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We report on computer-enhanced shadowgraph flow-visualization and heat-flux measurements of pat-
tern formation in convective flows in a thin fluid layer of depth d that is heated from below. Most of the
experiments were conducted in a cylindrical container of radius 7 and aspect ratio I'=r/d =10. The
temperature of the top plate of the container was held constant while the heat current through the fluid
was linearly ramped in time, resulting in a temperature difference AT between the bottom and top plates.
After initial transients ended, the reduced Rayleigh number e=AT /AT, —1, where AT, is the critical
temperature difference for the onset of convection, increased linearly with ramp rate 8 such that
€(t)=pt. When time was scaled by the vertical thermal diffusion time, our ramp rates were in the range
0.01 £3=0.30. When the sidewalls of the cell were made of conventional plastic materials, a concentric
pattern of convection rolls was always induced by dynamic sidewall forcing. When sidewalls were made
of a gel that had virtually the same thermal diffusivity as the fluid, pattern formation occurred indepen-
dent of cell geometry. In the earliest stages the patterns were then composed of irregularly arranged
cells and varied randomly between experimental runs. The same random cellular flow was also observed
in samples of square horizontal cross section. The results demonstrate the importance of stochastic
effects on pattern formation in this system. However, an explanation of the measured convective heat
current in terms of theoretical models requires that the noise source in these models have an intensity
that is four orders of magnitude larger than that of thermal noise.
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I. INTRODUCTION

Many nonlinear dissipative systems subjected to an
external stress R will undergo a transition from a spatial-
ly uniform state to a state of lower symmetry, with
characteristic spatial variation, when R exceeds a critical
value R, [1]. Typical of such systems are Rayleigh-
Bénard convection [2,3], rotating Couette-Taylor flow
[4,5], electrohydrodynamic convection in nematic liquid
crystals [6], dendritic crystal growth [7], flame fronts [8],
certain chemical reactions [9], and electric currents in
semiconductors [10]. In the ideal system, there is a bifur-
cation point R =R, at which an exchange of stability
occurs between the spatially uniform state and the state
with spatial variation. Above R, the uniform state is
still a solution of the equations of motion of the system,
but it is unstable. Thus, if R is changed from below to
above R, a finite perturbation of the ideal system is re-
quired if it is to evolve to the stable state of lower symme-
try in a finite length of time.

In this paper we address the question of how a real
physical system evolves from the unstable to the stable
state of broken spatial symmetry. Of particular interest
to us was whether stochastic effects ever play a significant
role in this pattern evolution. Such effects have been
studied both theoretically [11,12] and experimentally
[13,14] for the onset in a laser. However, that work did
not involve a spatially extended system in which a contin-
uum of (or at least very many) modes can become unsta-
ble, and thus a single-mode description without spatial
variation turned out to be sufficient to explain the experi-
mental observations. Stochastic effects have been con-
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sidered theoretically for spatially extended hydrodynamic
systems, in particular for Rayleigh-Bénard convection, by
a number of authors [15-19], but their experimental
study so far has been largely inconclusive for macroscop-
ic systems. Evidence for stochastic effects has been found
recently, however, in a study of sidebranching in dendri-
tic crystal growth [20].

The particular example of our experimental study is
the Rayleigh-Bénard (RB) system [2,3,21]. It consists of
a horizontal layer of fluid (water in this case) which is
heated from below and cooled from above. For this case
the stress parameter R is the Rayleigh number, which is
proportional to the temperature difference across the lay-
er. In the presence of gravity, the purely conducting
state loses stability to a state with a finite fluid velocity
when R exceeds its critical value. The velocity field has a
characteristic spatial pattern, and thus the full transla-
tional symmetry of the conduction state is broken. For
R >R, the steady-state amplitude of the convecting state
evolves continuously from zero as R increases [22], and
the bifurcation from conduction to convection therefore
is said to be forward. We believe that our results are typ-
ical for systems with forward bifurcations. We chose our
particular system because the externally controlled pa-
rameters and the boundary conditions can be specified
and controlled in the laboratory with very high accuracy
in this case [23] and because the full equations of motion
are well known.

We report on experimental results of heat-current mea-
surements and flow visualization, which were obtained
while R was varied monotonically in time from below to
above R.. In these experiments the convective heat
current evolved to macroscopic values and a flow pattern
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became observable only some time after R, had been ex-
ceeded. This delay, as well as the quantitative details of
the heat-current evolution and the nature of the pattern
which first forms, gives information about the nature of
the perturbations that cause the system to evolve towards
its stable finite-amplitude state. Similar experiments had
been done before by Ahlers et al. (to be referred to as
ACHS henceforth) [18], but in that work there was no
flow visualization and the heat-current measurements by
themselves did not give definitive answers about the na-
ture of the perturbations.

We find that the pattern which grows depends on the
nature of the sidewalls of the sample. In our cylindrical
geometry with water as the fluid, concentric convecting
rolls are induced when the walls are made of typical plas-
tic materials. This forcing of the pattern by the walls is a
dynamic effect. During the time-dependent heating of
the cell bottom, the temperature gradient in the wall
evolves at a rate which differs from that in the fluid be-
cause the two materials have different thermal
diffusivities. Therefore, there is a horizontal temperature
gradient in the fluid near the wall, and such a gradient is
known. to induce convective flow even when it is quite
small. This dynamic sidewall forcing has been considered
previously as a possible explanation of the earlier experi-
ments [18], and its size has been calculated from the
thermal properties of the fluid and the walls [24]. Our
visualizations, as well as our measured currents, were
quite consistent with this deterministic effect when we
used conventional sidewalls.

Although dynamic sidewall forcing has turned out to
be an interesting problem in itself, it was our goal to
reduce deterministic sources of the convective onset to a
negligible level so that finally stochastic effects due to
external noise sources might become observable. We re-
duced dynamic sidewall forcing by making the walls of a
material with thermal properties which are virtually the
same as those of the fluid. Such a material is a gel, con-
sisting of 95% of the fluid (water) and 5% of po-
lyacrylamide by weight, which has nearly the same
diffusivity as the fluid. Nonetheless, the gel had enough
rigidity to maintain its shape in the presence of gravity
and of the flow field adjacent to it. With this sidewall the
nature of the convective onset was dramatically modified.
The evolving pattern initially consisted of randomly posi-
tioned cells. It had no noticeable relationship to the
shape of the walls. The positions of the cells had no
geometric regularity, and were not reproducible from one
experimental run to the next. This type of pattern oc-
curred in cells of circular as well as of square horizontal
cross section. We believe that this convective onset is
provoked by spatially and temporally random perturba-
tions, i.e., by stochastic forcing. This conclusion is sup-
ported also by an analysis of the time dependence of the
evolving convective heat current. This time dependence
agrees much better with stochastic models [18,25,26] of
the convective onset than with a deterministic one.

The analysis of the current also gave information about
the intensity of the noise source which is required in the
models to explain the experimentally observed onset in
terms of the stochastic effects. It turns out that this in-
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tensity is four orders of magnitude larger than the inten-
sity of thermal noise at room temperature (i.e., the rms
amplitude is about a factor of 100 larger). We searched
for likely experimental noise sources, but found that
changes in the experiment that seemed most likely to
affect experimentally induced noise did not alter our re-
sults. Thus, we unfortunately have to report at this time
that we do not know the origin of this factor of 10*. Brief
reports on the work which we discuss in detail in this pa-
per have already been published elsewhere [27-29].

In addition to the measurements with temporal ramps
of the current, we also did experiments in which the
current was modulated time periodically [27]. In that
case R was periodic in time, and varied from below to
above R, and below again during each cycle. Once dur-
ing each cycle, the pattern grew from a microscopic,
unobservable amplitude to a recognizable pattern, and
then decayed again. Results obtained through this work
also revealed the importance of stochastic effects in pat-
tern formation. Within the framework of the same sto-
chastic models that we use in the present paper, they
were consistent with the noise strength inferred from the
ramping experiments. The results of the modulation
work will be presented in detail in a subsequent paper.

The remainder of this paper is organized as follows: In
Sec. II we describe our apparatus and the experimental
method. It includes a discussion of the flow visualization,
of the computer analyses performed on the images, and
of the heat-flux measurements. Section III contains a
description of experimental procedures, and of the deter-
mination of the convective heat current from the primary
experimentally measured quantities. In Sec. IV we dis-
cuss the theoretical models that were used to analyze the
results for the current. These include a deterministic and
a stochastic single-mode approximation [18,25] as well as
a more rigorous two-dimensional stochastic model [25]
based on the Swift-Hohenberg [17] equation. In Sec. V
we present our results. Some details of our image pro-
cessing are presented in an appendix.

II. APPARATUS AND EXPERIMENTAL METHODS

A. The fluid

The fluid used was water near 25.6 °C with thermal ex-
pansion coefficient a=2.63X10"* K™, specific heat
C,=4.172 J/gK, thermal conductivity A=6.07X 1073
W/cm K, kinematic viscosity v=8.83X10"% cm?/sec,
and thermal diffusivity x=1.47X10"3 cm?/sec. The
Prandtl number is 0 =v/k=6.0. The water was distilled,
fed through a Milli-Q ion-exchange system (Millipore
Co.), and boiled before it was placed in the cell. The fluid
layer was 0.318+0.002 cm thick, resulting in a predicted
value of AT,=2.493 K and t,=d?/k=68.8 sec. When
AT =AT, in such a layer, the parameter Q that describes
the extent of the departure from the Oberbeck-
Boussinesq (OB) approximation [30,31] is Q= —0.416.
For this value of Q, a pattern of rolls is predicted [30] to
be unstable to hexagons only for the small range
0<€<2.2X1073, and hexagons are predicted to be un-
stable with respect to rolls for €>7.7X10 3. Experi-
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mentally, we have never detected a hexagon pattern im-
mediately above the threshold, and therefore we believe
that this system conforms very well to the OB approxi-
mation.

