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The dynamics of electric fields at a neutral or charged point in a one-component plasma is considered.
The equilibrium joint probability density for electric-field values at two different times is defined, and
several formally exact limits are described in some detail. The asymptotic short-time behavior for both
neutral and charged-point cases is shown to be Gaussian with respect to the field differences, but with a
half-width depending on their sum. In the strong-coupling limit, the joint probability density is dom-
inated by weak fields (charged-point case), leading to a Gaussian distribution with time dependence en-

tirely determined from the electric-field time-correlation function. The limit of large fields is shown to
be determined by the time-dependent autocorrelation function for the density of ions around the field

point; for the special case of fields at a neutral point, this result implies that the joint distribution at large
fields is determined entirely by the dynamic structure factor. Finally, the full distribution (all field values
and times) is studied in the weak-coupling limit.

I. INTRODUCTION

The total electric field E(r) at a point r, due to all
charges in an equilibrium plasma, is a fundamental mi-
croscopic variable for the analysis of many problems
[1,2]. It determines the force on each particle and is
therefore relevant for calculation of transport properties;
it also determines the coupling of the charged particles to
internal degrees of freedom via multipole moments and
thus provides the mechanism for atomic radiative pro-
cesses. The statistical time-independent properties of the
field are completely characterized by the distribution of
field values Q (E). There are now quite accurate and prac-
tical methods for calculating this distribution, even for
conditions of strong coupling [3]. Similarly, the dynami-
cal properties of the fields at two different times are
characterized by the joint distribution Q(s, t;E', t'). The
objective here is to develop a theory for this joint distri-
bution. As there are few previous discussions of this
time-dependent distribution, the present paper is primari-
ly concerned with establishing its behavior in several
well-defined limits. Specific applications and approxima-
tions are deferred to a planned subsequent paper [4].

The system considered here is an equilibrium one-
component plasma (OCP) of K positive ions with charge
Ze, a single impurity particle of charge Zoe, and a neu-
tralizing uniform negative background charge. All in-
teractions are assumed to be via Coulomb potentials, and
the state conditions are assumed to be such that classical
mechanics is applicable. The one-component plasma
state conditions are completely specified by a single pa-
rameter I—:(Ze) /(roktt T), where T is the temperature
and ro is the ion sphere radius (4vrnro/3=1). This plas-
ma parameter measures the strength of the Coulomb cou-

pling between ions relative to the average kinetic energy;
the corresponding ion-impurity coupling is (Zol /Z).
Two cases are of interest, fields at a charged point
(Zo&0) and fields at a neutral point (ZO=0). The distri-
butions are quite different for these two cases, but much
of the analysis can proceed for Zo finite, with the neutral
point case recovered in the limit Zo ~0.

In Sec. II, the electric-field distributions and their gen-
erating functions are defined, and some general properties
associated with basic symmetries are noted. The exact
short-time limit is studied in Sec. III, and an accurate
method to calculate the associated coefficients is de-
scribed. As an example (to motivate future computer
simulations) the short-time behavior is studied for a neu-
tral point at I =1. In Sec. IV, it is noted that a weak-
field limit applies when ZOI /Z &)1, for field distribu-
tions at a charged point. The result is a Gauss. wn distri-
bution whose time dependence is determined from the
electric-field autocorrelation function (E E(t)). The re-
sult is illustrated using computer-simulation data at
I = 10. Next, in Sec. V, the limit of one or both fields be-
ing very large is considered. It is shown that the joint
distribution function then can be determined from the
time-correlation function for the density of ions around
the impurity. This result includes the nearest-neighbor
approximation in the limit of both short times and large
fields. The results of Secs. III and V agree in their com-
mon domain of validity (short times and large fields). Fi-
nally, the global distribution for all times and field values
is analyzed in the weak-coupling (mean-field) limit in Sec.
VI. The resulting generating function is expressed in
terms of the ion density autocorrelation function, calcu-
lated from a weak-coupling kinetic equation (Vlasov
equation, for the neutral-point case).
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Some of our results have been noted already in the
brief review of Ref. [S]. Also, Alastuey, Lebowitz, and
Levesque [6] have proposed recently an approximate
model for electric-field dynamics at a neutral point, and
have performed some molecular-dynamics simulations
for comparison at strong coupling. Smith, Stamm, and
Cooper have considered the case of neutral-point
electric-field dynamics, neglecting all interactions among
the ions [7]. Prior work has been limited primarily to
models based on an assumed stochastic process for the
electric field [8]. The only computer-simulation results
we are aware of for the joint distribution function are the
limited data reported in Refs. [6] and [7]. We hope the
present study will encourage further analysis by simula-
tion.

II. DEFINITIONS AND GENERAL PROPERTIES

Q (a, t; a', t) =5(a—a')Q(e),

Q (&, ~;a'0) = Q (e)Q(e'),

Q(e)—:Q(s, t) .

(2.5)

(2.6)

g (e)=(277) f dg e (2.7}

Q(a t.a 0) (2~)
—6f

dydee

e
—ix.a —ix'.a'eG(k, k ;t)'

The probability density Q(e) determines all time-
independent properties of the electric field. Similarly, the
dynamical properties of the field at two diQ'erent times
are completely determined from the joint probability den-
sity Q (a, t; a', t ').

