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Under shear, nematic liquid crystals can exhibit localized excitations that propagate much faster than
simple one-dimensional analysis can predict. We describe a two-dimensional theory in which the excita-
tions are fronts between distinct solutions of the steady-state Ericksen-Leslie equations. We find that a
front's speed is proportional to its width and also to the difference in an effective free energy that we also
define. We consider the effects of shear in Hele-Shaw cells on the director field of a nematic liquid crys-
tal, and find distinct classes of multiple steady-state director-field configurations. The front between two
solutions always moves in the direction that decreases the total effective free energy. Although the speed
cannot be calculated explicitly without knowing the details of the front region, it can be estimated self-
consistently using experimentally determined values for the observed front width. In this way we can
obtain values for the front speed in reasonable agreement with observation.

I. INTRODUCTION

In viscous fingering experiments using nematic liquid
crystals [1] in Hele-Shaw cells [2,3], as well as in the ex-
periments of Zhu, Liu, and Bai [4,5], propagating excita-
tions, or "halos, " (cf. Fig. 1), have been observed that
travel at very large speeds —typically 1 cm/s but as high
as 20 cm/s, which is much larger than the average Qow
speed ( -0. 1 cm/s). If one assumes that the director dis-

FIG. 1. Photograph of radial Hele-Shaw cell containing the
liquid crystal 8CB. It shows a diffuse halo that is approximately
0.4 cm wide and is propagating outward at -0.7 cm/s. g is ap-
proximately 1500.

tortion occurs only over a length that scales with the
plate separation d, dimensional analysis predicts a propa-
gation speed

K0=

where K is an elastic constant and y& is the viscosity for
director rotation. Putting in values for a typical experi-
ment, we obtain co=0.005 cm/s. Since co is much less
than the observed speeds, we must look further than this
one-dimensional picture if we are to understand this
phenomenon.

We describe an approach in which the director varies
in two dimensions: perpendicular to the plates and along
the direction of Aow. Since in this case we must deal with
lengths along both directions, and these may be quite
different, dimensional analysis fails because it alone
cannot tell us how to combine these two lengths. In our
approach, the excitation is a front between two solutions
of the steady-state Ericksen-Leslie [6] equations. The
propagation speed is proportional to the width of the
transition region between the two solutions and to the
difference in an effective free energy that we also define.
The Ericksen-Leslie equation for the director has a rich
multiplicity of solutions because of both topological con-
siderations and the inherent nonlinearity. We define for
each solution an effective free energy by considering the
work needed to rotate the director in the presence of
viscous and elastic torques. We obtain the result that the
front always moves in such a way as to reduce the total
effective free energy. Since the width of the front and
hence its speed cannot be calculated a priori, we use mea-
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surements of the front width and show reasonable agree-
ment with observations of propagation speed.

II. BACKGROUND

Theoretical approaches [7—13] attempting to describe
these phenomena have been in terms of the motion of
smooth, nonlinear kinkline excitations (referred to as soli-
tons) between two states of the director, n. [n(r) is a unit
vector field that describes the local direction of orienta-
tional order. See Ref. [1].] These calculations are one-
dimensional in that the structure of the director profile in
the direction perpendicular to the plates is neglected.
Furthermore, the state invaded by the kink is implicitly
assumed to be linearly unstable. However, it is unrealis-
tic to assume that the observed front is between a linearly
stable state and an unstable state that is invaded by the
stable state, because the unstable state would have to be
prepared and then exist for at least the transit time of the
front. This would be difficult to realize even were it the
specific goal of the experimenter. Moreover, in a nematic
liquid crystal, where director-orientation Quctuations are
soft, it is probably not possible to prepare such a state.

Another important issue that has not been fully ad-
dressed previously is the effect of the director boundary
condition at the glass plates. First, the director profile
perpendicular to these planes cannot be homogeneous.
Second, because of the boundary conditions, as well as
the inherent nonlinearity of the problem, there is a large
multiplicity of possible steady-state director profiles.
These different director profiles cannot in general be con-
tinuously transformed into each other, i.e., they may be
topologically inequivalent. We propose that the observed
halo is a front propagating between different steady-state
director profiles; we will show that there is a large num-
ber of solutions corresponding to different deformation
modes. Three of these modes have been previously ob-
served [14], and their linear stability has been calculated