B. The apparatus

Our apparatus is an improved version of that designed
by Steinberg et al. [23]. A schematic diagram of the
convection cell and its container is shown in Fig. 1. The
top plate was a single-crystal sapphire disk with a diame-
ter of 10.16 cm and a thickness of 0.318 cm (Crystal Sys-
tems). The c axis was oriented perpendicular to the disk.
The plate was flat to within 5 um. The bottom plate was
a copper disk with a diameter of 8.9 cm and a thickness
of 0.635 cm, plated on its upper surface with 0.015 cm of
nickel. The nickel was lapped and polished to a mirror
finish. It was flat to within 2 yum. A 90-Q metal-film
heater with a diameter of 8.9 cm (Minco Products) was
attached with adhesive to the lower surface of this plate
to provide it with uniform heating. A 0.08-cm-diam vert-
ical hole, located at 0.30 cm from the outer edge of the
plate, was drilled through the plate to provide an outlet
for the water when it expanded. The diameter of this
hole was expanded to 0.16 cm in the lower 0.2 cm of the
plate; a copper nozzle was epoxied (Stycast 1266) inside
this region. A Tygon tube was attached to it, exited the
main apparatus, and terminated in a reservoir of water.

For some experiments we replaced the sapphire top
with one made of copper 0.64 cm thick with 0.05 cm of
acrylic glued to its upper surface. This top served to
greatly reduce the magnitude of any temperature fluctua-
tions imposed on the fluid layer through the top plate. A
thermistor (Fenwal GA51M2) embedded in the copper
provided a very precise measure of its temperature.

The temperature of the bottom plate was measured
with a Fenwal GAS1M2 (=100 kQ at room temperature)
thermistor. The thermistor was epoxied into a hole that
was 0.2 cm in diameter, 3.5 cm deep, and drilled radially
inward from the side at midheight of the plate. The first
5 cm of the thermistor leads were placed in good thermal
contact with the plate.
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Three different sidewall designs were used in these ex-
periments. Two of them were cylindrical and one was
square. We will describe only one sidewall design here;
the rest were modifications of it and will be described
later. One circular sidewall was made of high-density po-
lyethylene. It had an inner diameter of 6.36 cm, an outer
diameter of 8.6 cm, and a thickness of 0.318 cm, resulting
in an aspect ratio of =10.0. The cell was sealed with a
Buna-N O ring which had been cleaned by wiping with
ethyl alcohol.

As shown in Fig. 1, a small channel of height 0.13 cm
and width 0.25 cm was located in the bottom side of the
sidewall. The bottom boundary of the sidewall nearest the
cell area was raised by =0.10 mm to allow the water to
flow between the cell and the channel. The bottom-plate
fill hole mentioned above was positioned underneath the
channel. Through this arrangement, the relatively large
flow velocities that exist in the vicinity of the fill hole
when the fluid expands under time-dependent heating oc-
curred in a region outside of the active cell area. In ear-
lier experiments we had found that the convective flow
pattern emerging when € was increased above its thresh-
old consisted of circular rolls centered around the fill hole
when this hole was located in the active area of the cell.
This effect is illustrated in Fig. 2, which shows the sha-
dowgraph image of a pattern emerging from the conduc-
tion state after € was ramped through zero. Both sidewall
and fill-hole forcing are noticeable in this case.

The cell was located inside a cylindrical stainless-steel
container with a diameter of 16.3 cm and a depth of 6.4
cm. The sapphire plate was mounted in a stainless-steel
plate and sealed with an O ring (not shown). The outer
edge of the bottom copper plate was in contact with an
acrylic ring of inner diameter 8.6 cm, outer diameter 12.7
cm, and thickness 1.0 cm. The ring was attached to the
steel plate by six stainless-steel screws of 4 mm diam and
clamped the cell together. The remainder of the con-
tainer volume was filled with thermally insulating Ensol-
ite foam rubber (Cascade Designs) with thermal conduc-
tivity [32] A,~5X10"* W/cmK, which insured that
nearly all the heat applied to the copper plate flowed
through the fluid or sidewall.

INCOMING
NOZZLE SIDEWALLS ~ TUBE  TEMPERATURE
0-RING  FLUID (H0) CONTROLLED
TO FLUID 2 H,0
RESERVOIR CHANNEL / SAPPHIRE
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N
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FIG. 1. Schematic diagram of the convection cell and its container, including one of the sidewall designs.
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FIG. 2. Emerging convection pattern showing both dynamic
sidewall forcing, and forcing due to flow out through a small
filling hole in the cell center.

The sapphire plate was held at a constant temperature
through contact with a flowing temperature-controlled
stream of water. A flow distributer consisting of eight
nozzles of inner diameter 0.8 cm directed the water onto
the plate with a flow volume of approximately 200
cm®/sec. The nozzles were mounted equally spaced on a
ring that was attached to the top plate of the container,
as shown in Fig. 1. They pointed radially inward towards
the sapphire plate at a radius of r=2.25 cm. Although
the flow distributer provided efficient removal of the heat
passing through the plate, the temperature of the plate
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increased slightly when a heat current passed through the
cell. A thermistor probe (Fenwal GA51M2) was there-
fore placed directly on top of the plate to measure its
temperature. It rested above the sidewall during the ex-
periments (so that it would not interfere with the flow
visualization), but could be moved along the diameter of
the plate at other times to measure horizontal tempera-
ture variations. When 5X 1072 W/cm? flowed through
the cell (approximately Q,), we measured a temperature
variation across the plate of 10 mK. The temperature of
the plate was at its minimum value at r=2.25 cm, and
increased monotonically with larger and smaller . The
average temperature was =~ 30 mK higher than that mea-
sured when no heat flowed through the cell.

The cylindrical container was located in the center of a
large rectangular stainless-steel tank, as shown in Fig. 3.
The tank had a length of 30 cm, a width of 25 cm, and a
depth of 13 cm, and was filled with flowing temperature-
controlled water. Its walls were covered on the outside
by a 2.5-cm-thick layer of foam rubber. The container
was raised from the bottom of the tank by three hollow,
vertical stainless-steel tubes of length 7.6 cm. The con-
tainer was held firmly in place by its own weight. An op-
tically flat glass window of diameter 10 cm and thickness
5 mm was mounted with epoxy (Stycast 1266) in the top
plate of the tank in the area above the convection cell.
The temperature-controlled water entered an entrance
chamber of the tank, and from there was distributed via
eight Tygon tubes to the nozzles of the flow distributor.
The exiting water was recirculated to the entrance
through 2.5-cm inner-diameter tubes by means of a
pump.

The temperature of the bath water was regulated using
a method similar to that of Lunacek and Cannell [33] and
Haller et al. [34]. A heat exchanger placed in the circu-
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FIG. 3. Schematic diagram of the apparatus, including the cell container, tank, and flow-visualization arrangement.
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lation system removed heat from the water at a roughly
constant rate. A thermistor in contact with the water in
the entrance chamber of the tank, and a heater consisting
of 2.5 m of AWG 30 teflon-insulated copper wire ar-
ranged in a random dense tangle and placed in the 2.5-cm
inner-diameter tube immediately upstream of the en-
trance chamber, were used to control the bath tempera-
ture. This temperature fluctuated with peak-to-peak
variations of 1 mK. When averaged over these fluctua-
tions, it did not drift noticeably. With a constant heat
current through the cell, the bottom-plate temperature
was observed to be stable to within 0.2 mK over periods
of many days.

All experiments were automated, using an IBM PC-XT
computer. The computer controlled the power applied to
the heater at the bottom plate of the convection cell
through use of a 12-bit digital-to-analog converter (Tec-
mar Labmaster), whose output voltage was divided so as
to be within an appropriate range and then served as in-
put to a power amplifier (Hewlett-Packard 6024A). The
maximum power which could be applied to the heater
was 10 W and the minimum step in Q around QC was
AQ=3 mW. The power was measured separately by
determining the current passing through the heater. The
current was determined by measuring the voltage across
a reference resistor with a 54 digit multimeter. The tem-
peratures of the bottom and top plates were determined
by measuring the resistance of their respective thermis-
tors with similar multimeters. These multimeters were
interfaced to the computer using the IEEE-488 bus, ena-
bling simultaneous measurements of all quantities at
specified intervals.

C. Flow visualization

We used the shadowgraph method to visualize the flow
patterns. To our knowledge, this experimental technique
was first applied to convection by Silveston [35,36] and
has been used extensively by Chen and Whitehead [37]
and by Busse and Whitehead [38]. It detects horizontal
temperature variations in the fluid. A theoretical
description of the shadowgraph method has been provid-
ed recently by Jenkins [39] and by Rasenat et al. [40]. In
our system, which is shown schematically in Fig. 3, a
uniform parallel light beam was directed down into the
cell, where it was reflected by the mirror surface of the
bottom plate up to a translucent screen above the ap-
paratus. It was observed by a Nuvicon video camera
(Panasonic). A beam splitter and a mirror were located
as shown in the figure. The image on the screen provided
a top view of the convection pattern. It contained dark
and bright regions, where dark (bright) corresponded to
up-flow (down-flow). The video camera was interfaced to
the computer, where an image from the camera could be
captured with 8-bit resolution using a video-capture card
(Chorus Data Systems, Inc.), and subsequently stored in
computer memory. A 256X256 8-bit pixel image could
be captured in 0.25 sec.

The light source was a 5-mW He-Ne laser. The beam
was focused on a rotating frosted-glass wheel within a
beam expander using a 2.5-mm focal-length lens, and col-
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lected after transmission by an objective lens of focal
length 0.25 m. This lens recollimated the beam with a di-
ameter of 15 cm. The purpose of the wheel was to weak-
en the spatial coherence of the laser beam, thereby reduc-
ing undesirable interference fringes in the image. It ro-
tated at 10 Hz, and the distance of the beam from the
center of rotation was 3 cm. A narrow-band 6328-A in-
terference filter (Melles-Griot) was placed over the cam-
era lens to virtually exclude room light.

