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Path-integral Monte Carlo simulation of the structure of deuterium in the critical region
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The site-site distribution function and structure factor of deuterium close to the critical point have
been calculated by means of quantum path-integral Monte Carlo simulations. The calculations were per-
formed using a spherically symmetric pairwise-additive potential for the distribution of the molecular
center of mass and assuming that D2 may be regarded as a classical free rotor. Some of the problems
connected with the simulation of a quantum system close to the critical point are analyzed in detail. The
results of the simulations have been compared with the neutron-scattering experiment by Zoppi et al.
[Phys. Rev. A 39, 4684 (1989)]. The overall agreement is excellent, but some diffuse discrepancies are
found. Possible origins of this inconsistency are discussed.

I. INTRODUCTION

In spite of the apparent ease with which liquid hydro-
gen may be investigated, it seems that the amount of ex-
perimental work devoted to this system, though quite ex-
tensive, is not commensurate to its importance. Probable
reasons are of both theoretical and experimental origin.
On the one hand, liquid hydrogen is a strongly quantum-
mechanical system that renders any theoretical treatment
extremely difficult. On the other hand, it also presents
some intrinsic experimental difficulties that make this
system not too appealing to experimentalists.

Determining analytically the microscopic dynamics of
a liquid is already a hopeless problem for a classical sys-
tem. For quantum Auids, the possibility of solving the
Schrodinger equation for an X-body system seems even
more remote. For classical Auids, computer simulations
may provide the necessary link between theory and ex-
periment. In particular, the molecular-dynamics (MD)
technique, which solves Newton's equations for an X-
particle system by numerical integration, allows one to
obtain reliable information on the dynamical behavior of
dense Auids. However, even though the technique has
been used extensively to increase our knowledge of the
liquid state in the classical framework, it has not yet
evolved to a stage where the full dynamic N-body prob-
lem of a quantum liquid may be tackled.

The situation is quite different as far as the static prop-
erties of quantum Auids are concerned. In this case the
Metropolis Monte Carlo (MC) technique, originally
developed to compute classical equilibrium averages, has
recently evolved into the path-integral Monte Carlo
(PIMC) technique by means of which at least averages of
equilibrium properties may now be evaluated quantum
mechanically. For a review see, for example, Refs. [I]
and [2].

On the experimental side, one of the problems is that x
rays and neutrons, the most widely used sources of exper-

imental information on liquids, are least effective with hy-
drogen. Since the molecule has only two electrons, the
intensity of the scattered x rays is very low and experi-
ments become difficult. On the other hand, the coherent
cross section for thermal neutron scattering by hydrogen
is almost two orders of magnitude smaller than the in-
coherent one, rendering this technique virtually useless
for probing collective properties [3,4]. If deuterium is
considered, however, the situation for thermal neutron
scattering becomes much more favorable. The coherent
cross section is now larger than the incoherent one and
therefore collective properties of deuterium can be
probed by this technique.

The structure factor of supercritical deuterium has re-
cently been measured by neutron scattering using the
pulsed neutron source of the Rutherford Appleton Labo-
ratory (U.K.) [5]. The experiment was compared with
MC simulations of a classical Lennard-Jones (LJ) system
in a range of densities and temperatures roughly similar
(with respect to the critical point) to the experimental
conditions. The choice of a pairwise additive, spherically
symmetrical, LJ potential might not seem unreasonable
for a molecule such as D2, but one can hardly expect that
a classical simulation will quantitatively reproduce an ex-
periment on a quantum-mechanical system. Moreover,
due to the lack of extensive PVT data for deuterium, the
equation of state of hydrogen had to be used to estimate
the experimental densities. Nevertheless, the comparison
between the experiment and the simulations was quite
good on a qualitative level [5].