Given multiple solutions for the director pro61e and
that the halos are fronts moving between them, what
mechanism determines the propagation speed and the
selection mechanism, i.e., which state does the system
"prefer'"? We are able to provide qualitative and intui-
tively appealing results by studying the Ericksen-Leslie
[6] equations (which describe the coupling of the director
to the fiow field) in the approximation that the director
remains in the shear plane and that the Qow field is that
of an isotropic Quid. We believe that this approach cap-
tures the essential physics responsible for the state selec-
tion and front speed problem. One attractive feature is
that we can associate a "fiow free energy, " Vs,„,with the
viscous torque. The motion of fronts between different
states is governed largely by the difference in the effective
free energy: V—:V,&+9'„,„(where 9',

&
is the Frank free

energy, which is the energy cost of spatial variations in n)
between the states, so that the higher-energy state gives
way to the lower. This picture allows us to solve the
selection problem from an analysis of V alone. We find

that, for Qow speeds comparable to those used in the ex-
periments, states that are topologically different from the

undistorted state become the lowest-effective-free-energy
state.

In our approach, the direction of motion of a front be-
tween inequivalent states is determined by the difference
in effective free energy of the two states, but the magni-
tude of the velocity depends also on the details of the
director profile in the front region. However, if we as-
sume the director distortions of the front extend over dis-
tances along the Qow direction much larger than the
plate separation, as appears to be the case in the experi-
ment, we 6nd that our analysis is consistent with front
speeds that are much larger than c0 or the Quid velocity,
and of the same order as seen experimentally.

In order to understand the front dynamics completely,
one must relax the assumption that the director remains
in the shear plane; we expect some director profiles to es-

cape. In this more general case, however, one cannot as-
sociate a unique Qow energy with each state, since the
work necessary to rotate the director from one state to
another depends on the way in which the director dis-
torts into the third dimension. We present arguments,
however, that the picture developed here remains qualita-
tively the same even in this case. The full dynamical be-
havior of the fronts can be studied only with two-
dimensional numerical solutions of the Ericksen-Leslie
equations, which are beyond the scope of this paper.

This paper proceeds as follows: in Sec. III we discuss
the Ericksen-Leslie equations that describe this problem,
as well as the simplifications we have made and their im-

plications. Section III A presents our results for steady-
state solutions of the director profile, including the multi-

plicities referred to above. In Sec. IV we discuss the
relevant energies and their calculation. Section V de-
scribes how the theory of front propagation applies to
this problem and how one may calculate halo speed; Sec.
VI gives a comparison between our results and experi-
ments, and Sec. VII is our discussion and conclusions.

III. THE ERICKSEN-LESLIE EQUATIONS

Shear exerts viscous torque on the director of a nemat-
ic liquid crystal. The balance of this torque with that due
to elasticity [1] and the corresponding backfiow are de-
scribed by the Ericksen-Leslie equations. Assuming that
the director always lies in the plane of shear and that
there is translational invariance perpendicular to this
plane, n is described uniquely by its angle 8(x,z, t) with
the direction of the Qow; the coordinates x and z are
shown schematically in Fig. 2. In this geometry,
cosO=n. x and the torque balance equation is

a8 a8 a'8 a'8
yi +uz

dt Bx Qx~ (jz2

+ (a2sin 8—a3cos 8), (2)
au(z)

az

where u is the Qow velocity in the x direction, the a's are
Leslie viscosity coefficients, and y&=a3 —a2. K is an
elastic constant (we have used the one-elastic-constant
approximation and have verified that this does not affect
the behavior significantly). Furthermore, in many ma-
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u(z)

FIG. 2. Schematic of the geometry considered.
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terials u2&&cx3, so we take +3=0. We have also verified
that this affects the results very little. For simplicity we
also neglect the effect of the director on u and approxi-
mate it by the Qow of an isotropic Quid determined solely
by the externally imposed pressure gradient Bp/Bx. This,
with no-slip boundary conditions gives

( )
Bp/Bx d 2 u d 2

)
4 y2 4

where a' is an average viscosity and u is the average Qow
speed. We have checked the validity of this assumption
by calculating the true fiow field u (z ) using the
Ericksen-Leslie theory. The relative deviations from the
assumed parabolic profile are less than 20%, which is not
significant at the level of this analysis.

A. Steady-state solutions

Using the above assumptions, Eq. (2) reduces to

FIG. 3. Solutions of Eq. (4) for various winding numbers and

g =400.