Earlier shadowgraph studies [35-38] had concentrated
on Rayleigh numbers well above the threshold, where the
shadowgraph signal is strong. We wanted to detect the
patterns very close to the convective onset, and therefore
used digital image-enhancement techniques. In process-
ing the images, we used a background division and rescal-
ing method and an image printing method which have
been described elsewhere [23]. Background division
essentially eliminated large-scale variations in the intensi-
ty which were caused by spherical aberration from the
lenses as well as by slight tarnishing of the bottom-plate
mirror. The image enhancement obtained through back-
ground division alone is illustrated in Fig. 4, where an
unprocessed image is shown in Fig. 4(a) and the image
after background division and rescaling is shown in Fig.
4(b).

Rapid evolution of patterns precluded averaging
several images; however, in some applications the noise in
single images was reduced by spatial filtering. A two-
dimensional Fourier transform of the matrix of pixels
composing the background-divided image was per-
formed. As an example, the low-wave-vector portion (a
32X 32 matrix) of the magnitude of the Fourier transform
of the image in Fig. 4(b) is shown in Fig. 4(c), where the
darker pixels correspond to those with a higher magni-
tude. The information pertaining to the convection pat-
tern is contained inside a circle centered at k =0 with a
radius slightly larger than k.. The rest of the Fourier
transform corresponds to noise. When filtering the im-
age, we left unchanged all the Fourier-transform pixel
values for k <k, where k., was adjustable but slightly
greater than k. (we typically used k., =1.3k.). Above
2k, the pixel values representing the magnitude of the
transform were all set to zero. For k., <k <2k, they
were decreased through multiplication by the smoothing
function

™
2

I(k)=1I,(k)cos? l 2.1

Here, I,(k) is the original transform magnitude value,
and I (k) is its value after spatial filtering. Figure 4(d)
shows the contents of Fig. 4(c) after the filtering process.
The inner circle is drawn at kK =k_,, and the outer circle
at k=2k_,. Since this figure just shows the low-wave-
vector portion of the Fourier transform (FT), it only
displays a small number of the transform pixel values
that were set to zero. The filtered image, Fig. 4(e), is ob-
tained from an inverse Fourier transform and rescaling.
The roll pattern is considerably easier to identify now
that the high-wave-vector noise has been filtered out.
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The image shown in Fig. 4 is the central portion of a
full convection pattern. Full patterns, such as those
shown in Fig. 10 below, were also filtered, but some extra
steps had to be taken. Pixels within the image matrix but
outside the circular pattern were normally [23] assigned
the value O and are displayed white. For the Fourier
transform, these background pixels were assigned a value
corresponding to the average pixel value within the pat-
tern. After the spatial filtering had been performed, the
background pixels were reassigned the value O.
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D. Pattern analysis

Two types of measurements were made on the images.
The mean wave vector k and the variance 0% of the wave
vector were determined from the Fourier transform. For
k we used

(2.2)

©

FIG. 4. Image-processing techniques used on a weak convection pattern. (a) Unprocessed image. (b) Same image after back-
ground division. (c) Central portion of Fourier transform of background-divided image. (d) Same Fourier transform after spatial
filtering. (e) Image after spatial filtering [inverse transform of (d)].
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Here, k;; is the wave number and [;; is the magnitude of
the Fourier transform, and the indices refer to the ele-
ments of the matrix comprising the transform. The vari-
ance was calculated from

Sk —k VI
or=—t—cr—. 2.3)

2111'
ij

These results were scaled by the theoretical value of the
critical wave number [41] k, =3.116. When calculating k
and o, all elements I;; whose corresponding values of k;
were outside the range 0.5k, =k;; <1.4k. were assigned
the value O.

The second quantity used to characterize a pattern was
the total length B of the boundary separating regions of
up-flow and down-flow. In order to measure B, all pixels
whose value was above (below) the mean pixel value were
represented as white (black). An algorithm was
developed to measure the total length of the boundary be-
tween black and white regions (see the Appendix). We
normalized B so that for a straight roll pattern, B=1. A
cellular pattern, by contrast, was observed to have
B =1.2. The value of B therefore provided a measure of
the cellularity of the pattern.

E. Heat-flux measurements

1. Calculation of convective
heat current under steady heating

The temperature difference AT was directly measured
with thermistor probes located in the bottom plate, and
in the bath immediately above the top plate of the con-
vection cell. The sapphire top plate had a thermal con-
ductivity of 0.35 W/cm K, which is 60 times that of wa-
ter at 25.6°C, and had a thickness very nearly equal to
that of the fluid layer. The plate therefore had a temper-
ature difference across it that was 1.7% of the total AT.
A small temperature difference also existed between the
top of the sapphire plate and the controlled bath across a
boundary layer of thickness =~1 mm immediately above
the plate. The temperature measured by the thermistor
in the bath, whose head was also =~1 mm thick, was a
spatial average of that in the boundary layer. Because of
these additions to the temperature difference, measure-
ments of AT were systematically high by 2—-3 %. We will
discuss the possible effects of these systematic errors
later.

The experimentally measured total heat flux O flowed
partly through the fluid and partly through the sidewalls
and foam-rubber insulation (see Fig. 1). In the absence of
convection, and at steady state, the flux is purely conduc-
tive, and may be written

. . A-A
Q=0 n=—L-LAT+gAT, (2.4)
where A4 s+ Ay and d are the cross-sectional area of the
fluid layer, its thermal conductivity, and its thickness, re-
spectively, and g is the thermal conductance of the

sidewall-foam combination. In order to determine g, we
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measured the AT resulting from an imposed Q for AT
typically 20% less than AT, and used the value of A,
corresponding to the mean temperature of the fluid layer.

_ Under steady-state conditions, the convective heat flux
Q °™ is the difference between the total heat flux and the
conductive portion:

Q' conv=Q'__Q' cond ,

and is therefore determined by the measurements of Q
and AT, once the constant g has been measured. The di-
mensionless heat current j° is the ratio of Q " to the
heat current conducted through the fluid for AT=AT,,
i.e., to 2.635 K. The Nusselt number N is the ratio of the
total heat current through the fluid to that which would
be conducted by a quiescent fluid under the same condi-

(2.5)

tions. Consequently, j°°"¥ and N are related by
JjoOV=(N—1)1+e), (2.6)
with
€e=AT/AT,—1=R/R,—1, 2.7)

which is valid [42] for a Boussinesq [43,44] system and
which is an excellent approximation for our case.

2. Static heat-flux measurements

New static heat-flux measurements were made every
time the cell was reassembled. Measurements of AT,
typically varied by 1-2 % even when the same sidewall
was used. This was due to the sensitivity of AT, to d,
which may vary slightly from one cell assembly to the
next. Shown in Fig. 5 as solid circles are static measure-
ments obtained while using the high-density polyethylene
sidewall illustrated in Fig. 1. We measured AT,
=2.635°C, which is 6% higher than that predicted by
theory for a laterally infinite system. As discussed in Sec.
II1 E 1, 2-3 % may be due to the systematic errors in mea-
surements of AT. An additional 1% may be attributed to
uncertainties in the cell thickness. Systematic errors in
the thermistor calibration [45] and the finite size of the
cell explain the remainder. The curve for €<O0 is
Jj™=0. That for €= 0 is described by the function

_g3+(g§+4g5€)1/2
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sconv —

, (2.8)

where g;=0.832 and gs= —0.104 are best-fit values to
this function over the range 0 <€ <0.6. Our reason for
choosing this functional form will be explained in Sec.
IV. The value of g, is theoretically predicted [22] to be
0.699 for an infinite system of straight rolls and a Prandtl
number ¢ =6.0. The measured value exceeds the pre-
dicted value by 19%. Only a small part of this discrepan-
cy can be attributed to experimental errors, and most of
it we believe to be due to the finite system size, and to the
disorder in the pattern which is provoked by sidewalls.
Similar high values of g; have also been obtained in other
experiments [42,46-49].
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III. EXPERIMENTS

A. Experimental procedure

We kept the bath temperature constant and ramped
the power applied to the bottom plate linearly with time
so that € increased from below to above e=0. The power
varied as

Q/Q.=B(t—t,) .

Here, ' is the ramp rate and ¢ is chosen so that the time
t is equal to zero when e=0. We performed these experi-
ments for 0.01<4'<0.32. All ramping experiments be-
gan with e=—1, with the exception of those with
B'=0.02 and B'=0.01, where the experiments began at
€=—0.6 and e= —0.2, respectively. We allowed the sys-
tem to equilibrate for 30 min (26¢,) at these values of €
before the beginning of each ramp. Measurements of
AT(t) were made and frequent shadowgraph images of
the convective pattern were taken during each experi-
mental run.

Although Q was ramped linearly, € did not increase
linearly for the entire run. Two effects accounted for
this. First, the large heat capacity of the copper bottom
plate caused there to be an initial transient period before
the temperature of the plate increased linearly with time.
Secondly, once convection began, the effective thermal
conductivity of the fluid layer increased, causing a de-
crease in the rate of increase of € with time. These two
effects are illustrated in Fig. 6, which plots Q /Q, (dashed
curve) and AT /AT, =e+1 (solid curve) as a function of
time for B'=0.32. Note that the critical temperature
difference was passed at ¢t —¢,~5.2, while noticeable con-
vection did not occur until ¢t —¢;,=6.5.

For the runs with 8’ <0.16, the initial transient period
was short when compared with the duration of the run.
For larger ', however, the fraction of the run involving
this period became significant. Finally, at 8'=0.30, the
increase of € approached linearity only at e=0. Because
of the transient period, we shall define a second ramp rate
which is related to the increase of € rather than that of
the heat current and which we will use primarily
throughout the remainder of this paper:

de
dt

(3.1)

B= (3.2)

€=0

For small 3, we found B=p'. For larger ', however,
B<p' because the transient period had not completely
ended.

