

Due to the specific character of the arguments a,, , ex-
pressions (20) and (21) for S and Q cannot be used direct-
ly for numerical calculations, since some of the denomi-
nators, for given ap1,2 become equal to zero. In those
cases the corresponding expressions, obtained from in-
tegrals of the kind fdw wJ,(yw)lJ,(y,w), must be re-
placed with others calculated from [dw w J2(yw).

As in the case of electrostatic waves [32], for Q> 1,
dispersion relation (13) possesses multivalued solutions
N(x). In Fig. 2 we present the phase curves [N =N (x)
at fixed o] in the zero, first, and second zones for Q=5
and for two values of o: o =0 (electrostatic limit, dashed
curves) and o0=0.5 (solid curves). The influence of the
parameter o is strongest in the zero zone and it decreases
with the increase of the zone number. A similar situation
is valid for an infinite magnetic field (Q— ), too.

The axial profiles of the normalized electron number
density N for the zero, first, and second zones in the
diffusion gas-discharge regime (8=0) for the same values
of ) and o are shown in Fig. 3. As one sees from this
figure, the influence of the parameter o on the axial
profiles of N is visible only in the zero zone—in the other
zones there is not practically any difference. The same is
valid also for the wave power S,. However, o changes
the course of the wave number x (&) as well as the course
of the wave-electric-field components in all zones. The
situation is similar for the case of a recombination gas-
discharge regime, as well as in the limit of an infinite
external magnetic field (Q— o0 ).

From an experimental point of view, only the zero
zone is interesting. Up to now there have been no results
concerning the sustaining of a plasma column due to
waves corresponding to the other zones. The axial
profiles of the dimensionless electron number density,
wave number, wave power, and wave-field components in
the zero zone have been calculated for two different gas-
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FIG. 3. Calculated axial profiles of the normalized electron
number density N(§) for 0 =0 (dashed curves) and o=0.5
(solid curves) in the free fall and/or diffusion gas-discharge re-
gime (S=0) for a strong magnetic field (2=5) within the zero,
first, and second zones.

discharge conditions [diffusion regime (8=0) and recom-
bination one (8=1), respectively]. They depend on the
two parameters o and (). The dependence of all the
profiles on ) at a fixed value of o (=0.5) for a diffusion
regime can be seen in Figs. 4—-8. These figures include
curves, calculated both for weak magnetic fields (2 <1)
and strong fields ({2 > 1), as well as for the case of an iso-
tropic plasma (2=0) and an infinite external magnetic
field (Q— oo ). The curves, associated with the latter two
cases, are plotted as dashed lines. One sees that the
influence of a weak magnetic field on the plasma density
axial profile and on the structure of the electromagnetic
wave is negligibly small. The strong magnetic field
(©=2.5) changes both the wave characteristics and the
axial plasma density gradient. The dependence of the

FIG. 4. Calculated axial profiles of the normalized electron
number density N () for 0 =0.5 in the free fall and/or diffusion
gas-discharge regime (8=0) for different magnetic fields
(2=0.9, 2.5, 5, and 10). The dashed curves correspond to an
isotropic plasma column (2 =0) and to an infinite external mag-
netic field (©— o ), respectively.
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FIG. 5. Calculated axial profiles of the normalized wave
power S (&) for the same conditions as in Fig. 4.

plasma density profile N (&) (Fig. 4), wave power S, ({)
(Fig. 5), and the wave-field components E, (&) (Fig. 6) and
B (&) (Fig. 8) on the magnetic field () is monotonous and
all these curves lie between the profiles corresponding to
Q=0 and Q— . It follows from Fig. 4 that with the in-
crease of the magnetic field, the dimensionless axial plas-
ma density gradient decreases, and at a fixed value of N
near the exciter the column length increases. The same
conclusion is drawn from Fig. 5, too—at a fixed wave
power near the wave exciter, the stronger the magnetic
field, the longer the column length. We note that all the
wave-field components are evaluated at the plasma-
vacuum interface and they have been calculated as prod-
ucts of F, ,, or G, , with E, =& /(8Q5/vR?)"/%.