8(z'= ——')=—+mm. .IT

2 2

Traversing the cell from z'= —
—,
' to z'= —,', the director

rotates through an angle mm, where m is the "winding
number" [18]. Classes of solutions are distinguished by
their winding number. It is important to note that two
solutions that differ in winding number by Am are topo-
logically inequivalent and must be separated by a line de-
fect (of strength s =b,m /2). This immediately raises the
question of which winding number (if any) is preferred.
Figure 3 shows solutions of Eq. (4) for rI=400 and vari-
ous winding numbers.

In addition, we have found that for each winding num-
ber, a rich multiplicity of solutions exists. Unlike previ-
ous researchers, we have not assumed that

d 0 +rlz'sin (8)=0,
Qz

(4)

where z'=z/d and g—:—12uda2/X is the Ericksen num-
ber Er. Er is a dimensionless number obtained by multi-
plying a characteristic shear rate (in our case 12u /d ) by
the characteristic relaxation time for director distortions,—a2d /K. Typically, g is of the order of 1000 [16].
Equation (4) is solved using fourth-order Runge-Kutta in-
tegration and the shooting method [17]; the bisection
root-finding algorithm converges reliably to the correct
shot. There is a large multiplicity of the solutions of this
equation, largely unaddressed by other researchers, that
plays a dominant role in determining the speed of the lo-
calized excitations referred to in the Introduction —this
will be expanded on in Sec. IV. Boundary conditions
consist of specifying the angle 0 on the planes z'=+ —,'.
The angle 0 can be defined to within an additive integral
multiple of ~, giving rise to distinct classes of possible
solutions. We assume strong anchoring for the homeo-
tropic alignment used in our experiment, that is, the
boundary conditions at the glass walls are

—1 —0.5
l

0.0
z cl

0.5

FIG. 4. Nine different solutions of Eq. (4) for m =0 and

g =900.
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creased, undulations of this curve increase in both fre-
quency and magnitude, giving rise to many more solu-
tions. The complexity of this curve illustrates the in-
herent richness of this problem.

Each solution represents a configuration with zero
torque on the director everywhere and hence is a possible
steady state.

0
~20—

~ 0 ~

~ 0
IV. ENERGY CALCULATIONS

Given a solution of Eq. (4), its Frank free energy per
unit area P« is [20]

2
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FIG. 5. The number of solutions of Eq. (4) increases dramati-
cally as g is increased. This is for winding number 0. Essential-
ly the same behavior is seen for other winding numbers. The er-
ror bars arise because at very large g, more solutions might be
found by decreasing the mesh size used.

8(z) —(m+1)m/2 is an odd function of z [19]. These
multiple solutions arise because Eq. (4) is nonlinear. Mul-
tiple solutions appear for g) g, (m ), where r), (0)=475.
Figure 4 shows nine different solutions of this equation
for q=900 and m =0. The number of solutions, shown
in Fig. 5, increases dramatically with g. Furthermore,
this number increases in an interesting way. In Fig. 6 we
plot 8(z'= —

—,
'

) —m/2, obtained from the shooting algo-
rithm, versus d8/dz'~, &z when r1=1000. As g is in-

The Frank energy is the free-energy cost of producing
spatial variations in the director orientation. We define
theow energy Vs,

„

V„.„=—t
"' j"',d8d—d /2 m/2

= f J (a2sin 8—a3cos 8)d 8 dz
@~~ Bu

—d /2 /2 BZ

d/2 Qg
[(a2 a3)8(z ) 2 (a2+a3)sin28(z )—d/2 BZ

+const ]dz, (7)

where v is the director torque due to shear. The integra-
tion constant does not affect the calculation and will be
ignored. We stress that this is not an energy in a thermo-
dynamic sense, but is the integrated work done by the
torque due to shear in rotating the director through 8(z ).
In the general case in which the director escapes out of
the shear plane, this work depends on the "path" of the
director rotation from the undistorted case, i.e., on the
detailed behavior of this rotation. However, by restrict-
ing the director to the shear plane, the work necessary to
rotate the director is, according to Eq. (7), completely

20—
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FIG. 6. 8(z'= ——') n/2 vs 88/Bz'~—, =,zz using the algo-
rithm for Eq. (4); g=1000. Each zero of this function corre-
sponds to a solution. As q increases, the shape of the curve
near the center becomes more intricate, leading to more solu-
tions.