In order to bring the comparison to a quantitatiue lev-
el, progress had to be made in two directions. On the one
hand, we found that extensive PVT data for deuterium,
from which better estimates of the experimental densities
and compressibilities could be obtained, were in fact
available [6]. On the other hand, a PIMC program was
developed to allow genuinely quantum-mechanical calcu-
lations of the structure factor. This program also used
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TABLE I. Summary of the thermodynamic conditions for
the experiment on gaseous deuterium. The densities and the
compressibilities have been obtained from the PVT data given
in Ref. 6. The critical parameters are T, =38.34 K, P, =16.43
atm, and p, = 10.43 nm

State

B
C
D

46.55
41.8
41.8
41.8

p (atm)

32.8
20.6
22.9
26.6

p (nm)

10.01
7.39
9.71

12.65

yz. (atm ')

0.042
0.122
0.107
0.045

'H. M. Roder, G. E. Childs, R. D. McCarty, and P. E.
Angerhofer, National Bureau of Standards Technical Note No.
641, 1973 (unpublished).

II. MODEL POTENTIAL AND SIMULATIONS

In order to keep the computational effort within
reasonable limits, our simulations were based on a num-
ber of simplifying assumptions. First, since D2 is a weak-
ly anisotropic molecule and may be regarded as a free ro-
tor even in the condensed phase [9], the intermolecular
potential was assumed to be spherically symmetric. This
means that only the translational degrees of freedom had
to be treated numerically, since the independent averag-
ing over the rotational degrees of freedom yields a simple
correction that may be added to the results later on.
Thus the primary structural output of our simulations
was the pair-correlation function for the molecular center
of mass. Second, the intermolecular potential was as-
sumed to be pairwise additive, i.e., irreducible three-body
and higher-order interactions were neglected. They are
probably not important for a weakly polarizable molecule
such as D2 [10]. Also, the experimental data with which
the present simulation had to be compared are not
sufficiently accurate (a precision much better than 1%
would be required) to reveal such effects in the range of
densities that is of interest here. Finally, in our
quantum-mechanical calculations, exchange effects were
considered to be negligible and the particles were as-
sumed to obey Boltzmann statistics. This has been

the "realistic" pair potential proposed by Norman,
Watts, and Buck [7], rather than the simple 6-12
Lennard-Jones model. In this way it should now be pos-
sible to bring theory and experiment in quite close agree-
ment.

The thermodynamic conditions of the experiment,
which have been updated on the basis of the PVT data of
Ref. [6], are given in Table I. For the comparison with
the present simulation results we use the same structure
factors that were reported in Ref. [5] (see also Ref. [8]).
In Secs. II and III we give the details of the PIMC simu-
lations. Since we are dealing with a system close to the
critical point, the simulation results show a sizable depen-
dence on the statistical ensemble as well as on the number
of particles. These effects are discussed in Sec. IV. In
Sec. V the simulations are compared with the experiment
in both r space (Sec. VA) and Q space (Sec. VB). Finally,
in Sec. VI we discuss the results and draw the con-
clusions.

shown to be a good approximation for H2 down to very
low temperatures [11] and should a fortiori be true for
D2.

The pair potential we have used is that given by Nor-
man, Watts, and Buck [7]. It is based on ab initio calcu-
lations as well as on a number of experimental gas and
bulk phase properties and should give quite a realistic
description of the energy surface. Only the spherically
symmetric component was used in the present calcula-
tions. The collision diameter and well depth of this po-
tential are o.=3.001 A and c./kz =33.833 K, respective-
ly, which may be compared with the traditional
Lennard-Jones values o.„J=2.959 A and ELJ/k~ =36.7 K
[12].

With that potential we have performed Monte Carlo
simulations in the classical canonical (MC) and grand-
canonical (GCMC) ensemble as well as path-integral
Monte Carlo (PIMC) simulations in the quantum-
mechanical canonical ensemble. In all these calculations
the particles were confined to a cubic box with volume V
and edge length L = V', to which periodic boundary
conditions were applied. Density and temperature were
chosen in accordance with the experimental conditions
given in Table I. Intermolecular interactions were trun-
cated spherically at r, =L/2 and internal energies and
pressures were corrected in the usual way by integrating
over a uniform particle density beyond the cutoff.