The behavior of the wave-field components E,({),
E(£), B,(§), and B,(£) turns out to be quite irregular.
For example, the E, component (Fig. 7) decreases with
the increase of () in the range 0—1.1; after that, the same
component starts to increase. Moreover, at Q=1.1, the
radial wave-electric-field component is generally very
small; it even becomes almost zero at some distance from
the end of the column [Fig. 7(b)]. It is interesting to note

2.5 ’—

2.0

0.5

0‘0 L 1 L 1 1 1 L 1 A L L 1 L 1 L
20 18 16 14 12 10 8 6 4 2 0

FIG. 6. Calculated axial profiles of the normalized E,(§)
wave-field component for the same conditions as in Fig. 4.
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FIG. 7. Calculated axial profiles of the normalized |E,(¢)|
wave-field component for (a) the same conditions as in Fig. 4
and (b) magnetic fields Q=0 (dashed), 0.6, 0.9, 1.1, 1.5, 1.75, 2,
and 2.5 at 0 =0.5 and B=0.
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FIG. 8. Calculated axial profiles of the normalized |B,({)]
wave-field component for the same conditions as in Fig. 4.
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FIG. 9. Calculated axial profiles of the normalized electron
number density N (&) at Q=2.5 (strong magnetic field) in the
free fall and/or diffusion gas-discharge regime (B8=0) for
different values of the parameter o (=0.05, 0.1, 0.2, 0.5, 1, and
2). The dashed curve corresponds to the electrostatic limit
(o=0).

that, in contrast to an isotropic plasma, for a strong mag-
netic field the E, wave component plays an important
role, since with the increase of () the E, wave component
decreases while E, increases. In particular, for Q =5, E,
becomes larger than E, (c.f. Figs. 6 and 7). We em-
phasize that this model is not applicable to the case of
electron cyclotron resonance (2=1). However, it still
works for values of () near 1—the curves for 2=0.9 and
1.1 lie very close. The end of the column occurs at
S, =0, which corresponds to [32]

2—Q? for Q<1
1 for Q>1.

At fixed Q (say, =2.5) all the axial profiles should de-
pend on the value of o. These profiles, except for those
corresponding to N (&) and S, ({), move upwards with
the increase of o. The dependence of N (&) (Fig. 9) and
S, (&) on o is more complicated—for small values of o
(o <1) with the increase of o, the axial gradients of N (&)
and S, (§) decrease and next (for o > 1) increase. This
behavior of N (&) and S, (§) is similar to that for an iso-
tropic surface-wave sustained plasma column [28]. It is
worth pointing out that the N (&) profiles are generally
nonlinear and one can define only some average density
gradient for a given region of N. In Table I one can see
the average slope of N({) curves for 0=0.5, =0
(diffusion regime) in the ranges 1<N =10 and
10<N =30 at different values of ). We would like to
emphasize that while the E, wave component in the elec-
trostatic limit (o0 =0) is practically constant (=1) along
the column length, in reality (o >0) the situation is
different—E, decreases along z and for larger o’s it
possesses higher values (Fig. 10). In that reason the
dependence of the E, electromagnetic wave component
on the magnetic field (see Fig. 6) is not similar to that of
an electrostatic wave [cf. Figs. 2(b) and 6(b) in Ref. 32].

N

resonance
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TABLE I. Average values of the dimensionless plasma density slope |[dN /d{| within the ranges 1 <N <10 and 10 < N <30 for free
fall or diffusion (8=0) and recombination (8=1) gas-discharge regimes at o =0.5 in strong magnetic fields ({1 > 1). For comparison,
the first column gives the corresponding slopes of an isotropic plasma column (2 =0) with ¢ =0.5.

Q 0 2.5 5 10 o0

N 1-10 10-30 1-10 10-30 1-10 10-30 1-10 10-30 1-10 10-30
B=0

dN

d_§ 2.62 1.86 2.41 1.84 2.07 1.74 1.86 1.49 1.76 1.15
p=1

dN

d_§ 1.94 1.28 1.71 1.44 1.47 1.18 1.33 1.01 1.26 0.85

The analogous axial profiles for the same values of
and o have been obtained for recombination gas-
discharge conditions (8=1). The profiles depend in a
similar way on o and (2, but there are some specific
differences. The magnitude of N and its axial gradient for
B=1 are lower in comparison with those for a column
sustained at diffusion gas-discharge conditions (see Table
I). The same regularity is valid also for an isotropic plas-
ma column [28]. The wave power S, is generally larger
(at least of one order) than that at a diffusion regime and
it decreases with a greater local axial gradient. Accord-
ingly, all the components of the electromagnetic wave at
recombination gas-discharge conditions are of one order
larger than those of the diffusion regime. We note, how-
ever, that the { dependencies of the wave-field com-
ponents for the two regimes are different. In particular,
the B, wave component at the diffusion regime is a con-
cave curve, while at recombination gas-discharge condi-
tions it becomes a convex curve.

