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The velocity autocorrelation function (VACF) of lattice-gas cellular-automata Auids has been calculat-
ed by mode-coupling (MC) theory for finite systems, including sound modes, and compared with com-
puter simulations on small (X=10') and large (N =10 ) two- and three-dimensional (3D) systems for re-
duced densities f ranging from 0.05 to 0.8. For times t up to 6to (mean free times) the simulated VACF
agrees with Boltzmann relaxation. In 2D the agreement with MC theory is excellent for t )9to and has
been tested over intervals of several acoustic traversal times. In 3D the agreement is still good, but sets
in after much larger times (150to at f =0. 1 and 60to at f =0.8). However, there are disagreements in
the smallest systems at the lowest densities, where the observed VACF at largest times is about 6%
(f =0.1) and 9% (f =0.05) larger than the theoretical values.

I. INTRODUCTION

The velocity autocorrelation function (VACF) of a
tagged particle has a fundamental significance in non-
equilibrium statistical mechanics. Its time integral
defines the self-diffusion coefficient through the Green-
Kubo relation, and its decay exhibits short-time kinetic
relaxation, conceivably an intermediate cage effect, and
long-time hydrodynamic relaxation. This paper essential-
ly focuses attention on the basic question of to what ex-
tent macroscopic hydrodynamic concepts, as implement-
ed in mode-coupling (MC) theories, provide a valid
description down to microscopic space and time scales.

The models on which these concepts are tested are
one-, two-, and three-dimensional lattice-gas cellular-
automata fluids (LGCA's), such as the two-dimensional
Frisch-Hasslacher-Pomeau (FHP)—III model [1] and the
quasi-three-dimensional face-centered hypercubic
(FCHC) model [1]. The VACF in these systems has been
obtained [2—4] with remarkable statistical accuracy using
the moment propagation method, an algorithm that exact-
ly calculates the VACF of a tagged particle over all possi-
ble trajectories, for a single initial configuration of the
Quid particles. Furthermore, round off errors are absent
in the time evolution of LGCA Quids. Statistical noise is
only present in generating the initial configurations of the
X Quid particles, where X is typically 10 —10 in two-
dimensional simulations, and exceeds 10 in three-
dimensional ones.

The simulation results show excellent agreement with
the asymptotic long-time tails of t " predicted by
mode-coupling theory for times larger than 20to with to
being the mean free time. Mode-coupling theory assumes
that the long-time relaxation to equilibrium can be de-
scribed through the decay of products of hydrodynamic
modes [5,6]. In particular, the combination of a shear
and a self-diffusion mode leads to the asymptotic tail of
the VACF [3,4].

Erpenbeck and Wood [7,8] have adapted the mode-

coupling theory of Ernst, Hauge, and van Leeuwen [9] to
finite systems, and have shown that sound modes are of
considerable importance. Following Erpenbeck and
Wood, the mode-coupling theory will be extended (i) to
include all possible product of pairs of hydrodynamic
modes (also those yielding subleading asymptotic time be-
havior), and (ii) to obtain ftnite size cor-rections by adapt-
ing mode-coupling theory to finite systems having a
discrete set of allowed wave numbers, instead of a con-
tinuous range. This extended mode-coupling theory will
be applied to d-dimensional LGCA's and compared with
existing and new computer simulations.

In the papers [5,10,11] we have studied a cellular-
automata (CA) fluid on a line by means of MC theory and
computer simulations. We observed (i) that the VACF in
finite one-dimensional systems approaches a constant neg-
ative value of O(1/N) for times short compared to the
acoustic traversal time t, of the finite periodic systems;
(ii) that the VACF only vanishes for times exceeding
several multiples of t, ; and (iii) that the long-time decay
of the VACF in the infinite system is exponential. rather
than algebraic, with a relaxation time t, differen from
the mean free time to. All observations on small and
large systems have been explained quantitatively with the
extended MC theory for finite systems.

This paper deals with the two- and three-dimensional
Quid models and is the LGCA counterpart of the articles
[7,8] on hard disks and hard spheres. Very recently,
Dijkstra and van der Hoef [12] also performed computer
simulations on the actual four dimensional FCH-C model,
where they observed the t " tail at several densities
with a coefficient that is about 20% larger than predicted
by MC theory.

The outlook of the paper is as follows. The following
three sections contain theoretical considerations. Section
II deals with the ensemble dependence of fluctuations,
Sec. III with the extensions of MC theory, and Sec. IV
with the interference effects from periodic boundary con-
ditions. Section V and VI discuss the simulation results
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for finite two- and three-dimensional systems. A con-
clusion is given in Sec. VII.

II. SUBTRACTED TIME CORRELATION FUNCTIONS

The diffusion coefficient of a tagged particle in a
LGCA is given by

D = g (v„(t)v„(0))+—,'(v )—:(v ) g P(t)+ —,
'

t=l t=l

(2.1)

as follows by transforming Einstein's formula for
the mean-square displacement. The VACF P(t)
=(v (t)v„)/(v ) should be considered in the thermo-
dynamic limit.

In computer simulations, the normalized VACF,
denoted by /MD(t), is calculated using the molecular-
dynamics (MD) ensemble, in which each system is con-
tained in a periodic macroscopic box with V sites and has
a fixed number of particles X, one of which is tagged
(N* = 1), and vanishing total momentum, P =0. The en-

ergy E is either trivially kept fixed in single speed models,
where E and N are essentially the same, or it is not kept
fixed at all because it is not conserved in the most com-
monly used lattice gases.