B. Determination of the convective heat current

The time-dependent convective heat current j™(z)
was experimentally determined from measurements of
Q(t) and AT(t). The method was similar to that used in
Ref. [18]. From conservation of energy, Q " must be
the power that cannot be accounted for by thermal con-

duction through the fluid and sidewall and by the heating
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of the cell and its contents:
. . (ArA;,+A A, +A, A, d/d,)
QCOnV(tI):Q_ ff AT
d
C.+C.+C b
f s r dT
— |Cg+ , 33
B 3 dr’ (3-3)

where Cp, C¢, C;, and C, are the heat capacities of the
bottom plate, fluid, sidewall, and foam, respectively, and
t' is the unscaled time. The conductive term and the
term involving (C,+C;+C,)/3 are obtained from the
solution to the heat-conduction problem of a horizontal
slab where the top-boundary temperature is held constant
and the bottom-boundary temperature is increased linear-
ly with time. For the experiment, this term represents an
approximation, since the bottom-plate temperature does
not always increase linearly (see Fig. 6). The approxima-
tion, however, is quite good, because the ramp rate did
not change dramatically over short time intervals. The
dimensionless convective heat current j°"(¢), as a func-
tion of the scaled time t=t'/t,, is obtained from Eq.
(3.3), as the ratio of Q"™(r) to the flux conducted
through the fluid at AT=AT, [see Eq. (2.4)]. Conse-
quently, j°°™(¢) is given by

- C b

jeow— | QAT _ ¢ dT gd_ 1 (a4
Q. AT, AT, dt ApA;

where
Cp+(C,+C+C,)/3

t

v

Since the top plate temperature increased by only about
30 mK by the time AT=AT,, we set dT°/dt =d(AT)/dt

to obtain a good approximation j§°"" () to the convective

0.8 U R T T T 1 T T
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€

FIG. 5. Measurements of j°°"¥ as a function of € under steady
heating (shown as solid circles). The curve for € <0 is j°"=0.
The rest of the curve is a least-squares fit to Eq. (2.8) through
the points over the range 0 <€ <0.6.
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heat current,

Q AT ¢ dAT

jeonv (gy— | X
Jo (1) AT, dt

gd
— — +
0. AT,

Apdy

>

(3.6)

in terms of measured quantities.

The time derivative of AT was obtained from the mea-
sured AT(t). From Eq. (3.5) we estimated the value of ¢,
to be 2.45. When calculating j§°"", however, we used a
value of ¢; which for the particular run yielded j*" =0
when €=0. This value of ¢; was 2.55 at 5=0.01, and de-
creased monotonically with 3 to ¢; =2.28 at 5=0. 30.

Ideally, the calculated value of j°"¥ should have been
zero during the entire period before the onset of convec-
tion. Instead, it increased slightly during the runs, par-
ticularly during those with higher ramp rates. In order
to make accurate measurements of j°°", we felt that it
was important to understand this problem and to make
corrections for it. We therefore replaced the water in our
cell with a gel of 95% water and 5% polyacrylamide.
With this arrangement the cell had almost exactly the
same thermal properties (the thermal conductivity of the
gel was measured to be that of water to within 3%) but
could not convect. We performed the same ramping ex-
periments on this system as were done on the cell con-
taining water. Shown in Fig. 7 are the results for the ap-
parent heat current ji°""# in the presence of the gel for
two ramp rates. The plot of Fig. 7(a), with 8=0.02, re-
veals the problem: The existence of a very long initial
transient period which lasted ~20¢,. We believe that
this is due to long-lived transients in the heat flow
through the foam below the cell. The length of the tran-
sient period is consistent with the large thermal diffusion
time of the foam. For runs with small ramp rates, such

T T T T T 7
/7
. 3 // -3
Q A
OC // ATC
2+ 7 -2
/
/7
<—7’/
|L / -
/
/
(0] | 1 1 | 1 (o]
0 4 8 12
t-1, (units of t,)

FIG. 6. Example of a ramping experiment with Q/Q,
=pB'(t—1t,), where t —t, is the time elapsed from the beginning
of the experiment and is given in units of the vertical thermal
diffusion time ¢,. The variable ¢, is defined such that the temper-
ature difference AT reaches its critical value AT, at t =0. The
ramp rate of the heat current is 8'=0.32. The dashed curve
represents the power Q applied to the bottom plate divided by
its critical value Q,. The solid curve represents AT /AT,.
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as the run of Fig. 7(a), the transient period ended before
the convective onset at t=0, and so above this point
Jj o™ 8 was always zero. For runs with higher ramp rates,
such as the run of Fig. 7(b) (which was done with
B=0.30), this was not the case, and j§°""'8 increased with
time. The existence of the transient may explain the vari-
ation of the measured value of c; with B. Note that
Jjoo™ € is small compared to typical total convected
currents, such as those shown, for instance, in Fig. 10
below. When making measurements of j°™(¢) in the
fluid, we used

jCOflV(t):jSOHV(I)_jSOHV,g(t) ,
the gel during

where ji""8(¢) was measured in
equivalent experimental runs and where ji*"" was deter-
mined from Eq. (3.6).

(3.7)

IV. THEORETICAL DETERMINATION
OF THE CONVECTIVE HEAT CURRENT

We wish to estimate the strength of a noise source or of
a deterministic field which is required to produce the dy-
namics of the convective onset which we observed in the
heat-current measurements. The noise strength required
to explain the measurements could in principle be ob-
tained by calculating the convected heat current from the
Oberbeck-Boussinesq (OB) equations [21,22,43,44] with
appropriate Langevin noise terms [50], and by adjusting
the noise intensity so as to achieve a best fit to the experi-
mental data. Because of the practical difficulties involved
in this procedure, we instead compared the experimental
results with two models which were derived
[17,18,25,26,51,52] from the OB equations. A deter-
ministic version of one of these models was used as well
to see whether the current could be explained adequately
without invoking stochastic effects.

A. Stochastic Swift-Hohenberg model

The first model used by us is the stochastic Swift-
Hohenberg (SSH) model [17,26]

T =[e(t)—E Y V2 +k2)—g ¥ —gs* 1y

+ f(x,y,t), (4.1a)
with ¢ a function of x, y, and ¢, with
(S, f(x",y",t")
ZZTOE(Z)FexptS(x —x")8(y—y")8(t—t"), (4.1b)
and with
ES=E3/(4Kk2) . (4.1¢)

Sufficiently near threshold, Eq. (4.1) is equivalent to the
Oberbeck-Boussinesq equations with appropriate Lan-
gevin noise terms [17,26]. With the parameters used by
us, it takes into account rigid-rigid boundary conditions
at the top and bottom of the cell. In order to obtain the
convected current j°°", or the Nusselt number, from this
model, it is necessary to first integrate this stochastic par-
tial differential equation with two spatial dimensions to
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obtain the real field ¢. The spatial average of ¢ is then
equal to j°°™. An approximate solution to this problem
has been given by Hohenberg et al. [26]. We used this
solution with our experimental values for €(¢) as input,
and fitted the resulting j°" to the experimental data for
the convected heat current. The precise formulas em-

ployed in this analysis are given in Ref. [26].

Equation (4.1) contains several parameters. For
0=6.0 and a laterally infinite system, we expect
70=0.0552. £,=0.3848, k.,=3.116, and g;=0.466

[18,22,41,47]. The coefficient g5 of the quintic term, to
our knowledge, has not been derived from theory. For
the finite system, 73 is known to remain almost un-
changed [47,53]. We have assumed that &, and k, are
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FIG. 7. Test of the accuracy of Eq. (3.6) for describing the
convective heat current j°°" as a function of time. The current
is in units of the heat flux at the onset of convection when the
cell contains water. However, for this experiment the cell con-
tained a gel in order to prevent convection; hence, the measured
current j5°"*' should be zero at all times. Deviations from zero
are due to initial transients with lifetimes ~20z,. Ramp rates of
the reduced Rayleigh number e=AT /AT, —1 are (a) 0.02, (b)
0.29.
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also unaffected by the finite system size. Indeed, the
value of k, is in excellent agreement with the wave vec-
tors determined in our experimental cell (see Sec. V) and
shown in Fig. 22(a) below. The nonlinear parameter g5 is
increased significantly [42,46—49] relative to the infinite
case, and we thus took it from independent experimental
measurements under steady heating which were analyzed
by fitting to a single-mode model as described below. We
found that, in order to obtain agreement over a substan-
tial range of € between our static data and the single-
mode model, the quintic term had to be included. It was
therefore also included in Eq. (4.1).

The only remaining parameter in Eq. (4.1) that needs
to be determined from the dynamic experiments is the
noise strength F., . If the noise were purely of thermal
origin, then this strength would be given by [26]

kpT 0.1860°

F._ =F, = 218607 42
et —Th T g2 040,512 (4.22)

Here, ky is Boltzmann’s constant and T is the average
temperature of the fluid. For our fluid we have

F,=171X10"°. (4.2b)

B. One-mode model

Rather than solving the full SSH model, integrating
over space, and fitting to the experiment, it would be
much simpler to solve an ordinary differential equation
for j°" directly. An approximate reduction to such an
effective single-mode description of the problem has been
discussed by various authors [18,25,51,52]. The one-
mode model has the advantage that a direct numerical in-
tegration of the stochastic equation is feasible. Thus, the
approximations here are in the derivation of the model
rather than in the integration, whereas in the SSH model,
it is believed that there is an exact correspondence for
small € between the model and the OB equations, but the
solution of the model has to be obtained by approximate
methods. The one-mode model also lends itself to calcu-
lating statistical properties such as the probability distri-
bution functions in addition to the mean current [25].
We have used it as well in the analysis of the data in or-
der to see if the two procedures reveal any significant
differences due to the different approximations. We also
used it as a deterministic model, with the Langevin force
replaced by a constant.