Due to the plasma anisotropy, the electromagnetic
wave is neither a TM nor a TE mode—it possesses all the
six components. Moreover, the radial profiles of the

FIG. 10. Calculated axial profiles of the normalized E,(§)
wave-field component at 2=2.5 for the same conditions as in
Fig. 9.

wave components do not correspond to pure surface or
pure pseudosurface modes along the whole column
length. Depending on the arguments of Bessel functions
a,1,5, one of the modes can dominate. If both arguments
are imaginary, the wave is a surface one; if they are real,
it is a pseudosurface wave. In the case when one of the
arguments is real and the other is imaginary, the wave is
a mixture of these two modes and possesses the character
of the dominating mode. Finally, when the arguments
are complex conjugate, the wave might be called a gen-
eralized surface wave, since both modes participate equally
in it. For a given plasma column one may observe only a
few of these possibilities depending on the values of
and o and the gas-discharge conditions (respectively /3).
In the case of a weak magnetic field (Q <1) for large
o’s, the wave is practically a generalized surface mode,
becoming a surface wave at the end of the column. As o
decreases that part of the column where the wave is a
surface mode increases, and for o =0 the wave is a pure
surface mode everywhere [32]. At 0=0.05 and 2=0.6

FIG. 11. Structure of the normalized E,(p,{) wave-field com-
ponent at 0 =0.05 and Q=0.6 (weak magnetic field) in free fall
or diffusion gas-discharge conditions (3=0).
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FIG. 12. Structure of the normalized |E,(p,{)| wave-field
component at o =0.05 and Q2=0.6 (weak magnetic field) in free
fall or diffusion gas-discharge conditions (3=0).

one can see the structure of both type of waves in Figs.
11-16, where we show three-dimensional plots of the E,,
E,, B,, and B, wave components as well as the total elec-
tric and magnetic wave fields—the view is from the end
of the column to the wave exciter. We note that the B,
component, which is very small at the plasma-vacuum in-
terface, becomes much larger into the column.

For a strong magnetic field (Q>1) at large o’s the
wave normally is a generalized surface mode, which, near
the end of the column, becomes a pseudosurface one. At
small o’s and short columns, the wave is dominantly a
pseudosurface mode—for o =0 the wave is a pseudosur-
face mode everywhere [32]. The structures of the E, and
E, wave components (for 0 =0.2 and ©=2.5) are shown
in Figs. 17 and 18. The structure of the B, and B, com-

FIG. 13. Structure of the normalized |B,(p,{)| wave-field
component at 0 =0.05 and 21=0.6 (weak magnetic field) in free
fall or diffusion gas-discharge conditions (8=0).
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FIG. 14. Structure of the normalized |B,(p,{)| wave-field
component at o =0.05 and 2=0.6 (weak magnetic field) in free
fall or diffusion gas-discharge conditions (8=0).

ponents is similar to that for the case of a weak magnetic
field, but now their magnitude is of one order larger. The
total electric and magnetic fields are shown in Figs. 19
and 20.

We note that the E, and B, wave components in both
cases are generally small quantities, and they have their
largest magnitudes at the plasma-vacuum interface, being
equal to zero at the column axis.

V. COMPARISON WITH THEORETICAL
AND EXPERIMENTAL WORKS

The axial and radial profiles obtained here are in di-
mensionless quantities, while all known theoretical and

1.2
Efoia[ O'g

0.4

0.0

FIG. 15. Structure of the normalized |E o (p,&)| wave field

at 0=0.05 and ©=0.6 (weak magnetic field) in free fall or
diffusion gas-discharge conditions (8=0).
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FIG. 16. Structure of the normalized |B ., (p,¢)| wave field
at 0=0.05 and ©=0.6 (weak magnetic field) in free fall or FIG. 18. Structure of the normalized |E,(p,§)| wave-field
diffusion gas-discharge conditions (8=0). component at 0 =0.2 and 2 =2.5 (strong magnetic field) in free
fall or diffusion gas-discharge conditions (8=0).

experimental works [21,34] express their results in dimen-  field components, and wave power are as follows:
sional quantities. In order to compare the results, we _ .
need the values of two external parameters, namely v and N=n/n,, §=vz/R,