In theoretical calculations we use a canonical ensem-
ble, in which the total momentum of each system Auctu-
ates around an average (P) =0. Suppose a systein has a
finite total momentum P, then the velocity of the tagged
particle should be measured in the system's rest frame
and the diffusion coefficient is given by Eq. (2.1) with v
replaced by v'=v —P/N. The corresponding subtracted
VACF is defined as

P~(t)=(v,'(t)v„'(0))/(v, ' ) . (2.2)

q (t)=(v. (t)..(0))/(v.') (2.3)

and the subtracted one of Eq. (2.2) are related through

From now on, the brackets ( ) without a subscript refer
to a canonical average. As discussed more extensively in
Ref. [10],subtracted correlation functions (5A (t)5B(0) )
are physically the most relevant ones. The reasons are as
follows. First, the Green-Kubo formulas for all transport
coefficients, such as (2.1), are expressed in terms of them,
as pointed out by Green [13]. Second, according to the
theory of Lebowitz, Percus, and Verlet [14] on the ensem-
ble dependence of fluctuations, subtracted fluctuation for-
mulas, whether taken at equal or different times, are in-
dependent of the ensemble used for sufficiently large sys-
tems, whereas unsubtr acted correlation functions
(5A (t)5B(0)) are not. As shown in Ref. [10],Pz(t) is a
subtracted ffuctuation formula in the sense of Refs. [13]
and [14]. In the MD ensemble ( P =0), the tagged
particle's velocity v=v' is also a subtracted current.
Therefore, the subtracted correlation function in the MD
ensemble and that in (2.2) are expected to be equal,
/MD(t)=P~(t), to terms of O(1/N) included. The stan-
dard VACF of the canonical ensemble

it'Jv(t) =pjv(t)+ (2.4)

This relation can be derived by using (P„)=N(1
—f)( v„), where the factor (1 f)—results from the Fermi
exclusion rule. In the classical fiuid of Refs. [7] and [8],
(P„)=N(v„). Here, f =p/b denotes the reduced den-
sity (0 ~f ~ 1) and p and b are, respectively, the number
of particles and velocity channels per site in the lattice.

In our theoretical and computer studies we shall be us-
ing periodic boundary conditions to minimize finite-size
effects. Then subtracted correlation functions, such as
(()MD(t) and P~(t), appearing in Green-Kubo relations, are
supposedly vanishing at t ~ ac at fixed numbers of parti-
cles N and sites V per macroscopic unit cell, because the
subtracted ffuctuations 5A (t) have no component parallel
to any conserved quantity. The unsubtracted VACF
f~(t) contains a current v (t) with an invariant com-
ponent P, /N and therefore approaches a positive constant
(1 f)/N i—n the same limit.

As will be explained in the following section, the con-
stant correction term (1 f)/N s—hould be added to the
simulation results /MD(t) as a finite-size correction, in or-
der to improve the agreement of the simulation results
for different system sizes with those for the infinite sys-
tem. In the analysis of Ref. [7], /MD(t) is calculated in a
microcanonical ensemble with ENV fixed, whereas P~(t)
is calculated in a canonical ensemble with TXV fixed.
Both correlation functions differ therefore by a term of
0 (1/N). Such 1/N corrections are absent in the
athermal LGCA's, considered here, because the energy E
is not conserved and the models have no temperature.

III. EXTENDED MODE-COUPLING THEORY

g~(t): /tv(t)+(1 f)/—N—
(1 f)—

N
d —1

exp[ (D+v)q t)—
+—cos(coqt )exp[ —(D + —,

' I )q t ]
1 2

(3.1)

where D is the self-diffusion coefficient, I =2( 1—d ')v+g is the sound damping constant, and v and g
are the shear and bulk viscosity, respectively. The values
of the transport coefficients depend, of course, on the col-

Mode-coupling studies on the long-time behavior of
the VACF have already been considered in Refs. [2—11].
In that case the current of tagged particles v in Eq.
(2.3) is interpreted as the coarse-grained expression
g,u, (r, t)P(r, t) with u (r, t) the local ffuid velocity and
P(r, t) the concentration of tagged particles. The time
dependence of these slowly varying fields is calculated
from the diffusion equation and the hydrodynamic equa-
tions, where the Aow field is decomposed into shear
modes and sound modes. By including sound modes in
the considerations of Refs. [3—5], the expression for the
VACF in finite systems is found to be



2486 NAITOH, ERNST, van der HOEF, AND FRENKEL

lision rules for the specific models and will be discussed in
the specific applications.

The MC result (3.1) has been extended in two respects
in comparison with existing theories.

(i) In addition to shear modes that yields the dominant
t "~ tails of [2—5], we have included sound modes yield-
ing more rapidly decaying contributions to the VACF.

(ii) We have retained finite-size corrections, such as the
0 (1/N) effect in Eq. (2.4) and the discrete q summation
instead of a q integral.