The theoretical analysis of Q ( e) and Q ( a, t; a', t ') is fa-
cilitated by considering instead their associated generat-
ing functions,

The microscopic state of the system of N+1 ions is
specified by their positions and velocities, Iqo, po;. . . ;

qiv, pe), where the subscript zero labels the impurity.
The electric field at the impurity is given by

These generating functions are given by

G(A, ) =In((e' ) )

(2.8)

(2.9)

N
E—:ge(r;)+Eb, e(i)=Ze(r;Ir; ), r;—:q& qo (2.1) G(A, A, 't)=ln((e' '"e' ' )) . (2.10)

where Eb is the field due to the uniform background, and
e(i} is the electric field due to the ith ion. In the equilibri-
um ensemble there are equivalence classes of
configurations corresponding to the same value for E,
and the distribution of values for E is determined from
the relative weights of these classes. Therefore, the
definitions of the probability density Q (e) and joint prob-
ability density Q ( e., t; s', t ') are

The properties (2.4) and (2.5) imply, respectively,

G(~, ~';t) =G(~,~', ltl) =G(~', ~; ltl),

G(A, A, ;0)=G ( I
~+~'I ),

G(A, , A, ', ~ ) =G(A, )+G(A, ') .

Two further identifies are easily verified,

(2.11)

(2.12)

Q (a;t) = (5(&—E(t))),
Q (s, t;e.', t') = (5(e—E(t))5(s' —E(t')) ),

(2.2)

(2.3)

(2.13)

Q(e, t)=Q(s, 0),
Q(e, t;e', t') =Q(e, lt —t'l;a', 0)

=Q(e', lt —t'l;e, o),

(2.4)

i.e., Q (e, t) is time independent and Q (a, t;a', t') is a func-
tion of lt —t'l that is symmetric with respect to an inter-
change of c and s'. Furthermore, rotational invariance
implies that Q (a; t) is a function only of the field magni-
tude, while Q ( e, t; e', t ') depends on the fields only
through their magnitudes and the angle between them.
From the assumed mixing property of the dynamics, the
asymptotic long- and short-time limits are

where the brackets denote an equilibrium ensemble aver-
age. There are some simplifications of the general form
for these joint probability densities that arise from the in-
variance properties of the equilibrium state. Stationarity
and time-reversal invariance lead to

= —&E,(t)E, & . (2.14)

e '"' '"=F(A,, A, ',y;t) . (2.15)

The field distributions then have the representations

Q(e)=(2m )
' f dA, A, e ' 'jo(Ae), (2.16)

Q( t;a0e)= g Pi(a e, ')
Qi( ,e'e;t),

1=0
(2.17)

where Pi(x) are Legendre polynomials and Qi(e, e', t) is

Equation (2.13) applies only for ZOAO, as the right-hand
side diverges otherwise.

The notation above implies that G(A, ) depends on A,

only through its magnitude; similarly, G(A, , A, ', t) depends
on the magnitudes of A. , A, ', and y =A, -A, ',

Qi(c, , e', t)=2(21+1)(2') ( —1}f dA, A, ji(Ae) f dA, 'A, ji(A, 'c, ')Fi(i, ,k';t),
0 0

Fi(A., A, ', t)= f dy Pi(y)F(A. , X',y;t) .

(2.18)

(2.19)
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The generating functions can be reduced to quadra-
tures for the special case of electric fields at a neutral
point due to noninteracting particles. The result is given
in Appendix A.

III. SHGRT-TIME LIMIT

The initial distribution Q (a, O;E, O) is proportional to a
6 function at c=c.'. Subsequently, this sharp distribution
broadens and shifts towards the product of equilibrium
distributions Q(s)Q(E'). To describe the early stages of
the microfield dynamics it is useful to expand G (A, , A, ', t)
as a power series in t. Since G (A, , A, ', t) is an even function
of t, the leading time dependence is of order t . From Eq.
(2.10) and stationarity, the leading terms are found to be

F; (A, ) =(eo/13moro )5,"

BE,(r) BE.(r)
g(r;A, )

BrI Brr

BE;(r) BE (r')

Br,
'

+(nk+T/p) f dr

+(n k~T/mo) fdrdr'

Xg(r, r', A, ), (3.3)

ng(r;A, )=N(5(r —r, )e' ' )/(e' 'a), (3.4)

where ro is the ion sphere radius, eo =—Ze/ro is the field
magnitude of a particle at this distance, and p is the re-
duced mass for an ion-impurity pair. The correlation
functions g (r, A, ) and g (r, r'; A, ) are defined by

n g(r, r', A, )=N(5(r —r, )5(r' —r2)e' ' )/(e' ) . (3.5)

(g) (E E eik E)/(eiAE),
(3.1)

(3.2)

where E, denotes the time derivative of the ith com-
ponent of the electric field at t =0. The correlation func-
tion in (3.2) can be reduced further to (see Appendix B)

It is noted below that these functions are the Fourier
transforms of the pair and triplet correlation functions in
the presence of a specified field at the impurity. Further
discussion of these expressions is given in Appendix B.

Equation (2.8) now determines the joint distribution
function for the fields. It is useful to introduce the new
integration and field coordinates,

g—:(A, —A, ')/2, o =A, +A, ', Aa—:a —s', a—=(e+s')/2,
2

Q(a, t;s', 0)=(2m. ) fdgdoe '" ' ' 'exp G(o) ——(g, +o;/2)(g o /2)F—, (cr.)"
=(2') fdg e '" 'Q(a)exp[ —V(a, g,'t)], (3.6)

V(a, g;t)= (2m. ) fdo e ' 'e ' '(rj, +o,. /2)(g —o. /2)F, (tr)+O(t ) . .
t'

2Q (a) J J V
(3.7)

Use of (3.7) in (3.6) gives the desired short-time limit [9],

Q(a, t;a', 0)=Q(a)
—(EE)&/2A &(a)t

2~t A, (a)

(~~)ll/2~2(a)t

[1+O(t2)] .
[2~t A~(a)]' ~ (3.8)

Here (b, E)~ and (b.E)~~ are the components of hE perpen-
dicular and parallel to a, respectively. The scalar func-
tions A, (a) and Az(a) characterize a second-order tensor
A;, (a),

A, (a) =
—,
' [ A, , (a) —a;a A, (a)],

(3.9)
A2(a)=a;a A;.(a)

and A;~(a) is related to F, (A, ) by a Fourier transforma-
tion,

Q(a)A; (a)=—(2m. ) f dA, e ' 'e ' 'F,. (A, ) .