All simulations were based on the Metropolis algo-
rithm [13] and single-particle trial moves in which the
center of mass of a randomly chosen molecule was dis-
placed randomly within a small cube of edge length
D =4.0 A (the same value of D was used for all simula-
tions). Most of the simulations consisted of
50000—100000 attempted moves per particle (passes),
after an extensive equilibration phase. The initial
configuration was usually taken from the end of a previ-
ous run.

In the PIMC simulations we have used the "primitive
algorithm" [14]. The number of beads on the ring poly-
mers that, in the classical ismorphism, is equivalent to
the quantum particles, was varied between P =4, 8, and
16. A trial move consisted of a random displacement of
the "center of mass" of the polymer and a new set of "in-
tramolecular coordinates" that were sampled directly
from the free-particle density matrix (a multivariate
Gaussian). This is a very efficient algorithm, as long as
the actual distribution of "intramolecular coordinates" is
not too different from the free-particle case, since it al-
lows one to use the same maximum displacement for the
"center of mass" as for the classical one to use the same
maximum displacement for the "center of mass" as for
the classical system (cf. the acceptance ratios x„ in Table
II).

In the GCMC simulations, a trial move was, with an a
priori probability of —, each, either an attempt to insert or
delete a particle or a random displacement of an existing
particle. Since, in the grand-canonical ensemble, the
number of particles is not constant but determined by the
value of the chemical potential, the volume was chosen to
be the same as in the canonical simulations with X =64,
256, or 1024 particles, and the (excess) chemical potential



2476 MARTIN NEUMANN AND MARCO ZOPPI

was adjusted until the average density settled down close
to the desired value. This worked quite well, except for
the largest system where this method of trial and error
was too time consuming.

The details of the simulations as well as some thermo-
dynamic results are summarized in Table II. R is the ra-
dius of gyration of the ring polymers in the PIMC algo-
rithm, i.e., the "spread" of the quantum particles. It is
generally less than 10%%uo of the classical collision diame-
ter, indicating that in these systems quantum effects will
be appreciable but not overwhelming. Note also that the

acceptance ratio xz (i.e., the fraction of accepted trial
moves) in PIMC is about the same as in the classical
simulations. The kinetic energies (and pressures) report-
ed in Table II have been calculated using the so-called
"crude energy estimator" [15].

Irr. COXVERGEXCE Ta THE
QUANTUM-MECHANICAL LIMIT

The essence of the PIMC method is that, in principle,
exact quantum-mechanical results may be obtained from

TABLE II. Details of simulations and thermodynamic properties of D2 in the critical region. N is the number of molecules, J' is
the number of beads on the ring polymers (Trotter number), x& is the fraction of accepted trial moves (acceptance ratio), and R is the

0
root-mean-square spread of the ring polymers (radius of gyration). The maximum displacement was D =4.0 A in all simulations. We
report the results of the translational kinetic energy per molecule E„,the potential energy U, the excess chemical potential p'", the
pressure p, and the isothermal compressibility yT.

State Method x( xs')
Passes
(10 )

R
(A)

E„
(K)

U
(kJ/mol)

@CX

(kJ/mol)
P

(atm)
XT

(atm ')

MC 64
256

1024

100
100
50

0.350
0.341
0.335

69.825
69.825
69.825

—0.5552
—0.5753
—0.5883

23.0
23.2
23.0

GCMC 64.6'

254.9'

998.7'

1000

1000

40

0.144b

0.122'
0.112b
0.118'
0.112b

0.116'