Systems with periodic boundary conditions may be
viewed as finite or infinite. In the former interpretation a
position-dependent function h(r) is only defined for r in-
side one macroscopic cell with V=L" sites. In Fourier
space the q sums are restricted to the first Brillouin zone
of the reciprocal lattice. In the latter interpretation one
defines a position-dependent function as H(r)
=g«&h(r+ IL) with r in infinite space, which is period-
ic with period L in each space direction. The points I
denote points of the regular infinite-space lattice X on
which the LGCA is defined. In Fourier space, where
q=2~n/L, the q summation extends over all points n of

I

the corresponding infinite reciprocal lattice X*.
The result for g&(t) or ( v„(t)U„(0)) is very similar to

the finite N results of Ref. [7]. The only difference is ac-
tually the overall factor (1 f) —in the second line of Eq.
(3.1), which results from the Fermi exclusion rule for the
lattice-gas particles. We observe, furthermore, that the
time-independent term (q=O) in Eq. (3.1) yields the con
stant contribution (1 f)/—N. Consequently, the MC re-
sult for the subtracted correlation function, P~(t), is given
by the second line of Eq. (3.1) with the term (q=O) ex-
cluded. The subtracted tagged particle current v' in Eq.
(2.2) has no component along the conserved total momen-
tum P. In the unsubtracted correlation function g~(t) in
Eq. (2.3) the tagged particle current v does have a con-
stant component P/¹ Hereafter, the results obtained
through Eq. (3.1) are referred to as the finite N results of
the extended mode-coupling theory [7].

In the thermodynamic limit ( V —+ ac ), all 0 (N ')
terms disappear and the q sum in Eq. (3.1) is replaced by
an integral over all q space. Evaluation yields the extend-
ed mode-coupling result for the infinite system:

d/2
1

D + —,'I
d/2

d 1 tF 2'2' (3.2)

t, =4(D+ —,'I )/co, t„=4(D+v)/co . (3.3)

For later purposes their numerical values are listed in
Table I for a few typical models and densities. Further-
more, &F& is the conAuent hypergeometric function. The
first term of Eq. (3.2) represents the shear-mode contribu-

TABLE I. The characteristic times for the two-dimensional
FHP-III model and the three-dimensional FCHC model at
several reduced densities. to, t„and t, denote, respectively, the
mean free time [Eq. (5.1)], the hydrodynamic relaxation time re-
lated to sound modes, and the one related to shear modes [Eq.
(3.3)].

2D FHP 3D FCHC

where vo is the volume of the unit cell of the space lattice
on which the LGCA is defined. Apart from the overall
factor (1 f), the infi—nite system result (3.2) agrees with
that of Ref. [7], where bf/vo is the number of particles
per unit volume. In our discussion, we will be using the
hydrodynamic relaxation times, t, and t„ for the com-
bined damping effect of diffusion and sound modes, and
for that of diffusion and shear modes, respectively,
defined as

I

tion P' (t) and gives the leading long-time tail obtained in
[2] (absent in the case of d =1) and the second one
represents the subleading sound mode contributions. For
odd values of the dimensionality d, the function ~F& de-
cays exponentially, specifically, ,F, ( —', , —,', —x )

=(1—2x)e in three dimensions. Hence the sound
modes decays as exp( —r/t, ). For euen values of d, the
function, F, cannot be expressed in elementary functions,
and decays algebraically for large positive x, i.e.,
&Fi(d/2, —,', —x)=( —I)"~ (d —1)(2x) " for d =2 and
4. Hence, the sound mode contribution in (3.2) decays as
t ", to be compared with t " from the dominant
shear-mode contribution.

Finally we remark that the constant term, (1 f)/N, —
can also be used as a finite-size correction to be applied to
the computer simulations, i.e., P M(tD)+(1 f)/N corre-—
sponds to P&(t)+(I f)/N =g&(t) —The unre. stricted q
summation in (3.1) can be considered as a numerical ap-
proximation to the q integration, used to obtain (3.2). So
Pz(t) is the finite-N analog of the infinite system results.
In comparing computer simulations with the infinite sys-
tem result P(t), we always apply the above finite-size
correction, in order to collapse simulation data at
different system sizes with the infinite system result.

0.05
0.1

0.25
0.4
0.75

5.7
2.8
1.1
0.7
0.3

26.9
13.4
5.6
3.8
3.0

29.3
14.4
5.9
4.0
3.3

1.79
0.97
0.49
0.37
0.24

14.5
7.6
3.8
3.0
3.3

16.8
6.2
4.2
3.2
3.7

IV. INTERFERENCE EFFECTS FROM REPLICAS

To interpret the physical phenomena and to discuss
finite-size effects, it is instructive to transform the
reciprocal-lattice sum in Eq. (3.1) back to a sum over the
direct lattice using a formula from Fourier series,
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L " g h(q)= g h(lL)= g „Jdqh(q)e'q

(4.1)

Here, h (r) is a continuous function, defined in infi-
nite space with a Fourier transform h (q)
=vo ' Jdr h(r)exp( i—q r) .The formula can be easily
derived by Fourier transforming the periodic function
H (r ) =gt «h (r+ IL). The formula is very useful if the
inverse Fourier transform h (r) of h(q) can be calculated
analytically. It is frequently used to convert slowly con-
verging lattice sum in reciprocal space into a rapidly con-
verging direct lattice sum and vice versa.

We first transform the shear-mode contribution gN (t)
in Eq. (3.1), where h(q)=exp( —aq ). With the help of
(4.1) it can then be put into the equivalent form,

' d/2(d —1)(1 f)vo—
N (t)=

dbf
1

4'(D +v)t

/2L 2

4(D +v)t (4.2)

3/2

4'(D + —,'I )t

(1 f)vo—
N (t)

X )Fi

+—'g [E' '(t)+E'+'(t)]
/L

(4.3)

where 1 = ~1
~

is the length of the lattice vector. The func-
tion E&'—' is given as

The lattice sums represent a superposition of an infinite
number of Gaussians, centered at the origin of the system
itself (1=0) and of all its periodic replicas at 1L. As long
as &4(D+v)t «L or t )t„ the sum in (4.2) is deter-
mined by the term with 1=0, which represents the
infinite system result in Eq. (3.2). As soon as
&4(D +v)t =L, the diffusive tails of the Gaussians from
different replicas start to overlap and interference effects
cause (4.2) to deviate from the infinite system result. In
cases where one does not have a detailed theory for a
finite system, simulations carried out for longer times will
have little relevance for infinite system properties.