We integrated numerically the equation

dA(t)
T gy

=e(1)A(t)—F, AP —Fs A(t)°+F , (4.3a)
with [18] g;=3g3/2, §5=5g5/4, and took f to be either
a Gaussian random force [54,55] with correlations given
by

(FOF (")) =274F o 8(2 —1") (4.3b)

or as a deterministic field f = fp,,. As in the SSH model,
we used the experimental €(¢) as input. We will hence-
forth refer to Eq. (4.3) as the amplitude equation since it
is an equation for the amplitude A4 (¢) of the field rather
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than for the complete spatial variation.
We chose g3 and g5 so that

jemv=42%. 4.4)
Under steady heating, the left-hand side of Eq. (4.3) is
zero, and for f=0 the solution to the equation is Eq.
(2.8). We fit measurements of j°°"¥ under steady heating
to Eq. (2.8) to obtain §; and g5 (in the steady experi-
ments, the effect of the field is negligible). For the cell
with polyethylene sidewalls we obtained g;=0.832 and
gs=—0.104.

When f = fp., was used as a deterministic field, we ob-
tain values of j°" by numerically integrating Eq. (4.3)
and using fp,, as an adjustable parameter [18] in a least-
squares fit to the data. The equation was integrated start-
ing at the time ¢, when the experiment began, and the in-
itial value of the amplitude was

A=—fpe/ >

where €, was the value of € at t =¢; (usually —1.0; see
Sec. IIT A).

In the stochastic case, we set j°°"(z) equal to { 42),
where ( 42) is the average of the values of A2 obtained
for a large number M of integrations of the stochastic
equation (4.3), each integration being done with a
different realization of f(¢) [55]. Typically we used
M=10% The value of F,, in Eq. (4.3b) was least-
squares adjusted to provide the best agreement between
experiment and theory.

In an ideal ramping experiment, the only source of sto-
chastic _perturbations would be thermal noise, yielding

Fp=Fy in the model. For a system with free-free
boundary conditions and a single unstable mode, Fy, was
derived in Ref. [18]. Van Beijeren and Cohen [51,52]
have made calculations of Fy;, for a system with the more
realistic rigid-rigid boundary conditions and with an e-
dependent band of unstable modes. For a ramping exper-
iment, they obtained
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4.5)

kpTt k2
2.42pd*vR,

1
21Tt

Fp= (4.6a)

Note that the effective noise strength F,, varies slowly
with time. For our parameters and with ¢ =2 (a typical
onset time), Eq. (4.6a) yields

F,=2.8x1071. (4.6b)

It is useful to illustrate the experimentally observed dy-
namics in terms of the dynamics of Eq. (4.3) with
F=fpe- If A =0 is an initial state of the system, then
Eq. (4.3) with f =0 predicts that the amplitude will never
change to a nonzero value, even when €>0. The fact
that convection does evolve in the physical system for
€>0 is incorporated in Eq. (4.3) by adding the forcing
field £. In ramping experiments, the strength of the field
f determines the time delay after €=0 is passed before
convection reaches a macroscopic amplitude. This is il-
lustrated in Fig. 8, which shows 42 as a function of time,
where the values of e(z) were taken from a ramping ex-
periment with 8=0.29. The dashed curve represents the
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FIG. 8. Predictions of the amplitude equation with an adjust-
able deterministic field f [Eq. (4.3a)] for the convective heat
current j°°™(¢) during a ramping experiment with ramp rate
B=0.29 (shown as the solid curves). The field values represent-
ed are (a) f=1072, (b) 107%, and (c) 107%. The value of f corre-
sponding to the experiment can be determined by adjusting f so
as the provide the best fit to the data. The dashed curve
represents the quasistatic value of j°" (see text).

quasistatic values jgoo"" obtained for fF=0 from Eq. (2.8).
The solid curves result from numerically integrating Eq.
(4.3) with constant deterministic fields of (a) f
= fpee =107 (b) 107% and (c) 1075, Once the convec-
tive amplitude reaches a macroscopic value, it grows rap-
idly until it almost reaches its quasistatic value, as is
shown by solid curves (b) and (c). [The solid curve (a) ap-
pears to actually reach the quasistatic value but this does

not occur; a field of f=10"2% is large enough to
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FIG. 9. Several integrations of the stochastic amplitude
equation [Eq. (4.3)], each with a different realization of the sto-
chastic field f(z) of intensity F=5X 1077, are shown as dashed
lines for a ramp rate $=0.05. The solid line is the average of
10* such integrations.
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significantly increase j ™ (€) above the values shown by

the dashed curve in the figure.] As can be seen from the
figure, extremely small values of f, the effect of which
would not be observable in static experiments, are
sufficient to cause the convective onset at relatively short
times.

We note that the deterministic and stochastic versions
of the amplitude equation give quite different results for
the shape of j™(t)={( A2)(¢t). The stochastic model
gives a current which rises more slowly, i.e., with a small-
er slope, than the deterministic model. This difference is
attributable to the averaging over many realizations of
A%(t). Any one realization has a shape very similar to
the deterministic case; but the probability distribution
P(A) is such that { 42)(¢) increases more slowly with
time. This is illustrated in Fig. 9, where we show a small
number of stochastic integrations as dashed lines, as well
as the average of 10* integrations as a solid line, for a
ramp rate $=0.05 and for F=5X10"". It is apparent
that one should be able to distinguish between a stochas-

tic and a deterministic process by examining the shape of
;s conv

J

V. RESULTS

A. Deterministic onset with a high-density
polyethylene sidewall

We first performed the ramping experiments using a
high-density polyethylene (HDPE) sidewall of the
geometry shown in Fig. 1. An example of patterns ob-
served and heat fluxes measured with a ramp rate
B=0.27 is shown in Fig. 10. The experimental convec-
tive heat current, obtained as described in Sec. III B, is
plotted as open circles in the bottom of the figure. The
convection did not achieve a macroscopic amplitude until
over one vertical diffusion time had elapsed since the con-
vective threshold had been passed. Once it started to
grow, however, it rose rapidly toward (but, of course,
never quite reached) its quasistatic value.

The heat-flux prediction of the amplitude equation
with the best-fit deterministic field fp.=2.8X107% is
shown in the plot of Fig. 10 as the solid curve. The
agreement with the experimental points is very good.
The dashed curve shows the solution of the amplitude
equation with a stochastic field that has a best-fit noise
strength [27-29,56] of F,,,,=2.6X107% A fit of the
SSH model to the data is indistinguishable from the
dashed line, and yields Fexpt=1.1><10_4. The dashed
curve also agrees well with the measurements. Thus, as
in earlier work [18], it is impossible to determine reliably
from these heat-flux measurements whether the perturba-
tions causing the onset of convection are deterministic or
stochastic in their origin.

In the top portion of Fig. 10 are four images that were
taken during the run at the time when the convection
pattern was emerging. The solid circles in the plot under-
neath show the heat-flux points that were measured at
the time the images were made. The pattern clearly
reflects the geometry of the sidewall. The circular rolls at
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first are strongest adjacent to the sidewall, and then
evolve towards a state of uniform amplitude. With this
sidewall, we found the circular rolls to be reproducible
from one experimental run to the next. The circular pat-
tern is in agreement with earlier experiments [S7-60] on
pattern formation in Rayleigh-Bénard convection and
confirms that in this type of cell the pattern-formation
process is dominated by deterministic forcing from the
sidewall.
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FIG. 10. Shadowgraph images (unfiltered) of the emerging
pattern, and data for the convective heat flux j°", as a function
of time, resulting from a ramping experiment with ramp rate
B=0.27, for a cell with a high-density polyethylene sidewall and
a sapphire top. Solid circles correspond to the points where the
images were taken. The solid curve represents the prediction of
the amplitude equation with a best-fit deterministic field
Spet=2.8X107%, and the dashed curve represents the predic-
tion of the amplitude equation with a stochastic field with a
best-fit noise intensity F,, =2.6X 107° or the SSH model with
a best-fit noise intensity of Fe,, =1.1X 1074
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Experimental runs were done for a number of other
ramp rates. We found that as the ramp rate was
decreased, the onset time for convection increased, in
agreement with previous observations [18]. For
0.08 £B<0.30, the agreement between the theoretical
and experimental values of j°" was as good as that
shown in Fig. 10. For $<0.08, however, the agreement
progressively worsened. The measured convective heat
current, once it became macroscopic, did not grow as fast
as the amplitude equation predicted. During all the runs,
however, the convective pattern emerging was identical
to that shown in Fig. 10. We believe that the problems at
small ramp rates are caused by insufficiently accurate
modeling of thermal effects (see Sec. III B) due to the
finite conductivity of the sapphire plate. This is support-
ed by the fact that a similar difference between the pre-
diction and the data for runs with a gel sidewall (see Sec.
V B below) was essentially eliminated by replacing the
sapphire with a copper plate, as will be described.

In Fig. 11 the open circles are the best-fit values [61] of
the deterministic field fp., as a function of ramp rate (the
open squares and solid circles correspond to runs with a
gel wall and will be discussed in the Sec. V B). The values
of fpe are all of order 10 ™%, and they increase monotoni-
cally with 8. These results are similar to those reported
by ACHS [18] for liquid helium with a thin stainless-steel
sidewall. The results of ACHS are shown as a dashed
line in Fig. 11 [62].