QOp [cf. formulas (22)-(25)]. The magnitude of Qg de- E, . .,=6,../e,
pends on the gas-discharge conditions. The available ex- i ®
perimental data and theoretical results suggest that the B,,.=38B,,./b; ,

gas-discharge regime is a diffusion one (8=0). In that S. =S/s
case there exists a simple relation [30] between the mean * 0>
power 0 [8] required for maintaining an electron-ion pair ~ Where

in the discharge, and Q,: eO(Vcm‘l)=212(a)/277-)(GHz)[(0/v)(eV)]1/2 ,
0=Q,/7R*n,, =(4e*/mw*R?)Q, . bo(uT)=70.68(w /27w )(GHz)[(8/v)(eV)]'/? ,
Thus the relations between the dimensionless and dimen- 5o(W)=39.231[(w/27)(GHz)R (cm)P(O/v)(eV) .

sional electron number density, axial coordinate, wave- 4 ;o obvious that the values of the two external parame-

ters v and 6 (respectively Q,) become very important in

B the case of comparing our theoretical curves with dimen-
1.4 7] sional ones.
1.2 7]
1.0 7] 3
0,8 /’ 2.0 E
E, 0,6 i 1 5 /E
0-4 " Etotal
0.2 7]
00~
S
>
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FIG. 17. Structure of the normalized E,(p,{) wave-field com- FIG. 19. Structure of the normalized |E . (p,&)| wave field

ponent at 0 =0.2 and Q=2.5 (strong magnetic field) in free fall at 0=0.2 and Q=2.5 (strong magnetic field) in free fall or
or diffusion gas-discharge conditions (8=0). diffusion gas-discharge conditions (8=0).
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FIG. 20. Structure of the normalized |B,,(p,&)| wave field
at 0=0.2 and Q2=2.5 (strong magnetic field) in free fall or
diffusion gas-discharge conditions (3=0).

Figure 21 shows the theoretical dimensionless plasma
density axial profiles for the experimental conditions ac-
cording to Fig. 16 in Ref. [34]: an argon plasma column
at a pressure of 30 mTorr with a radius R =0.75 cm,
wave frequency w/27=390 MHz (0 =0.0613, respec-
tively), at external magnetic fields of 100 and 455 G
(2=0.7182 and 3.268 correspondingly). The dotted line
gives the electrostatic limit 0 =0—one sees that for the
given experimental situation, the electrostatic treatment
is still adequate. In the same figure the experimental data
are presented for convenience in dimensionless quantities.
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FIG. 21. Theoretical axial profiles (solid curves) of the nor-
malized plasma density of two argon columns at pressure p =30
mTorr, R =0.75 cm, /27=390 MHz (0 =0.0613) in the pres-
ence of weak (B, =100 G, Q=0.7182) and strong (B,=455 G,
2 =3.268) magnetic fields with electron concentrations near the
exciter 199 g =3.5X 10" cm ™3 and n,455 g =4.3X10° cm 3, re-
spectively. The experimental points have been taken from Fig.
16 of Pasquiers et al. [J. Appl. Phys. 65, 1465 (1989)] with
vioo 6=1.56X10% s ! and 455 s =1.19 X 10% s ! corresponding-
ly. The dashed curve illustrates the influence of the metal
screen (R, =7.5 cm, 7=10), and the dotted one represents the
electrostatic limit (o =0) in the absence of a metal tube.
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In order to do this we have used the values
Vioo g=1.56X10% s7! and v,55 g=1.19X10% s, taken
from theoretical curves, computed by Sa [37] and from
Fig. 20 of Ref. [34]. We note that these collision frequen-
cies are different from those in Fig. 16 of Ref. [34]—the
latter are obtained by the method of best fit of the experi-
mental and theoretical plasma density profiles. One sees
from Fig. 21 that the experimental points are close to the
theoretical curves but lie higher. The reason is that our
model does not take into account the influence of the
glass tube. Since in that case the metal screen is far
enough from the discharge tube (the parameter =10,
dashed lines), its presence does not change the course of
the axial profiles [31]. From our curves we obtain for the
column lengths z,50 g =57.1 cm and z,5 3 =94.2 cm,
which is in agreement with the corresponding values in
Fig. 16 of Ref. [34].

Figure 22 gives the axial profiles of the dimensionless
wave power for the same experimental conditions as be-
fore. From these curves one can calculate the wave
power necessary to sustain a plasma column with given
length. For that reason we need the corresponding mag-
nitudes of the parameter 6. The values of 0, calculated
from Figs. 4 and 5 of Ref. [21], are 6,9y g=2.18 X107
eVs !and 6,55 ;=9.36X10° eV s, respectively, which
immediately give S50 g =6.8 W and S4s5 g =5.9 W. The
corresponding experimental data are 7.5 and 54 W.
These discrepancies are probably due to the neglecting of
the dielectric tube in our model.