To convert the sound mode contributions gN (t) in
(3.1) into a sum over the direct lattice, the inverse Fourier
transform of h(q) =cos(Pq)exp( —aq ) is needed. In one
dimension this is simply a shifted Gaussian. In general,
the Fourier inversion can be carried out analytically for
odd d values, but not for even ones. The result for the
three-dimensional case is a shifted Gaussian, multiplied
by a polynomial in t,

q&0 gives the contributions from the periodic replicas.
Expression (4.3) represents a superposition of an infinite
number of incoming wave packets EI ', and outgoing
ones E& ', originating in every replica and traveling with
the speed of sound. The contribution E&+' is very small
compared to EI'

In the one-dimensional case the factor (lL+cot) is
missing in E& '(t)— Th. e term E&' ' has a maximum at
t =/L /co =/t„caused by sound waves from neighboring
replicas reaching the system. Here the sound wave con-
tribution gN (t) has equidistant maxima at multiples of
the acoustic traversal time t, .

In three dimensions the contribution E&' '(t) of outgo-
ing sound waves is vanishing at t =/t, and it reaches a
maximum and a minimum at t values, respectively, small-
er and larger than /t, . The locations of these extrema are
obtained by solving a cubic equation. The maxima and
minima in the three-dimensional case are, of course, not
equidistant. There are in (4.3) for a simple-cubic lattice
six nearest-neighbor sites with /=1 and twelve next-
nearest-neighbor sites with 1 =v 2, etc.

The width of the wave packets is increasing as
+4(D + —,'I )t due to diffusion of the tagged particle and
due to the damping of sound waves. Strong interference
effects due to sound waves from neighboring replicas
occurs at times on the order of the acoustic traversal
time, as has also been discussed in Refs. [7] and [8].

To carry out simulations on small systems that are free
of interference effects from periodic boundary conditions,
and have physical meaning for an infinite system, the fol-
lowing inequalities should be satisfied:

+4(D+ ,'I )t «—c,t «L or t, «t «t, . (4.5)

As t, and t, in Eq. (3.3) are of the same order (see Table
I), the above criteria also guarantee the absence of in-
terference effects from diffusive modes.

V. SIMULATIONS IN TWO DIMENSIONS

Here we study the 7-bit FHP-III model [15,2], which is
defined on the triangular lattice. Particles can have six
different velocities directed along the six directions of a
triangular lattice, all with the same magnitude c. More-
over, a particle can have zero velocity. No two particles
can be at the same site with the same velocity, so the
maximum number of particles per site is seven. The dy-
namics of the tagged particle is defined in Ref. [2]. In our
analysis we need the volume of the unit cell, vo=&3/2,
the speed of sound, co=+—', , defined through dbco
=g,c, and the Boltzmann approximation to the sound
damping constant, I =v+ g, with viscosities v and g as
calculated in Eq. (2.13) of Ref. [15]. In the same approx-
imation, the VACF, the diffusion coefBcient D, and the
eigenvalue A, are given by [16]

El' '(t) = (lL+cot) exp
(1L+cot )

4(D+ ,'I )t—(4.4)

pter(t) =(1—A. )'—=exp( t /to), —

1 1D=c 2

2
(5.1)

This result has been derived in Ref. [7]. The first term in
(4.3) gives the infinite system result and the sum with A, = 1 —(1—f)[1—(1 f)" ']/[(b —1)f]—,
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with bit number b =7, the mean free time tQ
= —1/ln(1 —

A,), and f the reduced density. The values
of tQ are listed in Table I.

For this model, the asymptotic long-time tail is, accord-
ing to Eq. (3.2), given by

(1— )vo do

2bf
(5.2)

1

4'(D +v)t

0. 0

l

-1. 0
l

0
!

~ -2. 0

I

-3. 0

- -4. 0

In Ref. [2], the long-time tail of the VACF has been mea-
sured in computer simulations on large systems with
V=200X200 lattice sites for times t ~200 at densities

f =0. 1 (0.1) 0.5 and with V=SOOX500 for t ~500 at
f =0.2, 0.35, 0.5, and f =0.75. From the measured
values of tPMD(t), the coefficient do has been extracted
and the results have been compared with the mode-
coupling result do as a function of f. The agreement was
within S%%uo as shown in Refs. [2] and [3]. However, the
use of a more elaborate (self-consistent) theory gave al-
most perfect agreement within error bars [17].

The purpose of the present section is (i) to investigate
the prediction of the full MC theory, which includes the
subleading sound mode contributions Eq. (3.2), and (ii) to
analyze the Anite-size effects, manifesting themselves in
the time indepen-dent term (1 f)/N in E—q. (2.4), and in
the interference eff'ects of sound waves arriving from
periodic replicas of the system. Consequently, we will be

0. 0

-1. 0

I
-2, 0

—-3. 0

C)

-4. 0

20 30 40 50

FIG. 2. As Fig. 1, but for system size V = 100X 100 at densi-
ty f =0.40.