69.825

69.825

69.825

—0.6120

—0.6063

—0.5862

—0.526

—0.539

—0.535

27. 1

23.9

23.1

0.14

0.34

0.60

PIMC 64x16
256 X 8

1024 X 8

100
50
20

0.352
0.345
0.343

0.252
0.250
0.250

74.9
75.1

75.3

—0.5123
—0.5256
—0.5269

30.6
31.0
31.5

64
256

100
100

0.405
0.392

62.7
62.7

—0.4507
—0.4783

15.8
15.1

PIMC 64x16
256X 8

100
50

0.421
0.412

0.266
0.264

66.6
67.0

—0.4015
—0.4168

20.0
19.9

64
256

1024

100
100
50

0.330
0.313
0.292

62.7
62.7
62.7

—0.5646
—0.6022
—0.6596

13.2
13.0
12.7

PIMC 64x4
64X8
64X 16

256X 8

100
100
100
50

0.336
0.338
0.338
0.329

0.256
0.264
0.266
0.264

67.2
67.8
68.0
68.0

—0.5178
—0.5130
—0.5116
—0.530

19.5
20.3
20.6
20.6

64
256

100
100

0.256
0.243

62.7
62.7

—0.7025
—0.7361

6.1

8.5

PIMC 64x16
256X 8

100
50

0.254
0.249

0.265
0.263

70.0
69.8

—0.6458
—0.6602

20.5
20.7

'Average number of particles. The resulting density in these simulations was p = 10.10, 9.97, and 9.76 nm
Particle insertions or deletions.

'Random displacements
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FICx. 1. Dependence of g (r) on the number of beads for state
C. The number of particles was N =64 in all simulations and
the number of beads was P =1 (classical), 4, 8, and 16 (top to
bottom). The curves for P =8 and 16 are indistinguishable on
the scale of the graph.

purely classical calculations in the limit that the number
of beads on the ring polymers, P, goes to infinity. In
practice this means that either P has to be increased until
the results do not change any more or one has to find a
way of extrapolating the results obtained with a finite
number of beads.

We have investigated the convergence to the
quantum-mechanical limit, P~~, for a system of
X =64 particles at the thermodynamics state C, by per-
forming simulations with P =4, 8, and 16 beads. As can
be seen from Table II, the kinetic and potential energies
as well as the pressure are still dependent on P, but when
plotted as a function of 1/P they virtually fall on a
straight line, so that an extrapolation to 1/P~O is
straightforward (cf. also Ref. [16]). For the 64-particle
system at state C the extrapolated values found in this
way are E„/kz =68.3 K for the kinetic energy per parti-
cle and p =20.9 atm for the pressure. Since, at fixed P,
kinetic energy and pressure also do not depend strongly
on the number of particles, it is probably safe to say that,
for all thermodyanmic states considered here, the results
obtained from the PIMC simulations with the largest 1V

are, within 1 —2 K and 1 —2 atm, respectively, those of the
infinite quantum-mechanical system.

In Table II the translational kinetic energies are gen-
erally found to be some 20%%uo higher than the classical
value of —,'k&T. Quantum effects are also important for
the pressure, which is considerably raised above the
values obtained with a classical simulation. On the
whole, the agreement between the calculated pressures
and the experimental values is very good (whether the
slight discrepancy for state D, where the quantum correc-
tions are largest, is an artifact of the simulation or is due

to the experimental conditions not having been estab-
lished accurately enough is not clear to us).

The dependence of the pair-correlation function on P is
shown in Fig. 1. There, we have plotted the pair-
correlation function g (r) of a classical system of 64 parti-
cles at state C along with the PIMC results using P =4,
8, and 16 beads. It can be seen that the inhuence of quan-
tum effects is profound, resulting in a general outward
shift of the peaks, a significant lowering of the first peak,
some loss of structure around the second peak, and an
effective softening of the repulsive interaction. More im-
portantly, the curves for P =8 and 16 are indistinguish-
able on the scale of the graphs so that, at least for a visual
inspection, the quantum-mechanical limit of g (r) has al-
ready been reached. Therefore, in our later PIMC simu-
lations of larger samples, we have usually worked with
P =8 beads.

IV. DEPENDENCE ON THE NUMBER
OF PARTICLES

From Fig. 1 it can be seen that the quantum correction
to g (r), i.e., the difference between the quantum-
mechanical and the classical curve is largest around the
first peak and decreases with increasing distance. We
also knew, from our previous work with the Wigner-
Kirkwood expansion, that in Auids these corrections to
g(r) are of short range [17]. Therefore, our original in-
tention had been to calculate the quantum corrections for
a small system (say 1V =64) and to add them to the corre-
lation function obtained from a classical calculation of
larger systems. That we would eventually have to use
large samples was clear from the outset, because when
the system is very close to the critical point g(r ) may be
expected to exhibit a sizable N dependence as well as the
onset of the long-range tail associated with the large
compressibility of the real system.