From the definition of F, (A, ) it is straight"forward to show
that A;~(a) is the conditional average,

A, (s)= (E;E, ),=—(E,E,5(s —E) ) /Q(c) . (3.11)

The result (3.8) is a Gaussian distribution with respect
to the variable Ac. , but whose amplitude and half-width
depend on the variable a. For very short times the distri-
bution function is nonzero only for c, =c', in which case
a-c, . The distribution function is then a symmetric
Gaussian about e,

' with a half-width equal to A2(s')t . It
is found below that Az(s') is a monotonically increasing
function of c, so the initial decay for large fields is more
rapid than that for small fields. This is expected, since
large fields are due to rather unlikely configurations of
the ions. For slightly larger times, values of ass' be-
come relevant and the Gaussian is no longer symmetric
about c.'; furthermore, the maximum shifts monotonically
towards smaller fields as the distribution broadens. For
long times the distribution becomes uniform, but (3.8) is
no longer valid on this time scale.
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BE;(r)

Br&

Xg(r, r';a),

+(n k~T/mo) f drdr' BE;(r)
BI'I

(3.12)
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Br(
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where the time dependence is determined from the two
functions

f,(t)=t 'e ', f„(t)=t 'e (3.19)

These are shown in Fig. 1. For given c,
' both functions

show that the probability of finding a different field c rises
from zero to a maximum and then decreases again to
zero. The times at which the maxima occur for fi and

f
~~

are determined by the time scales ti and t~~, which are
functions of c and c.'. Consider the special case of col-
inear fields, i.e., c'=c'c. Then Ac~=0 and the time
dependence is governed by f~~(t/t~~) [note that
(Est) 'fi(t/ti) is finite in this limit. ] The time scale

t~~

can be written as

(3.20)

For given c',
t~~

vanishes for small 4c., rises to a max-
imum, and approaches zero as b, c. ' for large Ac ac-
cording to (3.16). Similarly, for fixed b, E, t~~

decreases
monotonically for s') b, e as (E') . Figure 2 shows
co+ t~[ as a function of bE /eo, for 8' /eo = 1 and E' /eo = 10.
Since (3.17) is only valid for short times, ro t && I, the
relevant portion of the graph in Fig. 1 depends strongly
on both c and c.'.

Figure 2 shows that the short-time limit is not uni-
formly valid with respect to t for all field values. A relat-
ed qualification appears in the Fourier representation:
consider the use of (3.1) in (2.14) to get the short-time ex-
pansion of the field correlation function,

(E,E, (t) ) = (E,E, ) ,'F,, (0)t '+ O—(—t4)

= (E,E, ) '(E,E, )t'—+—O(t") . (3.21)

This is the correct result for Zo&0, but not for the
neutral-point case where the coefficients diverge. For ex-
ample, in the limit of small plasma parameter and for
Zo =0, the right-hand side of (3.1) is easily evaluated to
give

Q(s, t;s', 0)=Q(tt)(~' '«,'&El) 'fi(t/ti)fl(t/t(~),
(3.18)

never the case for field distributions at a neutral point, as
there is nothing to prohibit one or more ions from being
close to the impurity. However, for fields at a charged
point there is a repulsion that excludes particles from a
sphere of radius r, /ro=I (Zo/Z). The associated fields
are then of the order E=eo(Z/Zol ). Thus, for condi-
tions of strong coupling and/or large Zo/Z the Gaussian
limit is applicable. The calculation is straightforward,
with the results

3/2
3c

2(E') (4.1)

(4.2)

Here, a(t) is the normalized electric-field autocorrelation
function

a(t):—( E(t).E) /(E'&t . (4.3)

The Gaussian limit of Q(s) is entirely specified by
(E ). It has been shown elsewhere [10,11] that the
(E ) is given exactly by

(E ) =eo3(Z/Zol ) . (4.4)

The distribution of field values P (E)—:4irE Q (s) in dimen-
sionless form is then found to be

P*(P)=eoP(s) =(4/x&a)(P/x) e (4 5)

2.0

with P—:s/eo and x—:(2Z/ZoI )' . The Peak occurs at
P,„=x and P,„P*(P,„)=0.83. This Gaussian-limit
form for the location and value of the maximum is in
qualitative agreement with Monte Carlo simulation re-
sults, even for relatively small I . For example, Fig. 3
shows a comparison of the Gaussian limit to simulation
results for Z =Zp = 1 and I = 10. The agreement for

—c2(AX') (1—x ) A, +A, 'l i (co t) +O(t ),
1.5

(3.22)

where x =A, A, ', ci =eo~ 2(2m )'~ /5, and
c2 =eo~ 9(2ir)'~ /8 The Tay. lor series in time has
coefficients with a nonanalytic dependence on A, and A, '.
Similarly, it can be shown that a Taylor series in A, and A,

'

has coefficients that are nonanalytic in t.

1.0
CL

0.5

IV. GAUSSIAN LIMIT

The distributions Q (E) and Q (E, t; s', 0) become simple
Cxaussians if their generating functions can be expanded
to second order in A, and A, '. The definitions (2.9) and
(2.10) show that this is possible only if the dominant
configurations correspond to small values of E. This is

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Distribution of field magnitudes P (s) =4ns'Q (s), for
Z =ZO=1 and I =10 in units of eo, Gaussian limit, Eq. (4.5)
( ), and computer simulation ( ———).
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1.0 4.0

0.5 3.0

0.0 cL 2.0

—0.5 1.0

—1.0
0.0 1.0 2.0 3.0 4.0

cuz t
5.0 6.0 7.0

0.0
—1.2 0.0 0.6 1.2

FIG. 4. Electric-field autocorrelation function a(t) for the
same conditions as in Fig. 3.