0;0

studying smaller systems and shorter time intervals.
Figures 1, 2, and 3 show the simulation data (solid cir-

cles), /MD=/MD+( I f)/N, corre—cted for the constant
O(1/N) term in systems with V=100X 100 (f =0.75
and 0.4) and V =50 X 50 (f =0. 1) up to t =50. The error
bars, denoting one standard deviation, are smaller than
the size of the solid circles, except in Fig. 3. As explained
in the Introduction, the moment propagation method
does not have any statistical noise in the properties of the
tagged particle, but does have statistical noise in the ini-
tial configurations of the X Quid particles, where N
ranges from 10 to 10 in our two-dimensional simula-

-5. 0

20 30 40 50

FIG-. 1. The logarithm of the corrected velocity autocorrela-
tion function QJv(t)=/tv(t)+(1 f)/N vs time in the 2D—FHP-
III model. The system contains V = 100X 100 lattice sites. The
density, defined as the average number of particles per site per
link, is f=0.75. The solid circles represent the results of com-
puter simulations. Solid curve, prediction of the full mode-
coupling (MC) theory for infinite systems [Eq. (3.2)]; short-
dashed curve, prediction of the MC theory for finite-N systems
[Eq. (3.1)]; the short-dashed curve is hidden under the solid
curve; long-dashed curve, the asymptotic tail [Eq. (3.2)]. Note
that the short-time simulation data agree with the Boltzmann
approximation [Eq. (5.1)] (dashed-dotted line).

w -2. 0

—-3. ()

C)

-4, 0

10 20 30 40 50

FIG. 3. As Fig. 1, but for system size V =50X 50 at density
f =0.10. The acoustic traversal time for this system is t, =76.
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tions. This noise is measured by averaging typically over
10 different initial configurations of Quid particles.

At short times the VACF decays exponentially in
agreement with Eq. (5.1) up to t =15, (f =0.1), t =4
(f =0.4), and t =2 (f =0.75), which corresponds to
about 6to. It should be noted that the Boltzmann ap-
proximation for time correlation functions in LGCA's is
exact for t = 1,2, provided the period of the macroscopic
cell is larger than two lattice distances in every space
direction (see also Sec. IV on the 3D FCHC model where
this condition is not met).

For larger times we compare the data with the asymp-
totic and full MC theory for an infinite system. For den-
sities f =0.4 and 0.75, the simulated data coincide with
the asymptotic MC results (long-dashed line) for t &20
(f=0.4) and t &25 (f =0.75). More remarkably, the
simulation data coincide within the error bars with the
full MC theory (solid line) for r &6to. Here the kinetic
theory (r (6to) and the full MC theory (t & 6to) provide a
quantitative description of the VACF.

By comparing the graphs of Figs. 3 and 4, referring to
the same low-density measurements, we want to show
several interesting points.

(i) There are strong finite-size elfects. The MC theory
for finite systems (short-dashed lines in Fig. 4) is in com-
plete agreement with the simulations for t )26. The two
distinct finite-size elfects of the constant O(1/N) term
and of the interference effects will be discussed below.

(ii) The simulation results show intermediate behavior
between kinetic relaxation ( t (6to) and the full MC
theory (t &26=9to)

(iii) Within the interval of 50 time steps, the asymptotic
1/t tail (long-dashed line) and the full MC theory (solid
line) do not coincide because the sound mode contribu-
tions decay very slowly in two dimensions, like t

Consider first the constant O(1/N) correction, which

is important for comparing simulations from different
system sizes, at least up to t =

—,'t, . In Fig. 3, we have
compared the finite-N results fiv=Pz+(I f—)/N with
the corrected simulation data /MD =)MD+ ( 1 f—) /N.
As a consequence, simulated data and finite system re-
sults can be collapsed with the infinite system results of
the full MC theory, as shown in Fig. 3 for times
25 ( t ( ,' t, =3—8,where t, =L /co is the acoustic traversal
time. In Fig. 4, the uncorrected finite N prediction Pz(t)
and simulation data iI)MD(t) are compared with the full
MC theory for the infinite system. The purpose of show-
ing the same data with and without the (1 f)/N—correc-
tion in Figs. 3 and 4 is to illustrate that without this
correction there exists no time interval where infinite sys-
tem predictions have any relationship to simulation data
on small systems. The importance of this 0 (1/N)
correction for simulating infinite systems was already em-
phasized in our analysis of the VACF for a one-
dimensional LGCA in Refs. [11]and [10].

The interference effects are caused by traveling sound
waves, originating in periodic replicas. In Fig. 3, in-
terference is noticeable for times larger than —,'t, =38. To
further elucidate the importance of both types of finite-
size effects, we have performed simulations of high sta-
tistical accuracy on a system with V=SOX50 (t, =76)
and V =200X 200 (t, =305) at density f =0.75, as
shown in Figs. 5 and 6, respectively, for the uncorrected
VACF /MD(t). There is almost perfect agreement be-
tween the results from simulations and the full MC
theory for finite systems (3.1). The dashed-dotted lines in
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FIG. 4. As Fig. 3, but for the velocity autocorrelation func-
tion P~(t), that is, the velocity autocorrelation function without
the finite-size correction ( I f)/N. —

FIG. 5. it ~(t) multiplied by time, vs time, in the 2D FHP-III
model for system size V =50X 50 at density f =0.75. The solid
circles represent the results of computer simulations. The solid
curve is the prediction of the full MC theory for finite systems,
the dashed curve is only the sound mode contribution to this
prediction, and the dashed-dotted line is only the shear-mode
contribution (which is equal to the asymptotic tail). The acous-
tic traversal time is t, =76.
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cently two of us [17] performed simulations for the FHP
model at f =0.7, 0.75, and 0.8 for t ~ 1800 in systems
with V=2000X2000 sites. For such superlong time in-
tervals, a faster than 1/t decay has been observed and ex-
plained quantitatively with the help of a self-consistent
MC theory [17,18].