Pasquiers et al. [34] discuss the radial distribution of
the wave electric field—in Fig. 4 (Ref. [34]) they present
the radial profiles of the longitudinal and transverse elec-
tric field components as well as those of the total wave
electric field calculated for different plasma densities and
external magnetic fields. The behavior of these fields is
similar to that presented in Figs. 11, 12, and 15 and
17-19. Figure 4(b) gives the radial structure of the wave
electric field at the end of the column for a weak magnet-
ic field (2=0.7182) where the wave is a pure surface

T R SRR T S PR DS S S s
0 55 50 4.

L 1 I 1 1 I
5 40 35 30 25 20 1.5 1.0 05 0.0

o L ——
6.5 6.

FIG. 22. Theoretical axial profiles of the normalized wave
power of an azimuthally symmetric electromagnetic wave sus-
taining argon plasma columns at the same conditions as in Fig.
21.
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mode (see Figs. 11 and 15). Figure 4(c) gives the radial
structure of the wave electric field at a strong magnetic
field ((2=4) near the wave exciter where the wave is a
generalized surface mode (see Figs. 17 and 19), classified,
however, by Pasquiers et al. as a surface wave. Figure
4(d) illustrates the case of a pseudosurface mode (strong
magnetic field, end of the column), termed by the authors
a volume wave. For long columns (large N) near the
wave exciter, the wave is a generalized surface mode both
for weak and strong magnetic fields (see Figs. 15 and 19).
Such a situation is presented in Fig. 4(a), where the wave
is called a surface wave. In the case of a strong magnetic
field the &, wave component is, however, much larger
than that for a weak magnetic field. At strong magnetic
fields, the &, and &, components are of the same
order—so Fig. 4(a) is relevant only for weak magnetic
fields.

VI. CONCLUSIONS

In this paper, we have presented a model of a low-
pressure plasma column sustained by a traveling elec-
tromagnetic wave in the presence of an external axial
magnetic field. The axial and radial structures of the
wave-field components as well as the axial profiles of the
wave number, wave power, and plasma column density
have been obtained in suitable dimensionless quantities.
This allows, for a given product wave frequency-plasma
radius R at a fixed external magnetic field, the measure-
ments for different gas pressures to be presented by one
theoretical N-§ (or S, -§) curve, i.e., the model might be
considered as a general one. We emphasize also that the
model is applicable for each gas irrespective of its nature.

We have studied the influence of the parameters
Q=w,/0 and c=wR /c on the axial profiles of the
wave-field components, wave number, wave power, and
plasma column density for two gas-discharge regimes—
free fall or diffusion (S=0) and recombination (8=1)
ones. The results obtained show that only strong enough
magnetic fields (Q =2.5) change significantly the plasma
column and electromagnetic wave parameters. The case
of a weak magnetic field (2 <1) does not represent any
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practical interest. This model is not applicable as the
wave frequency w tends to the electron cyclotron fre-
quency o, (Q=1).

The external magnetic field decreases the axial plasma
density gradient and increases the column length for a
fixed electron number density and/or wave power near
the wave exciter—the stronger the magnetic field, the
longer the column length. The magnetic field also
changes the structure of the electromagnetic wave. Due
to the plasma anisotropy, the wave is neither a TM nor a
TE mode—it possesses all six components. Nevertheless,
the &, component is larger than the B, one, so the wave
should be classified as an EH wave. We emphasize that it
is not a pure surface mode—almost everywhere the wave
is a generalized surface mode, becoming at the column
end a pure surface wave (for weak magnetic fields, 2 <1)
or a pseudosurface one (for strong magnetic fields, > 1).

This model shows that the electrodynamical treatment
is necessary for those experimental setups for which the
magnitude of the parameter 0 =wR /c is large enough.
For small o’s (say, o <0.1), however, the simplest elec-
trostatic model [32] might be used. We note also that the
influence of o on the plasma column parameters is simi-
lar to that for an isotropic plasma [28].

The agreement between our model and the available
experimental data is acceptable. Obviously, for a more
adequate and self-contained description, the model
should include the presence of a dielectric container and
a correct theoretical calculation of the collision frequency
for momentum transfer v and the mean power 6 required
for maintaining an electron-ion pair in the discharge.
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