In the present case, however, there is the additional
difficulty that simulations of a hypothetical classical Dz
Quid, at the thermodynamic states considered here,
would actually be in the two-phase region. This is best il-
lustrated by means of Fig. 2, where the location of the ex-
perimental states 3 D(circles) is sh—own relative to the
coexistence line of D2 [6]. (Note that reduced units with
respect to the critical parameters have been used in this
figure). By "turning off" quantum mechanics [18], these
points move below the coexistence line, into the two-
phase region (squares).

We have nevertheless performed a series of classical
simulations since, for a small system, the homogeneous
phase will be metastable and might still be useful as a
reference system. These simulations were carried out in
the canonical as well as in the grand-canonical ensemble,
and although they did not turn out to be useful in the
end, we will brieAy describe some results since there does
not seem to be much known about the behavior of g (r) in
this region of the phase diagram (see Ref. [19],however),
especially in the grand-canonical ensemble.
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FIG. 2. Thermodynamic states of D2 in the p-T plane, in
units reduced with respect to the critical parameters. The cir-
cles indicate the real location of the experiment, while the
squares represent the classical simulations. The solid and
dashed lines are the coexistence lines for D2 [6] and for a classi-
cal Lennard-Jones system [18].

FIG. 3. N dependence of g, (r) for classical simulations in
the canonical (MC, lower curves) and grand-canonical ensemble
(C'rCMC, upper curves) at state A. The number of particles is
64, 256, and 1024. (MC, bottom to top; GCMC, top to bottom).

A. Classical simulations: MC and GCMC

therefore g(r), which in this ensemble is normalized to
the compressibility, is significantly above 1.0 at long
range.

Figure 3 shows the pair-correlation functions obtained
from canonical (MC) and grand-canonical (GCMC) simu-
lations of classical systems of various sizes at state A. In
the MC simulations the number of particles was X =64,
256, and 1024, and the resulting box sizes were also used
in the GCMC simulations while the chemical potential
was adjusted such as to give approximately the same
number of particles. From the figure it is evident that, in
contrast to liquids near the triple point. g(r) exhibits a
tremendous X dependence in this region of the phase dia-
gram, and so these simulations were of no practical use.
Interestingly, the MC results show a tendency to in-
crease, and the GCMC results tend to decrease, as the
number of particles is increased, and the two sets of
curves seem to bracket some kind of limiting behavior.
In practice, this limit will not be reached until the system
is large enough to separate into two phases, and the re-
sulting g(r) will be just an average correlation function
for the coexisting liquid and gaseous phases [20].

At finite X, the correlation function for the canonical
ensemble (MC), which is constrained to the homogeneous
phase by the periodic boundary conditions, does seem to
develop the long-range tail expected in the critical region
but is eventually forced to fall below 1.0, due to the nor-
malization of g (r) to the number of particles in the box.
On the other hand, in the grand-canonical ensemble
(GCMC), which efFectively samples both phases, the den-
sity fluctuations are unrealistically high in the two-phases
region (cf. the entries for yT in Tables I and II), and

B. Quantum-mechanical simulations: PIMC

As soon as quantum mechanics is "turned on, " and
provided that the potential of Norman, Watts, and Buck
is a reasonable model for D2, our thermodynamic states
will move to the correct side of the coexistence line in the
phase diagram of Fig. 2, and the only problems encoun-
tered in the simulations should be those associated with
the proximity of the critical point.

The situation for state A is shown in Fig. 4, where we
have plotted the pair-correlation function obtained from
canonical PIMC simulations using X =64, 256, and 1024
particles. It can be seen that the N dependence is still ap-
preciable, but the situation is considerably improved as
compared to the classical case. Now the difference be-
tween the 1024- and the 256-particle system is much less
than that between the 256- and 64-particle system, and it
is probably safe to say that g (r) for an infinite system
would lie only slightly above the N =1024 result, at least
at small and intermediate r. The larger system also nicely
shows the buildup of the critical tail, although the curves
cannot be trusted for large r where they again fall slightly
below 1.0 for the reasons already indicated in the preced-
ing section.