VI. SIMULATIONS IN THREE DIMENSIONS

\

\

r

100 200 300 400

FIG. 6. As Fig. 5, but for system size V =200X 200 at densi-

ty f =0.75. The acoustic traversal time for this system is

4 =305.

Figs. 5 and 6 show the shear-mode contributions,
tP/v =do t (1 f)/—N. T—his is essentially a straight line
because the interference effects in Eq. (4.2) of the purely
diffusive vD modes in neighboring replicas are of order
exp[ L /4(D ——v)t] —10 (Fig. 5 at t =200) and 10
(Fig. 6 at t =400), and completely negligible for the
present systems.

In two dimensions we do not have an explicit real-
space representation of the sound mode contributions,
such as (4.3). Nevertheless, most features in Figs. 5 and 6
can be understood in a quantitative manner. The dashed
lines show the contributions from the sound modes and
the solid lines show the sum of both previous contribu-
tions. The first maximum occurs at the acoustic traversal
time (t, =76 in Fig. 5 and t, =305 in Fig. 6) and the
width of the peaks is determined by +4(D+ —,'I )t. The
second maximum in Fig. 5 occurs at &3t, = 132, which
corresponds to sound waves arriving from next-nearest-
neighbor replicas. The maxima originate from Gaussian
wave packets, excited in neighboring replicas, that travel
with the speed of sound and broaden as +4(D+ —,'I )t
due to diffusion and damping of the sound waves.

We have also verified that the diffusion coefficient cal-
culated from the simulation data with help of Eq. (2.1)
and summed to an upper limit tM with TM ) [t„t,I is
practically equal to the Boltzmann value as given in Eq.
(5.1).

Before concluding this section on the long-time behav-
ior of the FHP-III model, we recall that the MC theory
in two dimensions is not an internally consistent theory.
On the one hand, it predicts that the long-time tail = 1/t
would lead to diverging transport coefficients, e.g. ,
D(t)= f 'dt/t~ln(t) for t~~. On the other hand, the
coefficient do in (3.1) is determined by the finite short-
time Boltzmann values of the transport coefficients. Re-

2(1 f)—p(t) = 1

4~(D +v)t
:dpt (6.1)

where the volume of the unit cell vp = 1. In the computer
simulations of [3] the tail in t / P(t) has been measured in
a system with V=60 sites at densities ranging from
f =0. 1 to 0.9. The results have been compared with the
MC results and were found to be in excellent agreement
with the asymptotic tail (6.1) of the MC theory.

Before comparing the three-dimensional simulation
data with the MC results, we discuss the short-time be-
havior of the VACF in at densities f =0.1, 0.4, and 0.75.
Here the VACF decays exponentially and is correctly
given by the Boltzmann approximation up to t = 6tp JUst
like in the two-dimensional case. In Sec. IV it was men-
tioned that the Boltzmann approximation for the VACF

The quasi-three-dimensional FCHC model is contained
in a macroscopic periodicity cell that is a four-
dimensional slab with a volume of 2L, i.e., two-lattice-
spacings wide in the fourth dimension. It is defined on
the even sublattice Ir +r/+r, +r, =evenj of a four-
dimensional simple-cubic lattice and contains, therefore,
V=L accessible sites. There are b =24 allowed veloci-
ties per site, specified by the next-nearest-neighbor lattice
vectors: (+1,+1,0,0), (+1,0, +1,0), (+1,0, 0, +1),
(0, +1,+1,0), (0, +1,0, +1), (0,0, +1,+1). The FCHC
model may also be interpreted as a strictly three-
dimensional model [1], defined on a simple-cubic lattice
where all V=L sites are accessible. The six nearest-
neighbor links may be doubly occupied (by distinguish-
able particles) and the twelve next-nearest-neighbor links
are at most singly occupied.

The speed of sound is given by co=(4b) 'g, c
The kinematic viscosity v and diffusion coefficient D are
determined by the four-dimensional collision rules and
have been calculated in [3] for the relevant version of the
FCHC model within the approximation of uncorrelated
collisions based on the Boltzmann approximation. The
sound damping constant is equally determined by the
four-dimensional collision rules, and given by I =

—,'v,
since the bulk viscosity g vanishes for the single speed
FCHC model. It was also shown recently [16] that the
Boltzmann approximation to the VACF and the diffusion
coefficient for the tagged particle in all versions of the
FCHC model are given by (5.1) with b =24. The mean
free time to, defined in (5.1) and listed in Table I, is rather
short for this model. Even at a density of f =0. 1, a par-
ticle suffers a collision at every time step because there
are on the average 2.4 particles present per site. For this
model the asymptotic long-time tail in the thermodynam-
ic limit is given by (5.2) with d = 3, i.e.,

3/2
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is still exact at t =2 for all lattice-gas models in a
sufficiently large macroscopic box. Here this is no longer
true due to the narrow four-dimensional slab containing
the FCHC Quid. The short spatial period two of this slap
induces extra velocity correlations at t =2, so that the as-
sumption of uncorr elated collisions, basic to the
Boltzmann approximation, is violated. In the simulations
of Ref. [3] the measured value of /MD(2) was larger than
the Boltzmann values by less than 2%%uo at f =0.15 and is
increasing to about (tMD(2)=2/ii(2) at f =0.8. These
velocity correlations are not of dynamic, but rather of
geometric origin, and are related to the period two in the
fourth spatial direction. This interpretation was recently
confirmed [12] in computer simulations on the FCHC
model, where the VACF was measured in a real four-
dimensional system of I. sites and where the relation
(t MD(2) =(t~(2) was verified. Although (t)(2) might diA'er

from its Boltzmann value, the difFusion coefficient D, as
calculated from the simulation data using (2.1), is essen-
tially equal to the Boltzmann value in (5.1).