The pattern-formation process described above has
been discussed theoretically by ACHS [18] and con-
sidered quantitatively by Cross et al. [24]. The forcing of

1 | 1
0] ol 0.2 0.3

RAMP RATE B

FIG. 11. Experimental best-fit values of the deterministic
field fpe of the amplitude equation as a function of the ramp
rate 3. The open circles were obtained with the high-density
polyethylene sidewalls. The open squares are for the gel
sidewall and the sapphire top, and the solid circles are for the
gel sidewall and the copper top. The solid line through the open
circles for B<0.1 is described by fp,=/fo+ 18, where
fo=5X107% and f,=1.7X 1073, The dashed line corresponds
to the field values obtained in an earlier experiment [18].
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a roll pattern parallel to the sidewall occurs due to a
mismatch between the thermal diffusivity of the fluid and
the wall. Upon time-dependent heating, the fluid and
wall warm up at different rates, resulting in lateral tem-
perature gradients in the fluid adjacent to the wall. Con-
duction is unstable to convection for any finite, lateral
temperature gradient [63] so in ramping experiments a
weak roll pattern begins next to the wall before € be-
comes positive. As € increases, the pattern gradually fills
the entire cell. An expression has been derived [Eq. (38)
of Ref. [24]] for the deterministic field in the amplitude
equation which accounts for the thermal forcing of rolls
by the sidewall. For the mismatch between the HDPE
sidewall (A=4.9X107* W/cmK, x=2.2X1073 cm?%/
sec) [64] and water (whose properties are listed in Sec.
IIA), it yields [65] fpe=/f18, where f;=1.9 X107
Although the increase of f, in Fig. 11 is not linear over
the whole range of 3, we have drawn a straight solid line
through the points with 8<0.1 to compare with the
theoretical prediction. This line has a slope of
f1=1.7X1073 and a y intercept of f,=5X10"°. The
value of f, is in remarkably good agreement with the
prediction. A nonzero value of the static field f, howev-
er, is not accounted for by the work of Ref. [24]. As can
be seen from the dashed line in Fig. 11, a static field of
similar size has been observed also by ACHS [18]. It was
attributed by them to small geometrical imperfections in
their cell [66,67]. Our present cell has a much more near-
ly perfect geometry than that of ACHS, and we believe
that this source of imperfection is greatly reduced. How-
ever, a further source of a static field which has recently
become appreciated is static thermal sidewall forcing.
This forcing results from lateral temperature gradients in
the fluid adjacent to the sidewall caused by a mismatch
between the thermal conductivities of fluid and sidewall
combined with the finite thermal conductivity of the top
and/or bottom plates [23,63]. However, this thermal
forcing should be largely eliminated by the sidewalls de-
scribed in Sec. V B.

From the patterns in Fig. 10, as well as from the good
agreement between the theoretical and experimental
values of f;, we conclude that the convective onset is
dominated by deterministic effects when the fluid is water
and the sidewalls are made of HDPE.

B. Stochastic onset with a gel sidewall

While the sidewall-induced perturbations which force
circular roll patterns are of interest, they mask the per-
turbations that would otherwise determine the pattern-
formation process. These smaller perturbations would
presumably dominate in a horizontal laterally infinite sys-
tem where there are no walls, provided the thickness and
the heating are uniform. In order to observe them, we
used sidewalls that have thermal properties sufficiently
close to those of water. Unfortunately, the materials usu-
ally used do not fulfill this criterion. We tried using a
number of different plastics, but forcing of concentric roll
patterns occurred with all of them. We solved this prob-
lem by using a sidewall with an inner annulus composed
of a gel of 95% water and 5% polyacrylamide. The
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thermal properties of such a gel are virtually the same as
those of water. We washed the gel in circulating water
for two weeks after preparation to avoid contaminating
the water in our cell. The inner and outer radii of the gel
differed by 1.75d and it had a height that was between
0.8d and 1.0d. It was sufficiently rigid to maintain its
original shape under the force of gravity. The aspect ra-
tio of the fluid was the same as that of the previous
sidewall (L =10). Outside the gel annulus, the sidewall
was identical to the previous one.

In Fig. 12 we show patterns and heat-flux measure-
ments obtained with the gel sidewall. The ramp rate was
the same as that used in Fig. 10 (8=0.27). As before, the
circles in the plot represent experimental measurements,
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FIG. 12. Images (unfiltered) and convective-heat-flux data as
in Fig. 10 for the same ramp rate, but for a cell with a sidewall
made of 5% polyacrylamide gel. The best-fit value of the deter-
ministic field is fpe=1.1X107% and that of the stochastic
noise intensity is Fe,,, =5.3X 1077 and F,,, =2.4X 107>,
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and the solid (dashed) curve shows predictions of the am-
plitude equation with a best-fit deterministic (stochastic)
field. The best-fit value of the deterministic field is
fpee=1.1X10"* and that of the noise intensity of the
stochastic field for the amplitude equation is
Fop1=5.3X1077. As for the case of Fig. 10, a fit of the
SSH model to the data is indistinguishable from the
dashed line. Such a fit yielded F,, =2.4X 1075, These
are smaller values than were obtained with the HDPE
wall, but the value of F'expt, for instance, is still much
larger than Fy, given in Sec. IV A. It is remarkable that,
despite the considerably better match in thermal proper-
ties between the fluid and sidewall, j°°™ increases notice-
ably above zero only =0.1¢, later than for the case of
Fig. 10. This increased onset time for convection results
in a decrease in the best-fit value of f, by approximate-
ly a factor of 2.

The stochastic models fit the data in Fig. 12 somewhat
better than the deterministic model. However, more con-
vincing evidence for the stochastic nature of the convec-
tive onset in the presence of a gel sidewall comes from the
nature of the evolving flow field. The images of Fig. 12
show the emergence of the convective pattern for
B=0.27. The pattern observed is dramatically different
from that of Fig. 10, and is typical of the patterns which
emerged during all ramping experiments performed with
the gel wall. It is no longer composed of rolls, but rather
of a set of irregularly arranged cells with no clear geome-
trical structure. Although the pattern emerges in various
places throughout the container, it appears first in a small
patch in the upper portion of the image. The exact loca-
tion of the initial pattern emergence is not reproducible
from one experimental run to the next. The locations of
the cells do not reflect the container geometry, implying
that the perturbations determining this pattern are not
generated by the sidewall.

Figure 13 shows the results for the very small ramp
rate f=0.01. Here, the best-fit deterministic field is
fpee=6X1077, and the best-fit stochastic-field noise
strength for the amplitude equation is Fexpt=6>< 1077,
The agreement between experiment and theory is not
nearly as good as at higher ramp rates. Results with
B=0.01 obtained while using the HDPE sidewall are
similar. As with the HDPE sidewall, the agreement is
very good for 0.08 <3 =0.30, but becomes progressively
poorer as 3 is decreased below 0.08. The images of Fig.
13, however, show that the pattern still emerges with a
random cellular structure.

The poor correspondence at the small ramp rates be-
tween the models and the measured currents was largely
eliminated by replacing the sapphire top with the top
laminated from copper and acrylic (in that case, of
course, no images of the flow field could be obtained).
We believe that the difference between the models and
the data taken with the sapphire top is attributable to er-
rors in our estimate of j°°" associated with the fact that
the temperature difference across the sapphire plate and
the boundary layer was included in AT. With the lam-
inated top, we used a thermistor embedded directly in the
copper to determine the temperature of the top plate.
Because of the high thermal conductivity of copper, this
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FIG. 13. Images (unfiltered) and convective-heat-flux data as
in Fig. 12 but with a ramp rate of 0.01. The best-fit value of the
deterministic field is fp,, =6X 107>, and the intensity of the
best-fit stochastic field is F,, =6X107".

temperature was very uniform even at the critical heat
current, and virtually equal to the temperature at the top
of the fluid. Thus, the measured and actual values of AT
were almost exactly equal. For 8=0.08 the measured
heat current with the copper top is shown in Fig. 14.
Here the upper and lower solid lines are the fit to the am-
plitude equation with the deterministic and stochastic
field, respectively. The stochastic model fits the data well
at this smaller ramp rate, but the deterministic model
does not provide a very good fit. The fields are
fpe=1.2X107% F,=0.6X107% and F,,=3.4
X 1073, Similar results for 8=0.01 are given in Fig. 15.
Even at this very small ramp rate, the stochastic model
(lower curve) fits well; however, the deterministic model
(upper curve) provides only a poor fit. For this case the
parameters are fp, =1.2X107%, Fexpt =1.5X10"°%, and
Fopt =9X107°. At these small ramp rates the difference
in the quality of the fit between the deterministic and sto-
chastic models provides convincing evidence in favor of
the latter.

Figures 16(a) and 16(b) display best-fit field-intensity
values for the stochastic amplitude equation and for the
SSH model, respectively, as a function of ramp rate. The
solid circles are for the gel sidewall and the copper-
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FIG. 14. Data for the convective heat flux j°", as a function
of time, resulting from a ramping experiment with ramp rate
B=0.08, for a cell with a gel sidewall and a copper top. The
upper curve represents the prediction of the amplitude equation
with a best-fit deterministic field fey, =1.2X 10™*. The lower
curve is the prediction of the amplitude equation with a stochas-
tic field intensity of Fexp, =0.6X 107 or the SSH model with a
stochastic field intensity of F.,,, =3.4X107°. All fits were ob-
tained using only the data in the small rectangle where the
current first becomes macroscopic.

laminate top, and the open squares are for the gel wall
and the sapphire top. The results of fitting the deter-
ministic amplitude equation to the data for the gel
sidewall were shown in Fig. 11, again using solid circles
and open squares for the copper and sapphire tops, re-
spectively. We carried out these deterministic fits even
though we believe that a deterministic model is inap-
propriate in these cases so as to facilitate a comparison
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FIG. 15. Data for the convective heat flux as in Fig. 14, but
for B=0.01. The steeper curve corresponds to fe.
=1.2X107% and the other curve is for Fe,,; =1.5X107¢ and
for Fe,p =9X107°
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FIG. 16. Best-fit field-intensity values for experiments per-
formed with a gel sidewall. The open squares are for the mea-
surements with a sapphire top, and the solid circles are for the
runs with the copper-laminate top. The top figure (16a) gives
the results for F—'expt obtained from fits to the stochastic ampli-
tude equation. The bottom figure (16b) gives values of F,; ob-
tained by fitting the same experimental data to the stochastic
Swift-Hohenberg model.

between the cells with different sidewalls.