The quantum corrections, defined as the difference be-
tween the quantum-mechanical and classical g(r), turn
out to be very sensitive to the number of particles and are
not short ranged, since they have to compensate for the
incorrect behavior of the classical results at long range.
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tration), the dependence of the neutron cross section on
particle statistics (Bose-Einstein or Fermi-Dirac) reduces
to Boltzmann statistics [22]. In addition, if no vibrational
transitions are taken into account (and the Debye-Wailer
factor is neglected), and if the energy of the incoming
neutrons is larger than all energy transfers giving an ap-
preciable contribution to the cross section, then the
molecular cross section for elastic scattering reduces to
that of a classical free rotor [22].

Therefore, since the neutron experiment was per-
formed within a limited amount of time (3 days, using a
vanadium container, which is not expected to catalyze
the ortho-para conversion) and since the distribution of
incoming neutrons was centered at an energy appreciably
higher than the first few rotational transitions, we will as-
sume that the classical free-rotor model applies to deu-
terium in the present experimental conditions.

This assumption leads to the following relationship be-
tween the structure factors [23]:

FIG. 4. N dependence of g (r) for quantum-mechanical
canonical PIMC simulations at state A. (Top to bottom:
N =1024, 256, and 64).

Thus a full quantum-mechanical simulation seems to be
indispensable, and perturbation methods that, like the
Wigner-Kirkwood expansion [21], rely on the classical
reference system, are bound to fail in this region of the
phase diagram.

All things considered, our "best" simulations (i.e., us-
ing P =8 beads and N =256 or 1024 particles), being
close to the quantum-mechanical limit and probably
within 1 —2% of the infinite system result up to inter-
mediate distances, should be sufficiently accurate to allow
a critical assessment of the experimental data in the fol-
lowing section.

V. COMPARISON WITH THE EXPERIMENT

The principal structural output from our PIMC simu-
lations is the pair-correlation function g(r). Since the
simulations were performed using a spherical particle
model, this is actually the correlation function of the
center of mass, g, (r), while the experiment probes the
atom-atom correlation function g, , (r). In order to con-
nect the two quantities, it is necessary to discuss briefly
the rotational dynamics of hydrogen.

It is well known that, even in the low-pressure solid,
the hydrogen molecule behaves like a free rotor [9]. This
is a direct result of the anisotropic contribution to the in-
teraction potential being very small compared to the iso-
tropic component. Since the density of deuterium in the
critical region is about three times smaller than that of
the solid at the triple point, it seems reasonable to assume
that a quantum-mechanical free-rotor model is a very
good approximation of the real behavior of our sample.

The theory can be made even simpler, however. Sears
has shown that when the ortho-para concentration is the
same as in the infinite temperature limit (normal concen-

where S, , (Q) and S, (Q) are the atom-atom and
center-center structure factors,

f, (Q) =
—,'(sinQd)/(Qd),

f2(Q) = [(sinQd /2)/(Qd /2) ]

(2)

(3)

X(d —R —r ). (4)

Either way, the comparison is best performed on the
atom-atom functions, since division of the experimental
structure factor by f~(Q) leads to very large uncertainties
near the zeros of the latter function.

A. Comparison in r space

Structural data may be compared either in r space or in

Q space. Working in r space, where correlations are
easier to visualize, requires the inverse Fourier transform
of the experimental structure factor. This means that
S(Q) has to be extrapolated somehow beyond the range
in which it has been measured. Otherwise, also because
of statistical errors, spurious oscillations may occur at
small r. The maximum-entropy (ME) simulation pro-
cedure [25], now better known as the reverse Monte Car-
lo (RMC) method [26], has been introduced just to cir-
cumvent this problem. Here, only the available experi-
mental points (weighted by their individual errors) and

and d =0.748 35 A [24] is the intramolecular distance of
D2. By Fourier transforming g, (r) and using Eq. (1), it
is now possible to calculate an atom-atom structure fac-
tor from the simulation, which may be compared with
the corresponding experimental function.

