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Logistic equation with memory

E. Fick, M. Fick, and G. Hausmann
Institute of Solid State Physics, Solid State Theory, Technical Uniuersity Darmstadt, D 610-0 Darmstadt, Germany

(Received 26 November 1990)

A statistical treatment of the macroscopic equation of motion leads to memory functions if
Markovian-like approximations are not admissible. A nonlinear discrete model, which is nonlocal in
time, may be obtained from the logistic map by replacing its linear term by a convolution with an ex-

ponentially decaying memory function x, +&=a gI, oyoe' 'x, —x,' . This one-dimensional discrete

map, R '~R '. xo~x& ~x2, possesses the same Axed point 1 —1/a for all e, if we choose the nor-
malization yo= 1 —e. It is the goal of this paper to demonstrate the main features of the map induced by
the memory term. Due to the complexity of the problem, most of the results have been derived by a nu-
merical treatment. The range of e lies in the interval —0. 1 ~ e(0.3. For fixed a, e generally two alter-
native attractors S aud S' appear. For small

~ e~ (&0.02 only the usual Feigenbaum scenario S(a ) exists,
slightly modi6ed by e. For e 0.02 the scenario S(a,e) is shifted, and different windows with the same
period coalesce. The e-induced scenarios S (a, e) arise suddenly. In the (a, e) plane there exist islands of
three-, six-, nine-, or tenfold period-doubling scenarios S'(a, e). The insertion of these S'(a, e) discon-
tinuously depends on the starting value.

I. INTRODUCTION

In the microscopic treatment of irreversible thermo-
dynamics the relations between the macroscopic forces
and currents are given by dynamical Onsager coeKcients
determined by memory functions. These relations, re-
tarded in time, are integro-differential equations.
Markov-like approximations may be allowed for memory
times that are small compared to the correlation times.
Differential equations with damping constants and renor-
malized frequencies result [1].

On the other hand, in the treatment of nonlinear dy-
namics, usually differential equations of macroscopic
motion are the immediate starting point. Due to the
complexity of their solutions, nonlinear problems are
often reduced to difference equations (discrete maps) by
Poincare sections.

The logistic reap represents one of the most important
examples of a one-dimensional discrete nonlinear map
(R, —+R, : xo~x, ~ . ),

x, +,=a(x, —x, ) (t an integer, t ~0)

with its direct interpretation in the dynamics of popula-
tion. The control parameter a lies in the interval
0 ~ a ~ 4. The bifurcation scenario is well known.
Chaotic behavior with embedded windows of stable
periodic cycles arises beyond the period-doubling interval
(1 ~ a ~ a =3.5699. . . ). The universal scaling behavior
of the corresponding a values has been proved [2,3].

The main object of the present paper is to derive effects
caused by the assumption that the first term in Eq. (1) has
a Inemory structure. In the application to population dy-
namics this means that the population at time t+1 no
longer depends on the population at time t only but also
on former times t —1, t —2, . . . . To simplify matters
here we will show only such features that result from a

retardation of the linear term in Eq. (1), whereas the
quadratic term will not be retarded. Fulinski and
Kleszkowski [4] considered several forms of nonlinear
maps with memory in a formal way. We will discuss
dependences of the bifurcations on memory time in this
paper.

II. LOGISTIC MAP WITH LINEAR MEMORY

The modification of the linear term by memory is per-
formed by means of a memory function y, =yoe'. The
considered model for a difference equation with memory
takes the form

x, +, =a yog e'x, , —x, (t ~0) .
~'=0

(2)

We assume that the (stable or nonstable) fixed point of
Eq. (2) is independent of e: x*=1 —(1/a). This yields
go= 1 6. The parameter e ( —0. 1 ~ e (0.3) represents
the memory time ~ during which the retardation takes
place. It is r = —1/in~ e~. Equations (2) are nonauto-
nomous, nonlinear integro- (sum-) difference equations
for the series R

&
~R &. xo —+x

&
~ - . with an initial

value xo. Their behavior will be numerically analyzed.
The exponential function in Eq. (2) allows us to elimi-

nate the sum by writing x, +2 and inserting it into Eq. (2)
again,

x, +&=a(x, +,—x, +, )+e[(l —a)x, +,+ax, ] (t ~0) . (3)

The term proportional to e represents the deviation from
the usual logistic map.

It is important to note that in our considered one-
dimensional map R, ~R, [Eq. (2)] the value of
x, =x, (xo ) is given by Eq. (2) in the form

x, =a(1—e—xo)xo .
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This precursor is not contained in Eq. (3), but it completes
this equation. Equation (3) alone defines a greater mani-
fold than does Eq. (1). This greater manifold of Eq. (3) is
confined to the manifold of Eq. (2) by the precursor (4).

2 [of E s. (3)For taboo the co-limit values x* of Eq. (2) [o qs.
and (4), respectively] depend on the parameters a, e, and
on the initial value xo,

X

x —,
0

x*=x*(a,e,xo) . (5)

If there exists a hmit cycle x1, . . . , x of pe
'

p,
~ ~ * of eriod from

Eq. (3) the sum formula

g x* =[1—(1/a)] g x„*
n =1 n=1

(6)

easily follows from Eq. (3). This formula is useful for the
numerical recognition of a period p.