The deterministic field-intensity values for the gel wall
in Fig. 11 (open squares and solid circles) are within ex-
perimental scatter independent of the nature of the top
plate. A straight line drawn through them has a slope
f1=2.7X10"* and a y intercept of f,=8X10"°>. The
value of f, is similar to the one for the HDPE walls, even
though the patterns consist of random cells in the former
case, and of concentric rolls in the latter. We do not have
a good explanation of the results for f,. The value of f,
is much smaller for the gel walls than for the HDPE
walls, showing that the dynamic sidewall forcing has been
significantly reduced or eliminated. A quantitative inter-
pretation of f; for the gel walls should not be attempted,
however, because the deterministic sidewall-forcing mod-
el of Cross et al. [24] would not be expected to be applic-
able when the pattern which evolves does not have the
symmetry of the walls.

For the SSH model, a constant field intensity is expect-
ed, independent of the ramp rate. The data in Fig. 16(b)
are consistent with this for 8% 0.05, as indicated by the
horizontal line in the figure. They give F,,,=3.2X 1073,
and thus, with Eq. (4.2b),

Fopi /Fin=1.9%10* . (5.1a)

For the stochastic amplitude equation, the effective field
intensity F., is expected [51,52] to vary as ¢ ~*>, where ¢
is a ‘“typical” time for the run. A suitable choice for ¢
might be the time ¢, at which j°°™ first becomes experi-
mentally noticeable. This time changes from about 2.3 to
about 1.3 as 8 changes from 0.08 to 0.32. The line drawn
through the points in Fig. 16(a) has the corresponding B
dependence. Consistent with the model, the expected
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slight rise in F expt 1S More nearly consistent with the data
for B2 0.05 than a constant would be. With Eq. 4.6(b),
the experimental field intensities yield

Feypt /Fin=2.0X10%. (5.1b)

Thus, we see that the noise intensity required to explain
the experiments is larger than the predicted thermal noise
intensity by a factor of about 20 000 in both models. We
have no explanation for this discrepancy.

For <0.05, most of the measured field intensities for
both stochastic models lie somewhat above the lines
through the data at higher ramp rates in Figs. 16(a) and
16(b). We have no explanation for this slight departure
from the predictions of the models, but we note that the
experiments become very delicate at very small 3.

The irregular nature of the patterns in Figs. 12 and 13,
as well as the comparison of the currents, particularly at
the small ramp rates, provide considerable evidence in
favor of a stochastic interpretation of the observed con-
vective onset. Strong additional evidence comes from a
lack of repeatability of the emerging patterns in nominal-
ly identical experimental runs. This is illustrated in Fig.
17, which shows images of the emerging pattern from
four separate runs with the gel sidewall and 8=0.27. All
images were taken at the time corresponding to image (d)
in Fig. 12. The cells are located in different places in the
different runs, causing no two patterns to be the same.
Images taken at earlier times during these runs revealed
that the spatial regions where convection first emerged
differed from one run to the next. The irreproducibility

FIG. 17. Emerging patterns for consecutive experimental
runs, all with ramp rate 8=0.27, for the cell with a gel sidewall.
The images were taken at the time corresponding to point d in
Fig. 12, and clearly show that the emerging pattern is not repro-
ducible.
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of the patterns implies that the perturbations responsible
for the onset of convection in this cell are stochastic in
origin, and contrasts with the reproducible results ob-
tained with the HDPE sidewall. This suggests that when
deterministic thermal sidewall forcing is sufficiently re-
duced, noiselike perturbations dominate the pattern-
formation process.

In order to be sure that the cellular flow we observed
was not geometry dependent, we also performed ramping
experiments using a cell with a square sidewall. The
depth of the cell was the same as before, and the aspect
ratio of the cell, here defined as L =1 /2d (where [ is the
length of one side of the cell), was L =6.5. The inner
wall was composed of a polyacrylamide gel of width
~1.75d. Shown in Fig. 18 are images of emerging pat-
terns from four separate experimental runs with $=0.27.
The images were taken at times close to that of image (d)
of Fig. 12. As with the cylindrical cell, the emerging pat-
terns are cellular with no obvious regular structure, and
do not reflect the geometry of the cell. The cells appear
in different places during different runs, indicating pat-
tern irreproducibility. We conclude that the random cel-
lular flow observed when using the gel wall is geometry
independent.

Although the cells observed in the emerging pattern
had a random placement, they did have a characteristic
length scale. This is illustrated in Fig. 19(a), which shows
the low-wave-vector portion of the magnitude of the
Fourier transform of image (d) in Fig. 12. The transform

FIG. 18. Emerging patterns for consecutive experimental
runs, all with ramp rate 8=0.27, for a square cell with a gel
sidewall. The images were taken approximately at the time cor-
responding to point d in Fig. 12, and demonstrate that the ir-
reproducible cellular patterns described in this paper are not
dependent on the container geometry.
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is of the entire image. The magnitude of the transform is
highest near a circle, although the distribution of the
magnitude around this circle is irregular. The average
wave number of the pattern is measured (see Sec. II D) to
be k=1.01k,. For comparison, we have shown in Fig.
19(b) the magnitude of the transform of image (d) in Fig.
10, which is composed of concentric rolls with
k=1.03k,. The magnitude of this transform is also con-
tained near a circle, although now the angular distribu-
tion around the circle is more uniform. (Note that infor-
mation which further distinguishes the two patterns is
held in the phase of the transform, which we have not
plotted here.)
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FIG. 19. Low-wave-vector portion of the Fourier transform
of (a) image (d) in Fig. 12 and (b) image (d) in Fig. 10.
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C. Deterministic nonlinear processes at late times

The cellular patterns which formed during the ramping
experiments were not stable once they emerged. Instead,
they evolved over several time units into irregular roll-
like patterns. This is illustrated in Fig. 20, which shows
the evolution of the pattern of Fig. 12 at later times.
Below the images is a plot of the measurement of the con-
vective heat current. In this example, the pattern takes
~3t, to evolve from a cellular to a roll-like structure.
This healing process is similar to that found in simula-
tions of convective pattern evolution by Greenside and
Coughran [19] in which the early pattern was a random
cellular flow similar to that shown in Fig. 12.

The evolution of the pattern can be better illustrated
by displaying images of it with only two grey levels. Fig-

|

1 1 L
o] | 2 3 4 5 6 7
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FIG. 20. Evolution of the pattern of Fig. 12, under continued
ramping, showing healing leading to a roll-like structure.
Heat-flux data are also shown, with point a corresponding to
point d of Fig. 12.
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ure 21 shows the central portion of the images of Fig. 20
using this technique. The healing becomes apparent as
the black and white regions connect with themselves.
This healing can be quantified by measuring the total
length B of the boundary between the black and white
regions. A cellular pattern has a larger boundary length
than a roll pattern, and therefore B should decrease dur-
ing the course of the evolution. Although in a finite-size
container, no two cellular (or roll-like) patterns can be ex-
pected to have exactly the same boundary length, a plot
of B as a function of time for a given run is useful for il-
lustrating the evolution. Our method for measuring B is
described in the Appendix. Shown in the plot of Fig. 21
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FIG. 21. Central portions of the images shown in Fig. 20, but
represented with only two grey levels in order to illustrate the
“connectivity” of the randomly placed cells, which develops as
the pattern evolves to a roll-like structure. The plot underneath
shows the total boundary length B of the image (see text) as a
function of time. The solid circles correspond to the images
above.
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is B as a function of time. The solid circles are the points
corresponding to the images shown above. The boundary
length decreases monotonically so that at t =6¢, its value
is about 85% the value it had when the pattern first
formed. Note also that the decrease is monotonic; none
of the early evolutionary motions leads to even a tem-
porary increase of the boundary length. We believe that
this healing is a deterministic process associated with
nonlinear effects in the finite-amplitude pattern which, in
the absence of sidewalls and at large times, would lead to
the parallel convection rolls predicted by Schliiter et al.
[22].

Another characteristic of the evolution of the pattern
shown in Fig. 12 is the increase of its average wavelength.
This increase is illustrated in Fig. 22(a), which shows the
average wave number k divided by k, as a function of
time. It monotonically decreases from k/k,=1.01 at
t=1.5to k /k,=0.91 at t=6.5. The standard deviation
oy of k from k, shown in Fig. 22(b), increases by 14%
during this period of time. The decrease of k with time is
consistent with results found in earlier studies [23,68-71]
on wavelength selection in Rayleigh-Bénard convection,
which have found that k decreases as € increases. How-
ever, this earlier work involved different wave-number
selection mechanisms. For comparison with these stud-
ies, we have plotted in Fig. 22(c) the relation between k
and €. The value to which k evolves (=0.92 at e<1.2) is
in reasonable agreement with the values of k(€) reported
for instance, in Ref. [71] and in Ref. [23] under static
conditions. Note that the evolution of k has no influence
on the values of B shown in Fig. 21, since the normaliza-
tion factor for B accounts for possible changes in k.