Since [S(Q)—1]/r and [g(r) —1] are Fourier-
transform pairs, the comparison may also be performed
in r space. Here, the equivalent of Eq. (1) [apart from a 5
function corresponding to the intermolecular term
f i(Q) ] is the convolution integral (see the Appendix for a
derivation)

g, ,(r)=1+(1/rd ) f dR R[g, (R)—1]
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correlations, but, for the sake of completeness, we will
plot our results up to twice this limit.

Figure 7 compares the experimental atom-atom struc-
ture factor S, , (Q) with that obtained by means of Eq. (1)
from the simulations. The overall agreement is extremely
good, especially if we consider that no adjustable parame-
ters have been used in the calculations. For Q~O all
curves show the increasing behavior associated with the
high values of the compressibility, although there the
simulation results should be taken with caution. The sub-
sequent minimum is reproduced very well at state A, but
the simulation results are slightly higher than the experi-
mental values for states B, C, and D. In the region of the
peak the situation is reversed, with a slight discrepancy at
state A and much better agreement for the other three
states. Finally, for Q ~4—5 A ', where the structure fac-
tor is mainly determined by the intramolecular contribu-
tion, the scatter of the experimental points around the
theoretical curves seems to be more or less consistent
with the statistical error of the data.

In order to have a quantitative measure for our obser-
vations, we have also calculated a reduced g defined as

yg =(1/M) g [S,„p,(Q;)—S„),(Q;)]'/o,'„p,(Q;),

(5)

3.5

2.5

1.5

0.5
10

FIG. 7. Comparison between simulation (solid line) and ex-
periment (circles) for the site-site structure factor S, , (Q). The
curves have been shifted for clarity. The thermodynamic states
are labeled according to Table I. The experimental statistical
errors are smaller than the size of the symbols.

where M is the number of data points used in the com-
parison. The results are summarized in Table III. The
values of the yz are much too high if the entire Q range
(0.2 —10.0 A ') is considered, but may be drastically re-
duced by omitting the data below Q;„=0.6 A . How-
ever, they increase again if we also disregard the data

TABLE III. Reduced y for the comparison in Q space.

State

A

B
C
D

XR

93
119
231
230

~2 b

9.0
7.2

11.3
26.2

g2 c

14.9
10.7
18.6
44.6

'Q;„=0.2
bQ;„=0.6
'Q;„=0.6

A
A
A

; Q,„=10A; M =99.

; Q,„=5.5 A; M =50.

0
above Q,„=5.5 A, where the intermolecular contri-
bution becomes insignificant. Therefore, in spite of the
remarkable visual agreement, the values of gz, which
should be of the order of 1, never become smaller than 7.

There may be a number of reasons why the values of
are so high, and these are both of experimental and

theoretical origin. First of all, we recall the experimental
densities are somewhat uncertain because of a likely error
in the true temperature of the sample in the scattering
volume [5]. If the true temperatures were higher than the
measured ones, this would decrease the densities with
respect to the values of Table I. As a consequence, the
theoretical [S, , (Q) —1] would also decrease while at the
same time the experimental points would be increased.
This could close the gap in the peak region of S, ,(Q) for
state 3 without changing the function too much where it
is close to unity. However, such a large correction would
destroy the quite satisfactory agreement in this region for
states B, C, and D. Also, a density correction would
probably not improve the situation around the minimum
of S, , (Q).

On the theoretical side, the principal limitation of any
simulation is the intermolecular potential, which, in gen-
eral, is only imperfectly known. The calculated pressures
were quite reasonable, but it is not clear whether the po-
tential of Norman, Watts, and Buck is a faithful represen-
tation of D2, especially if anisotropic and many-body con-
tributions are ignored. Our calculations were also
affected by certain size effects, but with the present limi-
tations on the accuracy of the experimenta1 data, more
extensive simulations would not have been justified.

Another possible source of error is the assumption that
D2 may be treated as a classical free rotor. This was
based on a calculation by Sears [22], followed by a num-
ber of additional hypotheses (see above). However, this
may involve quite drastic approximations. For example,
even if the peak of the incoming neutron distribution is of
sufficiently high energy to excite many rotational transi-
tions, so that the quantum free-rotor cross section
reduces to the classica1 one, there may still be enough en-
ergy in the tails of the distribution to also induces some
vibrational transitions, and so the approximation may
fail.