=Pi(ei, t)Pii(Eii, t; E', 0),
Pi(Ei, t) = [3/2m (E & [1—a (t)] J

X exp [
—3Ei/2( E & [1—a (t) ] ]

(4.6)

(4.7)

most field values is reasonable, considering that these
conditions are only marginal for the validity of the
Gaussian limit.

The time-dependent distribution requires, in addition,
specification of a(t) An acc.urate model for this function
has been proposed [1] based on the first few time deriva-
tives and the relationship of a(t) to the self-diffusion
coefficient, giving good agreement with results from com-
puter simulation [12] even at strong coupling. Figure 4
shows the results from this model for Z =ZO=1 and
I =10. The time integral of a(t) vanishes as a conse-
quence of the relationship of the electric field to the im-
purity momentum, and consequently it must change sign.
In Figure 4 this occurs at co t =1.6. Consequently, the
Gaussian probability density given by (4.2) approaches its
asymptotic limit as co t~1.6 continues towards fields in
the opposite direction of the initial field and finally ap-
proaches again the asymptotic limit. To illustrate this,
the expression (4.2) can be factored into distributions for
the components of the field c, parallel and perpendicular
to the initial field c.',

(Pta; ',e)0—=Q (e, t;e', 0)/Q (E')

FIG. 5. Conditional probability density P~~(c, t;c. ,0), Eq.
(4.8), for I = 10, Z =Zo = 1, as a function of e with
c' = 1 (in units of eo), at co~ t =0.32 ( ), 0.96
( —~ —), 2.88 (—~ ~ —), and co~t = 00 (. . . ).

fields at co t =0.96, passes the asymptotic distribution to
favor negative fields at co t =2.88, and finally approaches
the stationary distribution for very long times.

In the more general case, the distribution Pi(Ei, t) is in-
dependent of the initial field, with a 5-function distribu-
tion at c.~=0 for t =0. This distribution simply broadens
(not monotonically) to the stationary distribution, but
shows no shift. The Gaussian evolution described by
(4.2) is clearly not well represented by a Markovian sto-
chastic process.

V. LARGE-FIELD LIMIT

The most probable configuration for creating a large
field is expected to be such that most of the field is due to
a single particle at a distance r =v'Ze/E. Alternatively,
it could be produced by several particles at larger dis-
tances, but they would have to be approximately col-
linear. However, these constraints on the superposition
of fields due to more than one particle become increasing-
ly restrictive as the field increases. To further justify and
quantify these notions, consider first the distribution of
fields Q (s). From the defining equations (2.7) and (2.9),

Q(e)=(2~) fdke —~x'~eix E&

N
=t2m j J dA e' ' ii[l+P(A. , r;)])

I

with P(A, , r, ) given by
(4.8)

Pll ll'Et; ', E)=0[3/2 (iEr&[1—a (t)]] '

X exp [
—3( E~~

—8') /2( E & [1—a (t) ] I .

(5.1)

Figure 5 illustrates P~~(s~~, t;E', 0) for the conditions above
and c'=1. The initial 5 function has broadened some-
what at ~ t =0.32, broadens and shifts towards smaller

I

P(A, , r, )—= —1+exp[iX, e(r, )] . (5.2)

Next, make the change of variables A, c, =A, l = I and
r, =z/&E; then Eq. (5.1) becomes, for large s,

Q(E)=(2rre) f dl e ' '(1+v. ~ J dzg(l, z)(n(z/&E)&+0(E )]~f rdn((r)&5(E —e(r)), (5.3)
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where n(r) is the number density of ions at r relative to
the impurity,

N
n(r)= g 5(r —(q, —q())) . (5.4)

'(Z—e) 8 ng(E(Ze/8)' ) (5.5)
I

This is the expected result: the configuration space sam-
pled is always such that the field s is determined from a
single particle. The configuration integrals can be per-
formed in (5.3), leading to

Q(E)—+ —,'(Ze) ~ E ~ (n(E(Ze/E)' })

where g(r) is the equilibrium pair correlation function.
For the neutral-point case g (r)=1 and (5.5) becomes the
asymptotic form of the Holtsmark distribution. The field
distribution at a charged point depends on the radial dis-
tribution function only at short distances, for large fields,
and (5.5) approaches the nearest-neighbor distribution
[12] asymptotically.

To discuss the joint distribution for large fields at two
times, two cases are distinguished: (i) large e but arbi-
trary E', and (ii) both E and e' large.

(i) Large e, arbitrary E'. The defining equations are
(2.8) and (2.10),

N

Q( e, t; E', 0)=( 2m) f dA, dA, 'e ' ' ' '(e' ' '"e' '
) =(2ir) f dA, e ' ' +[1+(})d(jL,r;)] Q(e') .

E

(5.6)

The conditional average ( ),, is defined by Eq. (3.11). The same change of variables as described below (5.2) leads to

Q(e, t;c,', 0)~(2~E) f dl e "Q(s') 1+e ~ f dzp(l, z)( n( z/& E)),.+O(c, )

~ fdr 5(E—e(r) )( n (r, t ) ),.Q(E'),

Q(E, t; e', 0)/Q (e') —+N ( 5(E—e(r„t ) }), (5.7)

This expresses most explicitly the fact that the large field c is due to a single particle, as expected. The configuration in-
tegral in (5.7) can be performed with the result

Q(E, t;E', 0)/Q(e')~ —,'(Ze) e (n(r, t)), I -,(z q, )(iz .

(ii) Large e and large s'. In this case, Eq. (5.6) can be expanded further in the symmetric form

N

Q( et; 'e, )0=( 2t)tf d) d). e' ' ' ' 'ri[ (+ t()1, r (t))] rt[ (+ d(A, ', r )]) .
I J

Changing variables again, as indicated following (5.2), gives

Q(e t.e 0) (2 E)
—f dl il E f d—l il c Ic—

(
'i'l (tE)/c)'+( il EiE)

e.