The fixed point x*=1 —(1/a) bifurcates into a stable
period p =2 at the values

2 =
2

0-'
3.&o 3.«

FIG. 1. Dependence of the orbits x (t~) on a at fixed e
and xo (@=0.123, xo =0.62).

3(1+a)
z

Period 2 bifurcates into a stable period 4 at the values

u+[u +5(1+v )(I+a) v]'i~
az 4=

U

with

u (e) =1—2e —2e —5e

v ( e ) = 1+2e 4e +6—e 5e—

(7)

basin boundaries, a fact which will be further clarified in
Secs. III C and III E.

B. Dependence on e

Now we take a fixed parameter a (a =3.1) and keep
the initial value xo ( =0.62) fixed again. Figure 2 shows
the dependence x (e). Within S there is again the alter-
native scenario S' =S with a sudden beginning
( i =0.122 777 6. . . ) and ending (e =0.126 386. . . ).
The value of e, (ez) depends on a and xo.

These equations show that the bifurcation parameters
(a ) decrease with increasing memory in theZ 4

considered range of e (cf. Fig. 4).

III. NUMERICAL RESULTS

The discussion of the bifurcation scenario of Eq. (2)
[Eqs. (3) and (4)] leads to systems of algebraic equations.
An analytical treatment of periodic orbits has been de-
rived [5] for the Henon map. This method could be ap-
plied to Eq. (3) with greater efFort. However, since we
are interested in the main structures of the existing at-
tractors as a function of a, e, and xo, we have only nu-
merically calculated the limit values x* (co points). At
first we keep fixed the initial value (xo, say, equal to 0.62).

C. Transient regions

We consider the time series x, in the vicinity of the
sudden beginning of the alternative period S' =S . For e
values smaller than e& we have the period p =4 of S (cf.
Fig. 2). If we allow e to approach e, (@ST,), there is a

A. Dependence on a

Figure 1 represents the dependence x*=x*(a) on a
fixed value e =0. 123. Within the usual Feigenbaum
scenario S p =4—+8—+16, there arises alternatively a~ p
six-fold Feigenbaum scenario S'=S marked by the num-
ber 6 in a box. S begins suddenly with a period 6 and
leads to a sixfold chaos via period doubling. The begin-
ning and the ending of S are abrupt. For such values of
a for which the attractor S exists the usual scenario S is
suppressed.

o notThe abrupt beginning and ending of S do not
represent bifurcations. They are caused by a crossing of

x0

4

0.1 2 0.&3

FIG. 2. Dependence of the orbits x* (t~ 00 ) on e at fixed a
and xo (a =3. 1, xo =0.62).
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FIG. 3. Transient region x, for e smaller than E', (a =3.1,
e&

—a=3.8X10 ). The two thin lines present the values of the
unstable period 2.

E' the laminar time ~ grows. Fina1ly, at e—+ e, the
period 4 cannot be built up any longer and the attractor
p =6 is born. For e) e, the S scenario exists. Our
abrupt transitions result with r(e, a )~ oo by making a
very small change of e or a at fixed xo. The basins' boun-
daries of attractions move across the starting point xo (cf.
Sec. III E) [6].

A similar behavior occurs at e2 (end of S ), where a
sudden change of the six-fold chaotic motion of S into
period p =4(S) takes place again. The mentioned sudden
change of an attractor caused by crossing a repeller
possesses some similarity with a "crisis" [7]. But in our
case it is not necessary that a chaotic attractor be in-
volved. Our sudden changes may happen even with
periodic orbits.

long-time laminar region (time r) (Fig. 3) with an approx-
imately period-6 behavior. At time ~ the laminar region
ends by crossing an unstable orbit (p =2). For times
t & ~ the transient has died out and the final stable attrac-
tor with period p =4 is rapidly reached. With decreasing

0.2—

0.1—

D. Dependence on a and e

In Fig. 4 we find the domains of important periods in
the a, e plane for fixed xo (=0.62). For e=O we see the
usual Feigenbaum scenario S (e=O) of Eq. (1). With in-
creasing e the period doubling of S tends to smaller
values of a in most cases. The line a (e) of the points,
where the period doubling of S(e) tends to infinity,
possesses this behavior too, as is shown in Fig. 4. How-
ever, it is remarkable that the periods 3 and 4 of S shift
quite in the other direction. Two of the p =7 windows of
S coalesce with increasing e (Figs. 5 and 6). The same
fact is valid for p =5 windows of S.

The black areas in Fig. 4 (e) 0) describe the embedded
domains of the alternative six-, nine-, and tenfold Feigen-
baum scenarios S' (boxed numbers). For negative e, i.e.,
an oscillating memory function, there are several black
areas that show threefold Feigenbaum scenarios S'
(boxed number 3). Each of the scenarios S' possesses
period-doubling and chaotic domains with windows, in-
termittency and so on within the black areas.