All of these effects should be checked more carefully,
in particular how, and by how much, the details of the
molecular cross section affect the measured structure fac-
tor. This is feasible, but beyond the scope of the present
work [27].
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VI. CONCLUSIONS

Apart from the very good agreement obtained between
the experimental results and the simulations, there are a
number of things that we have learned from the present
work. First, and not unexpectedly, simulations in the
critical region are a rather delicate matter and should be
performed and interpreted with the necessary care, even
at temperatures as much as 20% higher than the critical
point. In particular, it is difficult to imagine that the use
of perturbation theory to evaluate quantum corrections
in this region could give sensible results if, as in Fig. 2,
the (classical) reference system is in an unstable thermo-
dynamic state. With PIMC this is not a problem, since
for sufficiently large I' the system should be close to its
true thermodynamic state.

Our simulations were also affected to some extent by
finite-size effects, which are quite appreciable in a rather
wide region around the critical point. The accuracy of
the experimental results did not really justify more ex-
tended calculations. However, on the basis of the present
experiences and using neighborhood tables and/or link
cells [2] (and reducing the interaction range), it would not
be too difficult to perform even grand-canonical PIMC
simulations on systems of several thousand particles.
These would give very accurate theoretical predictions
but should be linked to a corresponding improvement of
the experimental situation.

Unfortunately, for the present set of data the experi-
mental conditions are not as well defined as would be

desirable for a very accurate comparison. As mentioned
in the experimental report in Ref. [5], due to leakage in
the vacuum tank of the neutron spectrometer, a tempera-
ture gradient was measured between the top and bottom
of the scattering cell and therefore the densities are not
known with sufficient accuracy. From an experimental
point of view, a small density change may be fully
neglected, as far as the standard corrections to the data
are concerned, and this will only affect the measured
structure factor by a constant multiplicative factor (cf.
Fig. 7, where a slight adjustment of the data might in-
crease the quality of the agreement and reduce drastically
the value of gz ). In order to estimate the magnitude of
this effect on the simulation data, we have repeated the
(classical) simulation of state C at the highest plausible
value of the temperature of the sample (43 K, with a con-
sequent change in the density from 9.71 to 7.9 nm ).
From Fig. 8 we find that the simulation results for the
center-of-mass correlation function do not change very
much (though in the right direction) and this, by itself,
seems to be insufficient to explain the discrepancy in the
region between 5 and 8 A.
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2.5
APPENDIX

For isotropic Auids, the 3D Fourier transform that re-
lates the pair-correlation function g(r) to the structure
factor S(g) [23],

1.5
S(Q)—1 =p fdr[g(r) —1]exp(iQ —r),

reduces to the 1D integral

S(Q)—1=( v4rp /Q)f dr r[g(r) —1]sin(gr),
0

(A 1)

(A2)

0.5

6
r(A)

10

where S(g) (g (r)) stands for either the center of mass or
the site-site structure factor (correlation function). In or-
der to apply the convolution theorem, we note that
r [g ( ~

r
~ ) —1] is an odd function of r, and therefore the in-

tegral in Eq. (A2) can be written as a proper 1D Fourier
transform:

S(g)—1=(2mip/Q) f dr r[g(~r~) —1]exp(igr) .

(A3)

FIG. 8. Change of the classical center-of-mass correlation
function g, I r) for state C, due to possible uncertainties in the
experimental conditions. The curves have been obtained from
classical MC simulations using 1V =256 particles. The solid line
corresponds to the choice T =41.8,p =9.71 nm and the
dashed line to T =43.0,p=7. 90 nm . For both states the ex-
perimental pressure is 22.9 atm.

A(x = '

0 otherwise (A4)

is the triangle function, Eq. (4) follows immediately.

Since f2(g), Eq. (3), is simply the 1D Fourier transform
of (I /d)A(r/d), where

r
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