+c, f d dzpz(l, )zP(1', z')( (n/zV e, t)n(z'/&e))+O(E )

Q( Et; ',E)0~f drdr'5(E —e(r))5(s' —e(r')) (n(r, t)n(r') ).

(5.8)

(5.9)

(5.10)

The time-dependent density fluctuations of ions near the impurity therefore determine the joint distribution function at
large fields. Using the explicit form (5.4) for this density gives the alternative expression

N N

Q(c, , t;E', 0)~ g g (5(E—e(r, , t))5(E' —e(r ))) .
i =1 j=l

(5.1 1)

The configuration space sampled in (5.11) is always such that the fields E and E are determined from a single particle
(not necessarily the same). It is possible to show that (5.11) has the proper long- and short-time limits, in terms of the
asymptotic form for Q (E). In the neutral-point case (5.11) is simply related to the dynamic structure factor by

Q(E, t;E', 0)~Q(E)+Q(E')+ —,'(Ze) E ~ E ~ (2~) f dk5(k, t)exp[ —ik [f(Ze/E)'~ —e '(Ze/e')'~ ]], (5.12)

S(k, t ):—f d r e '"'[ ( n(r, t)n (0) ) n] . — (5.13)

For short times e =E', so both fields are due to the same particle and the dominant contribution to (5.12) becomes

lim Q (e, t; e', 0)~N ( [5(E —e(r, ( t) ) ) ][5(E' —e(r, ) ) ]),t~0

with r, (t)~r]+v, t, and vi is the relative velocity. Evaluation of (5.14) is straightforward with the result [2]

(5.14)

limQ( te; EO)~ —,'n exp[ —IlZZoe (e/Ze)'~2]X(Ze}3(vru~t2) 3~2(eE') 9 2exp —(Ze/ti t~)
0 ~c (5.15)
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3.0 where the equilibrium configurational correlation func-
tions have been introduced,

2.0
«eg(r„. . . , r, )—= ii()(r, (q, —q, ))) .

(N —p)('
(6.2)

1.0

An expansion for G(A, ) follows directly from (6.1) in
terms of the Ursell cluster functions [13] U(ri, . . . , r~)
associated with the correlation functions g(r„. . . , r„),

N 1 p
G(g) = g fdr, dr Qp(A, , r; ) U(r„. . . , r~ ) .

pI i =1

0.0
8.0 9.0 1 0.0 11.0 1 2.0

The first few cluster functions are given by

(6.3)

FIG. 6. Conditional probablity P( ,ett; 'e0)=Q( et; 'a0)/
Q (e') in the high-field limit, Eq. (5.15), for Z =Zo, as a function
of E with c,'/eo = 10 and c.c,

' = 1. Two times are shown,
ut/ro =0.01 ( ) and 0.02 ( ———).

Here, u =(2k& T lm)' is the thermal velocity. This re-
sult is in agreement with the short-time expansion of Sec.
III, Eq. (3.8), as may be verified using the asymptotic
forms (3.16) for the short-time coefficients. Equation
(5.15) is illustrated in Fig. 6 for Zo =0, Z = 1, e c.

' = 1,
and c.'=10.

VI. WEAK-COUPLING LIMIT

G(A„X';i) ( iAE(i) ii, ' E)..

Xg(i')(ri, . . . , r~ ), (6.1)
I

For small plasma parameter, the correlations among
particles are weak in spite of the long-range interactions.
In this limit, a mean-field theory applies in which each
particle moves independently in an average field due to
all other particles. Consider first the generating function
for the distribution of field values,

N
e ' '=(e' ' )= ii[(+P()(,r, )])

l

N ~p p=1+$, fdr, . dr g ()()(A, , r, )
pI i =1

U(r, ) =ng(r, ),
U(r], r~)=n [g(r„r~)—g(r()g(r~)] .

(6.4)

p
g(r„. . . , r )~=—Qg(r;) . (6.5)

It then follows from the cluster property that all U~O
for p ) 1. Consequently, (6.3) in this weak-coupling limit
becomes

G(i(.)~n f dr/(A, , r)g(r) . (6.6)

For the neutral case, (6.6) still applies but with g (r) = l.
A similar analysis applies for the generating function

for the joint distribution,

The expansion (6.3) was first given by Baranger and
Mozer [14].

The weak-coupling limit is obtained for conditions of
small plasma parameter I . In the extreme weak-coupling
limit all charges become statistically independent on a
space scale of the order of the Debye length. However,
the large field values of Q (c,) are determined from the dis-
tribution of ions close to the impurity, and it is therefore
necessary to have a more accurate account of ion-
impurity correlations on this scale. Consequently, we un-
derstand the weak-coupling limit to entail the neglect of
correlations between ions while retaining correlations be-
tween ions and the impurity. In this case, (6.2) becomes

N ~p1++ fdr, . dr
p 1

p p
+P(A, , r;) + + (I)(A,', r;)
i=1 i=1

g(r„. . . , r )

N I N+X, X f p
dr, dr~dr'(. dr~ ~ gP()((, , r;)

p+ P()((,', r,') C(r„. . . , r;r'„. . . , r„';t),
j=1

(6.7)

with the definition

p pc(r„.. . , r;r', , . . . , r';()—:pqX X X . . X ii(l(r —(q; —qe)) ii 5(re—(q, —qe))) .
i1- « i j « j, o.=1 I8=1

The corresponding expansion for G (A, , A, ', t) is then found to be

(6.8)
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N i N l P
G(X, X', t)=G(k)+G(A, ')+ g, g, , fdr, dr dr', . dr' gP(A, , r, )

X U(r], . . . , r„;r'„.. . , r'; t) .