K. Dependence on xo

In Fig. 7 we see the dependence of x on the initial
value xo for fixed a ( =3.1) and e ( =0.123). There exist
two basins Ixo] and [xo] of the alternative attractors S:

0
O.i2

- 0.1
3

l

3.5 0.10
3.25 3.35

FICx. 4. The (a, e) plane with regions of period p and win-
dows (circled p) of the Feigenbaum scenarios S (fixed xo =0.62).
The regions of the alternative p-fold Feigenbaum scenarios S'
(boxed p) are marked black (cf. Figs. 1 and 2). Qn the hatched
boundary x diverges.

FIG. 5. Enlarged sector of Fig. 4. Details of the coalescence
of two p =7 windows in S. The boundaries 7„—eh mark transi-
tions from period doubling to chaos. At the lines 7 —ch inter-
mittency appears.
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FIGa 6. Dependence of the orbits x* on e in the region of
two coalescent p =7 windows in S.

p =4 and S'=S: p =6. This behavior may be better
understood when we consider the equivalent two-
dimensional map [8]

~f+ i 3'~

y, +i=a(y, —y, )+e[(1—a)y, +ax, ]

(t ~&) (9)

instead of Eq. (3). In Fig. 8 the (x~, x& =y~) plane with
the basins for p =4 and 6 is drawn. Each white point in
the plane represents the basin for period p =4 (white star
x*), each black dot in the plane leads to period p =6
(black star x *).

The precursor (4) has the form of a parabola in the
(xo, xi ) plane. Starting with an initial value xo the cut of
the parabola with a white dot yields a period p =4 (white
star), and the cut with a black dot yields a period p =6
(black star). Running along the parabola in Fig. 8 the
dependence x*(xo) of Fig. 7 results. This is the essence
of the integro-differential equation for R, ~R

&
in the en-

FIG. 8. In the (xo, x& =yo) plane the basin (white) of period 4
(white star) and the basin (black dots) of period 6 (black star),
[Eq. (8)]. The parabola presents the precursor [Eq. (4)] (a =3.1,
@=0.123) order to find the attractor for an initial value xo the
vertical section within the parabola is to be used.

larged two-dimensional auxiliary plane (xo,x, ).
If we especially take one value of the co-limit set (black

star) as starting point, Fig. 8 shows that we are led either
to the same co-limit set (black star) again or to the other
one (white star), and vice versa. This behavior, which
does not occur in equations without memory, is a conse-
quence of the precursor.

The same considerations are valid for other values of a
and e, yielding corresponding results. In Fig. 9 the
dependence of x* on the initial value xo is given for
a =3. 1 and @=0.1505. In this case an additional alterna-
tive S with period 9 results within the usual chaotic re-
gion of the Feigenbaum S.

IV. CONCLUSIONS

The introduction of a retardation e in the logistic equa-
tion leads to a modification of the Feigenbaum scenario
S. The periodic orbits are shifted. A coalescence of some

X
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FIGa 7. Dependence of the orbit x* on the initial value xo at
fixed a (=3.1) and e (=0.123). Basins [xo] and [xo] of the at-
tractors S(p =4) and S'(p =6).

Xo

FIG. 9. Alternative period 9 of S within the chaotic regime
of S (a =3.1, a=0. 1505).
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windows with increasing e is found. In addition to S al-
ternative attractors, S'—with basins Ixo) and Ixoj-
appear suddenly if the parameters a or e are continuously
changed. This effect is caused during the transient region
by crossing an unstable orbit. The alternative attractors
S' appear for e ~ 0. 1, e.g. , for memory times ~ ~ 0.6 in
unit I of the time scale (b, t = 1). It represents the expect-
ed result that in these cases a Markov-like approximation
no longer holds.

The interpretation of the one-dimensional map with
memory in a two-dimensional auxiliary (xo,x, ) plane re-
quires a precursor. It implies the fact that a trajectory
that starts from a point of the co-limit set does not gen-
erally return to the same set, in contrast to difference
equations without memory.

This work was performed within a program of the Son-
derforschungsbereich 185 Nichtlineare Dynamik
Darmstadt-Frankfurt-Marburg, Germany,

[1]E. Fick, and G. Sauermann, The Quantum Statistics ofDy
namic Processes (Springer, Berlin, 1990).

[2] S. Grossmann and S. Thomae, Z. Naturforsch. 32A, 1353
(1977)~

[3] M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978); Los Alamos
Sci. 1, 49 (1980).

[4] A. Fulinski and A. S. Kleszkowski, Phys. Scr. 35, 119
(1987).

[5] Huang Yung-Nien, Chin. Phys. Lett. 2, 97 (1985); Sci. Sin.
A 29, 1302 (1986).

[6] It should be noted that the precursor [Eq. (4)] also de-
pends on a and e.

[7] C. Grebogi, E. Ott, and J. A. Yorke, Physica 7D, 181
(1983).

[8] Its Jacobian DF= —2eax, is not constant, in contrast to
the Henon map.