Next we turn to the MC theory. In Figs. 7—10, the
MC results for the infinite systems are compared with the
corrected simulation results at densities f =0.1, 0.25, 0.5,
and 0.75, respectively. The simulation data for the
VACF for times t (L (with L =50, 40, 30, and 60, re-
spectively) are within one standard deviation from the
asymptotic tails (long-dashed lines) for t larger than 20, 6,
5, and 4, respectively. Note that all simulations involve
at least 3X 10 particles. Including sound modes (solid
lines) deteriorates the agreement. The sound modes

-4. 0-

-3. 5

-4. 0

-5. 0

20 30

FIG. 8. As Fig. 7, but for system size V=40X40X40 at den-
sity f =0.25.

in Eq. (3.2) are described by iF i ( —', , —,', —t It, )

=exp( —tlt, )(1 2tlt, ), w—here the hydrodynamic relax-
ation time t, is listed in Table I. The full MC theory and
the simulations agree within one standard deviation only
after the longer times 30, 20, 18, and 20, respectively.
These results seem to suggest that the FCHC Quid exhib-
its intermediate dynamic behavior in between the kinetic
relaxation, described by the Boltzmann approximation,
and the hydrodynamic relaxation, described by the MC
theory.

In Figs. 11—13, we study interference effects of sound

4 5

—-5. 0
CO

-4. 0

-5. 5

20 40 60 S0

FIG. 7. The logarithm of the corrected velocity autocorrela-
tion function g„(t)=P~(t)+ (1 f)/N vs time in the —3D FCHC
model. The system size is V =50 X SO X 50, the density is

f =0.10. The solid circles represent the results of computer
simulations. Solid curve, prediction of the full MC theory for
infinite systems [Eq. (3.2)]; short-dashed curve, prediction of the
MC theory for finite-N systems [Eq. (3.1)]; long-dashed curve,
the asymptotic tail [Eq. (6.1)]; for shorter times, the short-
dashed curve coincides with the solid curve.

-5. 0—
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FIG. 9. As Fig. 7, but for system size V =30X30X 30 at den-
sity f=0.50.
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FIG. 10. As Fig. 7, but for system size V=60X60X60 at
density f =0.75.

FIG. 12. As Fig. 11, but for system size V=50X50X50 at
density f=0.10. The acoustic traversal time is t, =71.

5. 0

4. 0-
II &I

waves from neighboring replicas in small systems using
Eq. (4.3). The figures show the VACF,
=(j)z+(1 f)/N, corr—ected for the constant O(1/N)
term of Eq. (2.4) at densities f =0.4
(V=30, t, =L/co=42), f =0. 1 (V=50, t, =71), and
f =0.05 ( V =50, t, =71), respectively. The dashed-

dotted line represents the asymptotic t tail, the solid
line the full MC theory for an infinite system, and the
dashed line the finite-N results. Finite and infinite system
results start to differ at t=25, 35, and 25, respectively.
These differences have only statistical significance in Fig.
12 (N=3X1 0) and Fig. 13 (N=1.5X10 ) and follow
the trends of the finite-N results. At times 40, 60, and 80,
the simulation data exceed the theoretical results at finite
N by, respectively, 8%, S%%uo, and 6%%uo in Fig. 12 (f =0. 1)
and by, respectively, 40%, 26%, and 9% in Fig. 13
(f =0.05). These figures definitely show the importance
of the finite-size correction (1 f)/N and o—f the interfer-
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FICJ. 11. P~(t) multiplied by t', vs time, in the 3D FCHC
model for system size V=30X30X30 at density f=0.40. The
solid circles represent the results of computer simulations.
Solid curve, prediction of the full MC theory for infinite sys-
tems; dashed curve, finite-N result; dash-dotted curve, the
asymptotic tail [Eq. (6.1)]. The acoustic traversal time is t, =42.

0. 0

20 60 80

FIG. 13. As Fig. 11, but for system size V=SOX50X50 at
density f =0.05. The acoustic traversal time is t, =71.
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ence effects of sound modes, since the infinite system re-
sults are about 22% (Fig. 12) and 43% (Fig. 13) smaller
than the simulation data at the largest times. In Figs.
7—10 the differences between the corrected VACF,
Pz(t)+(1 f )—/N , an'd its infinite system limit i'(t) are in-
visibly small.

In three dimensions there is no simple relationship be-
tween maxima in t ~ Pz(t) and the acoustic traversal
time. The theoretical analysis of (4.3) shows destructive
interference at times t =t, of the sound waves from
different replicas. Furthermore, the widths of positive
and negative peaks are very large in the smallest systems,
since the hydrodynamic relaxation times t, and t, in Eq.
(3.3) become comparable to t„and the peaks in (4.3) can-
not be resolved.