P

Q P(A, ', r' )
j=1

(6.9)

=(n(r;t)[n(r, ) —{n(r,))]) . (6.10}

The order of magnitude of terms in the series (6.9) for
weak coupling can be estimated by their values at t =0.
In this limit the first of Eqs. (2.12) and the weak-coupling
limit (6.6) give

G(A, A', 0). =, n f dr/(~k+k'~, r)g(r)

=n f dr/(A, , r)g(r)+n f dr/(A. ', r)g(r)

+n f dr&(A. , r)P(X', r)g(r) . (6.11)

All of the terms on the right-hand side of (6.11) originate
from the lowest-order contributions to the three terms on
the right-hand side of (6.9). Consequently, the remainder
of the series is negligible in the weak-coupling limit. The

l

Here U(r], . . . , r;r], . . . , r', ; t) are cluster functions as-
sociated with C (r„.. . , r„;r], . . . , r~. ; t). The first term
of this set corresponds to p =p'=1 and is given by

U(r] r2 t} C(r] rp t} n g(r] }g(r2)

It remains to determine the time dependence of
U(r„rz', t). In the weak-coupling limit it is easily verified
that the initial condition for U(r„rz, O) is

U(r„r,;0)=5(r, —r, )g(r, ) . (6.13)

To calculate the time dependence, U(r„r2, t) is first ex-
pressed as [using (6.10)],

U(1'] rp' t) =f dxpdx ] 5(1'] (q] qp) )1/l (xp x ]
' t)

(6.14)

where x;~(q;, v;) denotes the position and velocity of the
ith particle. It is shown in Appendix C that
g'"(xp, x], ; t) obeys the following kinetic equation:

resulting expression is then simply

G(A, , A, ', t)—&n f dr[/(A, , r)+P(A, ', r)]g(r)

+ f dr]dr2$(}(, , r])P(A, ', r2)U(r„rz, t) . (6.12)

+vo. V, +v, .V —(Zo/Z)8(0, 1) g"](xp, x ];t)

=n fdx2[8(1, 2)+(Zo/Z)8(0, 2)][fp(U, )g(q, —qp}g"'(xp, xz, t)+fp(Uz )g(q2 —qp)g'"(xp, x];t)], (6.15)

where fo(]]) is the Maxwell-Boltzmann distribution, and
8(ij ) describes the interaction between a pair of ions,

8(ij)=—Vq &(q; —q, ) (V~ —
V~ ) .

The initial condition for Eq. (6.15) is

(xo xi't =0)=fo(U] )ng{qi qo)5{r2 (qi qo) }

(6.16)

U(r„r~;t) = U(r] —r2;t) = f dv q(r] r2, v;t)—, (6.18)

+v V„g(r,v;t)=n f dx28(1, 2)fp(v])f(r2, v2;t),
Bt

(6.17)

Further simplifications occur in the neutral case, for
which 8(O, i) +0 in Eq—. (6.15). The integrations over xp
can be performed so that (6.14) simplifies to

S(k;t):fdr e'"'U(r;—t),
P(A, , k)—:f dr e'"'P(A, , r) .

(6.22)

The dynamic structure factor S(k;t) is related to the
OCP dielectric function by

S(k;t)=n((k/~) +1)f do](m'o]) 'e' "'Ime '(k, p]) .

(6.23)

Here it is determined from the Vlasov equation that

weak-coupling limit becomes

G(}(,, A, ';t) =c(Leo)'~ c+(A.'e )o

+ fdkP(}], k)$(A, ' —k)S(k t), (6.21)

g(r, v;0}=fp(U, )n5(rz —(q, —qo)) .

(6.19)

(6.20)

(6.24)

g(p]) =(2ir) ' f dx e " (x co+i') ', (—6.25)

Equation (6.19) is the linearized Vlasov equation, which
can be solved easily by Fourier transformation. Also for
the neutral case, the first term on the right-hand side of
(6.12) can be evaluated analytically so that the entire

with a:4nne /kt]T, .a—nd E. (k; pi) is the weak-couphng
expression for the dielectric function of a one-component
plasma.
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VII. DISCUSSION

The objective has been to explore electric-field dynam-
ics at a neutral or charged point in terms of the joint
probability density for two fields at two times. The limits
explored here yield manageable expressions in the sense
that they are determined from the structure and dynarn-
ics of Auctuations in the density of ions near the irnpuri-
ty. For the neutral-point case there exist quite good
models for this ion density autocorrelation function. The
charged-point case is somewhat more difficult, since the
corresponding correlation function involves ion correla-
tions in the presence of a third charged particle (the im-
purity). The results obtained are summarized as follows.

(i) The generating function G(A, , A, ;t) is the appropriate
quantity for theoretical study and is constrained by the
symmetries and related properties of the equilibrium en-
semble. The dominant constraints to be preserved are
given in Eqs. (2.11)—(2.14). In particular, the short- and
long-time limits are determined from the generating func-
tion G(A, ) for the electric-field magnitudes.

(ii) The short-time limit of G (A, , A, ; t) has a leading time
dependence of order t, with a coefficient that is deter-
mined by the constrained correlation functions g(r;A, )

and g(r, r';A, ). These are related by Fourier transforma-
tion to the probability density for an ion at r, or two ions
at r and r', relative to the impurity, in the presence of a
field a due to all ions [see Eqs. (3.13) and (3.14)]. These
quantities have been studied recently [9] and shown to be
determined quite accurately from the usual pair and trip-
let correlation functions g ( r) and g ( r, r') and the static
electric-field distribution Q(e). Since good approxima-
tions exist for these, the short-time expression can be
determined. The joint distribution Q ( at; aO) is found
to be Gaussian with respect to the field difference (c.—a'),
but with coefficients depending on the average field value
(a+a')/2.