FIG. 7. Elastic energy and flow energy as a function of wind-
ing number for q=400. Note that the How energy is nearly an-
tisymmetric about m =0 while the Frank energy is nearly sym-
metric.
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crystals, co=10 cm/s. Moreover, we observe that the
spatial extent l of a front is of the order of 0.1 cm, so that
l/d =20. Thus with these estimates we see that Eq. (12)
is consistent with front speeds up to several cm/s.

We stress that the estimate above shows only that it is
natural to expect large front speeds. To predict the speed
one must solve the front structure explicitly to compute
the rhs of Eq. (9) (or its generalization to the case where
the director escapes the shear plane). This would require
a full two-dimensional numerical solution of Eq. (2) that
is beyond the scope of this paper.

We can only make speculations about effects caused by
the director escaping out of the plane of shear; other
researchers have found that solutions of Eq. (4) can be
linearly unstable to this [15]. A stationary disclination
between two states with a difference in winding number
of 2 corresponds to a defect of strength 1. It is well
known [23] that this will reduce its strain energy (and
cease to be singular) by escaping into the third dimension
(out of the shear plane in the geometry considered). We
similarly expect a moving defect to distort out of the
shear plane but do not expect this to change the qualita-
tive picture. Quantitatively, it appears that the effect
would be to shift the transitions to higher values of g,
since the torque is decreased by cos P (where P is the
director angle with the normal to the shear plane) when
the director no longer remains in the shear plane. It is
also well known that static disclinations with s & 1 will
break up into a number of weaker disclinations such that
the sum of their strengths is the strength of the original
defect [24], and there is no reason moving defects should
not do the same. For example, if the director field is in
an m =3 state and the Aow is suddenly reversed so that
the m = —3 state becomes stable, we expect that three
s=1 defects will be generated; this is perhaps why in
director waves, multiple fronts are often seen when the
flow is reversed [4].

It has also been observed by us as well as others [4]
that the propagation of these excitations is most dramatic
when the source of the Bow is abruptly reversed. This
also is in good qualitative agreement with our theory; it
can be seen in Fig. 7 that when the sign of the driving
Aow is changed, there is an exchange of stability between
classes with m and —m.

VII. CONCLUSIONS

In summary, we have presented a two-dimensional
theory that predicts the existence of propagating fronts in
a nematic liquid crystal subject to shear Row. These
fronts are transition regions between steady-state solu-
tions of the director-torque-balance equation. Using this
theory, we have obtained an expression for the front ve-
locity; it is proportional to the width of the front and the
difference in the effective free energy of two states
separated by the front. Calculating the width of the front
is straightforward in principle, but requires the solution
of a nonlinear partial differential equation (which may be
singular), which is beyond the scope of this paper. The
velocity dependence on front width is in reasonable
agreement with experimental results. Our expression also
exhibits semiquantitative agreement with experimental
results on front speeds in two different systems.

ACKNOWLEDGMENTS

We thank P. E. Cladis and R. G. Larson for helpful
discussions. J.T.G. acknowledges support from Natural
Sciences and Engineering Research Council (Canada).

APPENDIX A: DERIVATION OF EQ. (5)

The first term on the rhs of Eq. (2) is
T

(Al)

VI. COMPARISON WITH EXPERIMENTAL RESULTS

In our experiments on radial Hele-Shaw cells filled
with the liquid crystal octylcyanobiphenyl (8CB), we have
observed halo speeds up to -0.7 cm/s with an apparent
front width of -0.4 cm. The plate separation was 0.0025
cm and g=1800. This diffuse halo is likely a front be-
tween two topologically equivalent states. In this range
of g, we expect a large number of solutions, so we cannot
say specifically which ones are present. The order of
magnitude of hP between these types of states, how-
ever, is = 10K /d. This our estimate for the halo
speed is = 1600co=0.8 cm/s. Other experiments on
"director waves" in the nematic phase of N-(0-
methoxybenzylidene)-p-butylaniline (MBBA) [4] showed
speeds of up to 20 cm/s. In addition, the width of the
front in the direction of motion can be inferred from the
photographs to be 1.8 mm (the distance between planes
was 0.050 mm). These experiments were at much higher
values of q( = 1.5 X 10 ). The effective-free-energy
difference must be = 10 K/d in this case to arrive at the
correct order of magnitude for the observed speed. This
is not unreasonable at such large g.