We also point out that the appearance of sizable finite-
size effects due to interfering sound waves can only occur
after —,'t, =21 and 35, respectively, as is the case in Figs.
11 and 12. The fact that in Fig. 13 differences between
finite and infinite systems occur already at t =25 ( —,'t, in-

dicates that the hydrodynamic concepts of interfering
sound waves break down at low densities (f =0.05) and
small system sizes (L =50) at short times. This is corro-
borated by the violation of the inequalities (4.5). It im-
plies that the spreading +4(D + —,'I )t =15 of the wave
packets through damping and diffusion is comparable to
the propagation distance cot —17 for the relevant times
and system sizes (here L =50).

In concluding the analysis of the three-dimensional
simulations, we recall that there are indications for long-
lived intermediate time behavior. A quantitative ex-
planation of this intermediate dynamics probably re-
quires a more sophisticated kinetic theory that takes into
account correlated collision sequences, more complicated
than the simple ring collisions contained in the MC
theories. Furthermore, we cannot exclude that the quasi-
three-dimensional and four-dimensional FCHC model
has some hidden spurious invariants, which might ex-
plain both the observed long-lived intermediate behavior,
as well as the deviations between theory and simulations
at larger times in smaller systems.

VII. CONCLUSION

This paper is the lattice-gas counterpart of the comput-
er studies of Erpenbeck and Wood [7,8] on measuring
long-time behavior of the VACF in hard sphere and hard
disk systems and on comparing it with the mode-coupling
(MC) theory for finite systems. The two models con-
sidered here are the two-dimensional FHP model, defined
on the triangular lattice [1], and the quasi-three-
dimensional FCHC model, which is defined, in its three-
dimensional interpretation, on a simple-cubic lattice [1].

The extended mode-coupling theory for finite systems
not only includes the dominant shear modes of fluids,
yielding t " tails, but also subleading sound mode con-
tributions, that decay in even dimensions like t " and in
odd dimensions exponentially with a hydrodynamic re-
laxation time t, =4(D + —,'I )/co. The sound modes pro-
duce strong interference effects through the periodic

boundary conditions and cause large deviations from the
infinite system results. It is shown here for two- and
three-dimensional CA fiuids, and in Ref. [11] for a one-
dimensional CA Quid, that the extended MC theory for
finite systems gives, in one and two dimensions excellent,
and in three dimensions good to reasonable agreement
with extensive computer simulations on small (N =10 )

and large (N = 10 ) systems.
At the end of Sec. III and in the discussion of the simu-

lation data in Sec. V, we have emphasized the importance
of the finite-size correction term (1 f)/N—for collapsing
simulation data of different system sizes with the theoret-
ical predictions for infinite systems, at least for times less
than half the acoustic traversal time. It is particularly
important in cases where no detailed theoretical analysis
can be made of the interference effect of sound waves in
small systems, coming from neighboring replicas, and
where only theoretical predictions for the infinite system
are available. Our analysis shows that one should discard
in that case the simulation data for times exceeding half
the acoustic traversal time.

In one and two dimensions, the excellent agreement
sets in at about 9 mean free times to. Figures 4 and 5

show the importance of finite-size effects caused by in-
terference of sound waves from periodic replicas of the
system. As Boltzmann relaxation exp( —t /to) essentially
holds for t ~ 6to (see Figs. 1 —4 for two dimensions), one
has in practice a quantitative theory of the VACF in
two-dimensional CA Auids. This result confirms the va-
lidity of hydrodynamic concepts down to rather small
spatial and temporal scales.

In three-dimensional systems the asymptotic tail of the
VACF dot is in good agreement with the computer
simulations, but it only sets in after a rather long times
ranging from 150to (see Fig. 7 with f =0. 1) to 60to (see
Fig. 10 with f =0.75). Inclusion of the sound modes
does not extend the validity of the theory to shorter times
(as was the case in two dimensions). There exists a large
region of unexplained intermediate time behavior.

Higher-order mode-coupling contributions produce in
three dimensions an infinite series of subleading asymp-
totic correction terms, decaying like t with a„
=2—2 " (n =1,2, . . .) (for a recent review, see Ref. [4]).
We have numerically evaluated these contributions and
found them to be totally negligible.

Interference effects of sound waves from neighboring
replicas in three-dimensional systems have only been ob-
served at the lowest densities (f =0. 1 in Fig. 12 and
f =0.05 in Fig. 13). The simulations on these low-
density systems follow the trends of the MC predictions
only rather slowly (after about one acoustic traversal
time) and show deviations from the finite-N results of less
than 10%. As expected, the infinite system results have
little relevance for the low-density simulation data.

The poor agreement of the MC theory and the simula-
tions in the three-dimensional FCHC quid at the lowest
densities is somewhat unexpected in view of the excellent
agreement in the one- and two-dimensional simulations.
In fact, in recent simulations [12] of a four-dimensional
version of the FCHC model on a system with V=30
sites, the long-time part of the VACF has been measured
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and compared with the rather weak asymptotic tail
dot in Eq. (3.2). In the density range 0.4(f (0.8 the
measured exponent was 2.035+0.043 and the value of do
was about 20—30% larger than the theoretical value.
For densities outside this interval the deviations are
larger.

The observed long-lived intermediate behavior and the
observed deviations between theory and simulations in
the asymptotic tails in the three- and four-dimensional
FCHC model might indicate the presence of a hidden
spurious invariant.
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