(iii) A diff'erent Gaussian form is obtained for the
charged-point case when the parameter ZOI /Z) ) l.
This characterizes conditions such that most ions are
sufficiently far from the impurity that the associated
fields are weak (E/Neo((1). The distribution Q(e) is
then Gaussian in c., with a half-width determined from
(E ). The joint distribution, Q(c, t;a', 0), is also Gauss-
ian in the variable [a—a(t)a'], with half-width deter-
mined from a(t) Here, a. (t) is the normalized electric-
field autocorrelation function, ( E( t) E ) /( E ) . The
latter is accurately determined from coefficients in its
short-time expansion and its relationship to the self-
diffusion coefficient. If changes sign as t increases, so the
approach of Q ( a, t; a', 0) to its asymptotic value is not
monotonic.

(iv) The distribution Q (c,) at large field values is deter-
mined simply from the radial distribution function g(r)
characterizing ion configurations near the impurity [Eq.

(5.5)]. The joint distribution Q(a, t;a, O) at large c is
given by (5.8), which expresses the contribution to c,

' as
arising from all particles, but that to c as due to a single
particle. Similarly, if both fields a and c' are large, then
(5.11) shows that each is due to a single particle. Finally,
at short times and large fields, both fields are due to the
same single particle.

(v) For weak coupling, the Baranger-Moser expansion
of 6 (A, ) and its extension for G(A, , A, ', t) truncates after
the first and second terms, respectively. The resulting ex-
pressions are determined for all fields and all times in
terms of the pair correlation function g (r) and the density
autocorrelation function (n (r, t)[n (r') —(n(r') ) ] ). For
the neutral-point case the autocorrelation function is
easily calculated from the Vlasov equation.

The distribution of fields at two times allows calcula-
tion of all equilibrium time-correlation functions in the
form

( 3 (E(t) )B(E)) = f de f d a' A ( a)B( e') Q( a, t; a', 0),

where A (E) and B(E) are arbitrary functions of E. The
information contained in Q (a, t;a', 0) completely charac-
terizes two time properties. For a more transparent
description of the field dynamics it is useful to focus on a
more restricted property. An important example is the
conditional electric field, or the average field at time t,
given a specified value at t =0,

(E(t);a) = (E(t)5(E—e) ) /Q(c, )

=f dc, ,a, Q(c,„t;a,O)/Q(c. ) .

A simple model for this quantity has been discussed else-
where [15] using exact coefficients in a short-time expan-
sion. A more controlled evaluation of this and related
dynamical properties, based on the results of the present
paper, is planned to be given elsewhere [4].

ACKNOWLEDGMENTS

This research was supported by National Science
Foundation, Grant No. PHY-8822581. The research of
L.Z. was also supported by the DGPA of the Universidad
National Autonoma de Mexico.

APPENDIX A: FIELDS AT A NEUTRAL POINT
DUE TO NONINTERACTING PARTICLES

If the interactions among ions are neglected, Eqs. (2.9)
and (2.10) simplify to

G(A)=ln((e'"' ))=ln + V ' f dq e ' =Nln
r

1+V-' fdq(e' ""'—1)

~n f dqp(A, ,q), (Al)
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G(A, , A, ';t)=ln((e'" '"e' ' ) )=in Q V ' fdv; fo(u;) J dq, .e
i=1

1+P' —i f dv f (u) f dq(eix. e( q+vt) +iw.e( q)

f d f ( )f d (
i~'eiq++ii+i~ 'eiq& (A2)

This can be rearranged to have the form of the weak-
coupling limit obtained in Sec. VI,

G(A, , A, ';t)=n fdq[P(A, , q)+P(A, ', q)]

+n f dqdvfo(u)P(A, , q+vt)P(A, ', q) . (A3)

APPENDIX B: COEFFICIENTS
IN SHORT- TIME EXPANSION

In this appendix the coefticients in the short-time ex-
pansion are simplified for numerical evaluation. Consider
first the evaluation of (3.2),

G (g) — 2 (2~)1/2c g3/2 (A4)

G(A, A, 't)=G(A, )+G(A, ')

+n fdr, dr2$(A, , r, )P(A, ', rz)C(r, r2, t) . —

Here fo is the Maxwell-Boltzmann distribution and
P(A, , q) is defined by Eq. (5.2). Performing the coordinate
integral in (A2) and the velocity integral in (A3) leads to
the final results

(E E eik E)/( ik E)

where E; is given by the time derivative of (2.1),

E; = g [(po/mo) —(p /m )] V e, (r )
a=1

+(po/mo) 7 eb, (qo),

eb(qo) = Vq f dr p lqo rl

(81)

(82)

(83)

(A5)

This agrees with the weak-coupling expressions (6.4) and
(6.12), except that here C(ri —r2, t) is the density auto-
correlation function for an ideal gas,

and p=Zen is the charge density for the uniform back-
ground. The background field obeys the identity

c)
eb;(qo)= fdrp [qo

—r(
Bgp~ Bg pt Bg pj

C(r, —r2, t)=n(mu t )
/ exp[ —(r, —r2) /(ut) ] . 5;, (4~Zen—/3) . (84)

(A6) Use of (82) and (84) in (Bl) gives directly the result (3.3),

BE,(r)
F;~(A, )=(e /Pomr o)5o; +J(nk Ts/p) J dr

arl

BE,(r)
g(r;A, )

ar1

+(n ksT/mo) fdrdr' BE;(r)
arl

BE(r').
Brl

g (r, r', A. ), (85)

with the correlation functions defined in (3.4) and (3.5). The corresponding expression for A,"(a) is now obtained direct-
ly from (3.10),

BE;(r) BE,(r)
A; (a)=(eo/Pmoro)5, +(nktiT/p) fdr ' g(r;a)

Br)

BE;(r)
+(n kii T/mo) J dr dr'

Brj

BEi (r')

BrI'
g(r, r';a) . (86)

These expressions apply for the charged-point case, as
they include fluctuations in E; due to absolute motion of
the impurity relative to the background [the second term
of (82)]. However, for a neutral point the impurity has
constant velocity, which can be transformed to zero by a
suitable Czalilean transformation in the definition of
Q(a, t;a', 0), so that the latter is completely independent
of the properties of the impurity. The correct result for

the neutral point case can be obtained from (86) by tak-
ing the limit mp~ ~ to suppress these absolute motion
contributions,

BE,(r)
A; (a)~(nkvd T/m) fdr

Br)

BE,(r)
g(r;a) .