It is not clear from the results presented so far whether
the evolution from cellular flow to roll flow in Fig. 20 was
due to the time dependence of AT throughout the experi-
ment or due instead to the macroscopic amplitude of the
convection. In order to clarify this matter, we performed
a different ramp experiment, where we ramped up the
power applied to the bottom plate such that

B(t—ty), t—t,<1.3/B

Q/Q. 1.3, t—t,>1.3/8,

where 8'=0.30. The results of this experimental run are
shown in Fig. 23. The plot in the lower left side shows
Q/Q. (dashed curve) and AT /AT, (solid curve) as func-
tions of time. Due to the nature of the run, the ramp rate
B varies substantially immediately before the onset of
convection. Therefore, we have not associated a value of
B with this run. Measurements of j°°™(¢) are plotted in
the lower right side. Unfortunately, measurements of
j™8(¢t) were not made. Therefore, the convective heat
current is an estimated based on Eq. (3.6), and not the
corrected current given by Eq. (3.7). Problems exist with
these measurements (for example, the spike at t =~—1.5
and the increase in j°°" afterwards), so we have not com-
pared them with predictions of the amplitude equation.
The problems are probably due to transients occurring
after the abrupt ending of the increase in Q which would
invalidate our method of calculating j°°"¥. The measure-

ments do, however, clearly show the onset of convection
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FIG. 22. Wave-number studies of the pattern evolution
shown in Fig. 20. The solid circles refer to the images in that
figure. (a) The average wave number k divided by k, as a func-
tion of time. (b) The standard deviation o of k from k, divided
by k., as a function of time. (c) The relation between k and €
during the experimental run.
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at t~2. The images taken during this experimental run
are shown above the plots in Fig. 23. The times at which
images (a), (b), and (c) were taken are indicated by the
solid circles in the plot of j°°™(¢). The pattern is cellular
when it first emerges, and yet heals to a roll-like pattern,
even though AT no longer increases rapidly with time.
Image (d) was obtained at ¢ =38, and shows that the pat-

tern eventually heals to a near-perfect straight-roll pat-
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tern with grain boundaries on its sides. We observed that
initial patterns in this cell frequently evolved to a perfect
or near-perfect straight-roll pattern, in agreement with
studies on long-term time evolution of convective struc-
tures [72,73]. We have not, however, made studies of the
very-long-term evolution of straight-roll patterns in this
cell to observe whether the time dependence found near
the threshold in larger aspect ratio cells [73] would occur.
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FIG. 23. Images (unfiltered) and heat-flux data from an experiment where the heat current was ramped initially with heating ramp
rate 8/=0.3 until Q0 /Q,=1.3, after which the heat current was held at a constant value. Left-side plot: Q/Q. (dashed curve) and
AT /AT, (solid curve) as a function of ¢t —¢,. Right-side plot: The convective heat flux j°°"¥ as a function of time. Solid circles cor-
respond to points where images were taken. Image d was taken at ¢ =~ 38.
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D. Search for an experimental noise source

The best-fit values for F,,, or F,., in the stochastic
models are larger than the theoretical predictions for
thermal noise given in Sec. IV by a factor of about
2X10* Because of this, we searched for apparatus-
induced noise sources which could be responsible for
these relatively large field intensities. We felt that the
most likely source of apparatus-induced noise was the
presence of temperature fluctuations in the sapphire top
plate due to our temperature-regulation method. The
temperature-controlled bath typically had variations of
~0.5 mK, and the temperature immediately above the
sapphire plate fluctuated by even larger amounts when a
heat current passed through the cell. Variations with
time of ~6 mK were observed in the bath just above the
sapphire plate when a steady heat current of Q, was ap-
plied to the bottom plate of the cell. Since the sapphire
plate was only 0.318 cm thick and had a finite, albeit
large, conductivity, the pattern-formation process might
have been influenced by these fluctuations.

We tested this hypothesis by replacing the sapphire
plate with the top laminated from copper and acrylic.
With this arrangement, the fluctuations were filtered by
the low thermal diffusivity of the acrylic, and the high
thermal conductivity of the copper plate below the acryl-
ic but above the fluid insured that the temperature at the
upper boundary of the fluid was virtually uniform and
time independent. Flow visualization was no longer pos-
sible, but we could make heat-flux measurements to see if
the field intensities were reduced. We once again per-
formed a set of ramping experiments with 0.01 <’ <0.32
and with a gel sidewall. The resulting values of Fp,
were already given in Figs. 16(a) and 16(b) as solid circles.
There is no measurable difference between these data and
the open squares, which correspond to the runs with the
sapphire top and the gel sidewall. The results of this
comparison show that the large fields we observed in our
ramping experiments were not due to temperature fluc-
tuations of the sapphire plate. We do not know of any
other possible experimental source of the large values of
the fields that we measured.

V1. SUMMARY

In this paper we have presented the results of an exper-
imental investigation of the convective onset which
occurs when the Rayleigh number R is ramped smoothly
in time from below to above its critical value. We
showed that an ordinary sidewall, with a thermal
diffusivity different from that of the fluid, will induce a
roll-like pattern which reflects the shape of the container.
This is the case even when an appropriately scaled di-
mensionless ramp rate of R is as small as 0.01.

We were able to match very closely the thermal
diffusivity of the wall and the fluid by using water for the
convecting liquid, and by making the wall of a gel which
contained primarily water but nonetheless was suf-
ficiently rigid to maintain its shape in the presence of
gravity and of fluid flow adjacent to it. With this
sidewall, the convecting pattern which emerged differed

MEYER, AHLERS, AND CANNELL 44

dramatically from the sidewall-forced pattern. It consist-
ed of randomly positioned cells which had no noticeable
relationship to the geometry of the wall, and which were
irreproducible from one experimental run to the next.
Similar, seemingly random, patterns were obtained with
sidewalls of circular and of square cross section.

We compare the convectively transported heat current
with calculations based on three different models. One of
these was a single-mode amplitude equation with a deter-
ministic field. In fitting the solution of this equation to
the data, only the field value had to be adjusted. This
model gave a reasonable fit to the data at large ramp
rates, but provided an unsatisfactory fit to the data with
the gel sidewall at small ramp rates. When the deter-
ministic field was replaced by a stochastic variable with
Gaussian correlations, the fit was somewhat improved for
low ramp rates, but was still not satisfactory. The sto-
chastic Swift-Hohenberg model gave very similar results.
We attribute the discrepancy between the data and the
results of the stochastic models to experimental error in
determining AT when using a sapphire top. When this
top was replaced by one made of copper (which has even
higher thermal conductivity than sapphire), an essentially
perfect fit to the data was achieved with both stochastic
models. The deterministic model still gave an inferior fit
at the small ramp rates.

We believe that the random nature and the irreprodu-
cibility from run to run of the patterns, as well as the
much better fit of the stochastic models to the convected
current, are strong evidence for the stochastic nature of
the convective onset when sidewall forcing is sufficiently
weak. However, the intensity of the stochastic field re-
quired in the models to explain the experimental time
evolution of the currents is a factor of about 2X10*
larger than would be expected from the effect of the mi-
croscopic thermal motion in the fluid. We investigated
the most likely source of experimental noise in our ap-
paratus by replacing the sapphire cell top with a copper
plate, thereby reducing dramatically the experimentally
provoked thermal fluctuations at the top of the convec-
tion cell. This had no measurable effect on the measured
field intensities, but, as discussed above, it did result in
heat-current data which agreed very well with either sto-
chastic model. We do not know whether the large field
values are attributable to unknown deficiencies in the
models or in the experiments. We note, however, that
good agreement between experiment and theory has been
found for fluctuations well away from bifurcations [74],
as well as just below the bifurcation to electroconvection
in nematic liquid crystals [75].

We also studied the evolution of the pattern at large
times. The initially cellular patterns obtained with the
gel wall evolved towards a pattern consisting primarily of
straight or slightly curved rolls. We report measurements
of the length of the boundary between regions of up-flow
and down-flow, of the mean wave number, and of the
variance of the wave number, during this process.
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APPENDIX: METHOD OF DETERMINING
BLACK-WHITE BOUNDARY LENGTH
IN AN IMAGE

We present here a method for determining the total
boundary length between black and white regions in im-
ages displayed with two grey levels (such as those shown
in Fig. 21). All 2X2 matrices of adjacent pixels are ex-
amined. Each pixel is a part of four such matrices. Each
matrix is one of sixteen different types, and each of these
types can be placed in four major categories. Examples
of these four categories are illustrated as (a), (b), (c), and
(d) in Fig. 24, where black pixels are shown as shaded. In
(a), all four pixels are the same, so no interface between
black and white regions exists within the matrix. There
are two matrix types in this category. In (b), two pixels
are black, and two are white, and the boundary between
the two regions is either vertical or horizontal. Four
types of matrices exist in this category. The matrices in
category (c) have three pixels of one shade and one pixel
of the other shade. These matrices may contain part of a
“staircaselike” diagonal border; otherwise, they contain a
corner merging a horizontal boundary with a vertical
one. This category is composed of eight matrix types.
Finally, in (d), the matrix has two black pixels and two
white pixels, but identical pixels are diagonally across
from each other. It contains the intersection between
two black regions and two white regions. There are two
diagonal boundaries in the matrix; their orientation, how-
ever, is arbitrary. Two matrix types belong in this
category.

Each 2X2 matrix involving an interface contains a
unique segment of the total boundary. Each segment is
assigned a length in pixel units. The total boundary
length is determined by adding all these segment lengths
together.

The matrices of category (a) do not involve an inter-
face, so they are not included in the measurement. Those
in category (b) contain a segment that is vertical or hor-
izontal (the segments are illustrated by the heavy solid
lines in Fig. 24). The length of this segment (in pixel
units) is 1.0. The segments within the matrices of
category (c) are defined to be diagonal with a length of
Vv'2/2. (If a matrix in this category actually contains a
corner of the boundary, then the corner is made slightly
rounded.) Finally, the matrices of category (d) contain
two diagonal segments, each of length V'2/2, and both of
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FIG. 24. Illustration of the categories of matrices that occur
in the determination of the boundary lengths of images (see
text).

these lengths are added to the sum. Note that it is ambi-
guous where the segments should be located in the ma-
trices of (d), so their placement is arbitrary. Neverthe-
less, the two segment lengths are independent of this
placement.

We tested this method by measuring the perimeter of a
circle bounding a black region from a white region. The
radius of the circle ranged from 10 to 60 pixel units. For
this range, the perimeter was consistently measured to be
=~ 6% greater than its correct value.

We normalized the boundary length by multiplying it
by A/2 A;, where X is the characteristic wavelength of the
pattern and A, is the area of the image, and both A and
A; are given in pixel-length units. The wavelength A was
determined from a measurement of k in the Fourier
transform of the image (see Sec. II D). The images shown
in Fig. 21 were from a 128X 128 matrix, and the area
within which the border was actually measured was
equivalent to that inside a 127X127 matrix, so
A;=16129.

As an example, consider an image containing a vertical
straight-roll pattern with wavelength A. Let the image be
composed of an L XL matrix. Then there will be 2L /A
vertical boundaries of length L, making the total bound-
ary length B=2L?/A. After normalization B=1. We
tested this method on several images of nearly straight-
roll patterns. In all cases we measured B ~0.95.
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