KfBO BO BOd+ dz dx—d/2 o Bx Bz
(A2)

z=d/2

Front
Region

/

z=-d/2

X = X 0 X = X o

FIG. 9. Schematic of region of integration for Eq. (8). The
distance xo of the boundaries from the front is much larger than
l.

We multiply this by B8/Bx and integrate over the region
depicted in Fig. 9:
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where xo is some length larger than I and we have placed
the center of the front at x =0. The first term in the in-
tegrand can be rewritten as

T

(A3)

Combining the two terms gives Eq. (9).

APPENDIX B:
GENERALIZATION TO INCLUDE ESCAPE

(A 1 1)

which can be integrated once; since by definition
ag/ax—:0 at x =+xo, this term vanishes. The second
term is rewritten as

K dn f 0 ag a ag
2 —d/2 -. ax az az

(A4)

fdn f o ag a~g
—d/2 —

&p Bz BZBX

which can be rewritten as

(A5)

and integrated by parts: ag/ax vanishes on the lateral
boundaries (z=+d/2) where strong anchoring is as-
sumed; we thus have

The results presented so far are for the specific case
where the director always remains in the shear plane.
Since this is almost certainly not the case experimentally,
we present arguments here that the essential physics
remains the same and that our method should still be val-
id in this more general case. When the director escapes
out of the shear plane, forming an angle P with this
plane, Eq. (2) becomes

ao ae 80 BL9
y, cosP + u =K cosP +

Bt Bx Bx Bz

ae ay ay ae
ax ax az az

ICf«—2 f o a ae
2 —d/2 xp Bx Bz

(A6) + cosp(a2sin 8—a3cos 8)
Bu 2 2

or

(A7)

using the definition of V„ofEq. (6).
The second term on the rhs of Eq. (2), when multiplied

by BO/Bx and integrated over the same region as we con-
sidered above, is

f f (a2sin 8—a3cos 8) dz dx,Bu . BO
—d/2 xp Bz Bx

which we rewrite as

The torque balance equation that describes the behavior
of the escape angle P is

ay ae au
y, + u = (a&+a3)cosg sine cosp sing

Bt Bx Bz

+z. '&+ "&
X2 gz

i ae'
+cosP sing

0(z, xp )f f (a2sin 8—a&cos 8)dgdz,—d/2 @ —
o~ Bz

which becomes

(A9) ao+
az

2

(B2)

d/2 Qu
y [8(z, —xo) —8(z, xo)]—d/2 BZ

—(a2+a3)[sin28(z, —xo) —sin28(z, xo)]dz . (A10)

That is, recalling the definition in Eq. (7),

We make the transformation to the comoving frame as
before. The first equation is multiplied by cosp(ae/ax)
and the second by ap/ax and both are integrated over
the same region as before. The procedure outlined in Ap-
pendix A is carried out and the two resulting equations
are added term by term. The result is

2

cy, f f cosy +d/2 0 ag ap
—d/2 ~p Bx Bx

2

d/2 o Qu 2 . 2 2 Qg ay=b.V„+ cos p(a@sin 8—a3cos 8) +(a2+a3)sinecosgcospsinp dx dz,—d/2 o Bz Bx X
(B3)

where 9,&
is now

ae ay
2 —d/2 Bz az

(B4)
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The last integral in Eq. (B3) is rewritten as

f dzf a cos /sin 8
d/2 Qg p BO
—d/2 BZ ~p Bx

sin20 8 2 2 2 00 sin 20 8cos f ct3 cos tP cos 8 + cos P dx
Bx Bx 4 Bx

which becomes, after some manipulation,

d/2 t)u 0 (~2 +3), ae
dz cos (t—d/2 az —

o 2 Bx

(a&+a3)
(sin20cos P)dx . (B6)

The second term can be integrated once, leaving

d/2 t)u (Ct2+~3) . d/2 t)u o (+2 ~3), c)ea—f dz sin29cos y+ f dz f cos (t dx .—d/2 BZ 4 —d/2 Bz +p 2 Bx
(B7)

In Eq. (B3) the first term of the coefficient of c on the lhs is changed (from the solvable case where there is no escape)
only by a positive factor that is not greater than unity, and there is an additional positive term, so that the sign on the
lhs is the same. The last two terms in the integrand of Eq. (B3) differ only from the flow energy of the no-escape case by
a positive factor not greater than unity. However, detailed knowledge of the front is necessary to evaluate the last term.
Nevertheless, we do not expect qualitatively different behavior from the case where the director stays in the shear plane.
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