BrI

(87)
In the following, we restrict further attention to this
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neutral-point case.
To evaluate (B7) it is necessary to specify the distribu-

tion of charges g (r;a). It has been shown elsewhere [10]
that this distribution can be obtained from a suitable
functional derivative of the generating function for Q(s).
In particular, if Q (s) is given by the adjustable-parameter
exponential (APEX) approximation [11], then g (r;a) be-
comes

g(r;a) ~Q( ~a
—e*(r)

~ )/Q(a),
(B8)

e*(r)=e(r)(1+ar )e

BE,(r)
A; (a)~(nktiT/m) f dr

Brt

BE (r)
Brr

XQ(~a —e*(r)~)/Q(a) . (B9)

The coefficients A, (a) and Az(a) are then calculated
from Eq. (3.9),

where a= —2PU, „(I }/roI, and U,„ is the excess inter-
nal energy for the OCP. Equation (B7) simplifies to

Q(a)A, (a)=(nZ e ktiT/2m) fdrr [5—3(a r) ]Q(~a —e*(r)~)

=(nZ e k T/2m) f dr r (2~) f ding e ~ f dQ dQ&[5 —3(a.r) ]e'~ '

=(4nZ e kiiT/mm)f dr .r f dA, A, e ' '[jo(ak)jo(Ae*) —2j2(aAj)2(A, e*)]

=(4nZ elk&T/mar) f dA, Ae' , '[jo(ai, )GO(A. )——,'j2(ak, )Gz(k)],

where jI are the spherical Bessel functions, and Go(A, ) and G2(A. ) are

Go(A, )=f dr r jo(Ae*),

Gz(A. )=f dr r jz(Ae*) .

Similarly, A2(a) is found to be

Q(a)A2(a)=(nZ e ktiT/m) fdrr [1+3(a r) ]Q(~a —e'(r)~}

=(4nZ e ktiT/mar) f did, e ' ',[jo(ai, )Go(A)+j2(aA, )Gz(A)] .

The generating function G(A, ) in the APEX approximation is given by

G(A, ) =4mn f dr r R (r)[jo(Ae*)—1],
R (r)—:e(r)/e*(r) .

For the calculation in Table I at I = 1 the parameter a in (B8) has the value a = 1.14/ro

(B10)

(B1 1)

(B12)

(B13)

(B14)

(B15)

APPENDIX C: WEAK-COUPLING LIMIT

In this appendix the weak-coupling kinetic equation for U(ri, rz, t) is obtained. From the definition, (6.10},

U(r, 'r2't)=~n(r, 't)[n{r2) ~n(rz))])= fdxodxi5(ri (qi qo))g (xo xi't),
f"'( x, oxt) =N f dx2, . . . , dxzp~[n (r2, t) —(, n (r2, t ) ) ],

(Cl)

(C2)

where x; denotes the position and momentum of the ith particle, and p„ is the N-particle equilibrium distribution func-
tion. The reduced distribution function g'"(xo, x, ;t) satisfies the second Bogoliubov-Born-Green-Kirkwood-Yvon
hierarchy equation [16]

+vo 7 +v, Vq
—(Zo/Z)8(0, 1) g'"(xo,x„t)=fdx2[8(1,2)+(Zo/Z)8(0, 2)]g' '(xo, x„x2;t),a

(C3)

where the operators 8(ij) are defined in (6.15), and g' '(xo, x „x2,t) is defined by

(xo xi x2 t) =N(N —1)f dx3 dx&p&[n (r2, t) —( n(r2, t) ) ] (C4)

A kinetic equation is obtained by expressing g' ' in terms of g"' so that (C3) becomes a closed equation. As in Sec.
VI, we use the initial conditions to estimate the weak-coupling form
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0'"(xo xt'0) =fo( )fo(vi )" &(rz (qt —qo))g(qt qo)

+n fdq, &(r —(q —qo»[g(q —
qo q —qo) —g(q —qo)g(q —qo) l (C5)

(xo xt x2 0 fo(v)fo vl fp v2 ~ 2 (ql 'qo )g('q2 lo ql 'qo +~ 2 q2 'qo g('q2 'qo ql qp)

+n f dq 5(r —(q —
q ))[g(q —q, q

—q, q, —q )

—g(q2 —
qo qt

—qo)g(q3 —qo)] (C6)

These results are still exact. In the weak-coupling limit, as described in Sec. VI, the correlation functions simplify to

g(q2 —
qo qt

—qo)-g(q2 —qo)g(qi —qo»

g(q3 —
qo q2

—
qo qi —qo) g(q3 —qo)g(q2 —qo)g(qt —qo) .

With these results, (C6) can be written as

(xp x 1 x2 fo(v 1 ) 0 (xo x2 )+f0( 2 ) (b (xo x 1

(C7)

(CS)

Equation (C9) is the correct weak-coupling functional relationship at t =0. We assume that the dynamics preserves
this relationship at finite t and write

g' '(xo, x„x2,'t)~fo(v&)ng" (xo px't)+fp( v)2' (xp x, 't) .

Use of (C10) in the hierarchy equation (C3) gives the result (6.14) of the text.

(C 10)
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