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The theory of Burton, Cabrera, and Frank [Philos. Trans. R. Soc. London Ser. A 243, 299 (1951)] for
crystal growth on stepped surfaces is extended to include adatom interactions that are responsible for in-
cipient island formation. By using a reaction-diffusion formulation of growth, a system of nonlinear
diffusion equations is derived for the concentrations of surface clusters containing up to a prescribed
number of atoms. By an appropriate choice of cells in the coarse graining of the lattice model, we show
that the ostensibly one-dimensional equations obtained in the continuum limit in fact contain two-
dimensional information averaged over the lateral length of the terrace. This allows the evolution equa-
tion for the averages of the various species to be decoupled from the higher-order correlation functions
and simplifies the specification of the boundary conditions at the step edges. We have previously used
this formalism to derive a nonlinear term for the formation of diatomic islands, from which we were able
to predict quantitatively the transition to a step propagation mode for growth on stepped surfaces.
Here, we extend the applicability of the original model away from growth by step advancement by allow-
ing the surface atoms to form up to ten-atom islands. Furthermore, by including the breakup of atoms
from the islands and adatom capture and detachment kinetics at the step edges, the model is capable of

describing the relaxation of the surface toward equilibrium upon cessation of growth.

I. INTRODUCTION

Burton, Cabrera, and Frank (BCF) developed an
analytical model for growth of crystals by step propaga-
tion in terms of the steady-state motion of an equidistant
train of flat steps across a crystal surface [1]. The mecha-
nism for step movement was the deposition of atoms onto
the terraces and the subsequent capture and incorpora-
tion of the diffusing atoms at the step edge. A diffusion
equation for the surface-adatom concentration was for-
mulated subject to the following assumptions: (i) the
effect of the moving boundary could be neglected, (ii) the
concentration at the step edge was at equilibrium, and
(iii) no interactions or reactions between the atoms were
considered. This simplified model allowed an analytical
solution for the step velocity and growth rate to be ob-
tained and was applicable to systems near equilibrium.

There has been a renewal of interest in the BCF model
for describing growth by molecular-beam epitaxy (MBE)
and related epitaxial growth techniques, which are often
carried out on stepped substrates. However, the far-
from-equilibrium conditions of MBE due to the incoming
mass and energy current of the particle beam mean that a
number of modifications have been neccessary to apply
BCF theory successfully. The effect of the moving
boundary has been included [2,3] as well as deviations
from equilibrium at the step edges [4]. Additionally, it
was recognized that adatom nucleation on the terraces
would be an important factor under typical MBE condi-
tions [3].

There are several difficulties inherent in attempting to
model the MBE process with continuum equations for
general growth conditions, all of which stem from the in-
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terplay between surface diffusion and the formation and
coalescence of clusters. In the early stages of growth dur-
ing which the surface is smooth, the growth front is dis-
tributed over only a few layers. In this regime, a continu-
um approximation to the height distribution is not ex-
pected to be valid, so the coverage of the individual layers
must be treated as separate dynamical quantities, within
which there are growing clusters. This problem has been
addressed using rate equations [5] where the rates of is-
land formation are expressed in terms of gain and loss
terms, which are nonlinear in the adatom and island con-
centrations. In solving these equations, no spatial depen-
dence of the adatom or cluster concentration was includ-
ed, which limits the applicability of the solutions to flat
surfaces. This approach cannot be used for vicinal sur-
faces, since there is a diffusion-controlled adatom concen-
tration gradient along the terrace due to the presence of
the steps, which act as sources and sinks for adatoms. To
treat the competing effects of diffusion and island forma-
tion requires considering the combined effects of the
effective diffusivity mediated by the nonlinear interac-
tions responsible for the capture and emission of adatoms
by the surface clusters.

Growth on vicinal surfaces by step propagation
presents a useful limiting case in which the competition
between diffusion and cluster formation can be systemati-
cally addressed. The two important simplifications are
that on any terrace, only a single layer is incomplete at
any one time, so the growth of clusters upon clusters can
be neglected, and that the effects of cluster formation are
weak, in that the concentrations of islands are much
smaller than the adatom concentration. Thus, although
the formation of large islands can be explicitly incor-
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porated, only small islands have an appreciable concen-
tration, which is small compared to the adatom concen-
tration. In this respect, the equations presented below
generalize the BCF equation by allowing the full non-
linear interactions to be considered and to be checked for
consistency as a function of the growth conditions.
Clearly, if the island concentration shows an appreciable
concentration in larger islands, alternative approaches
should be considered which more faithfully reflect the
growth front morphology.

In a recent paper [6], we have incorporated a quadratic
interaction term to account for diatomic island formation
in the BCF equations in addition to the above
modifications. To simplify the complex problem of mod-
eling nucleation on the terraces, we initially allowed only
the formation of diatomic islands and assumed that ada-
toms could not detach back onto the terrace once incor-
porated into a step edge or island. A natural outcome of
the nonlinear BCF model was the quantitative prediction
of the temperature 7, at which nucleation may be
neglected and epitaxial growth proceeds by step propaga-
tion. We also showed that the adatom interaction de-
creased the effective diffusivity of the adatoms by several
orders of magnitude [6,7], a conclusion also reached by
Stoyanov [8] following a different argument. The model
was extended to the growth of semiconductor alloys on
vicinal surfaces [9], where the transition to step propaga-
tion was studied as a function of the mobility parameters
and of the alloy concentration. From the success of this
model in predicting the transition to step-propagation
mode, it is apparent that at least for determining the
dependence of T, on the growth conditions, detachment
of atoms from islands balanced with detachment from the
step and could be ignored to a first approximation. How-
ever, for a more detailed and realistic mode of MBE, it is
necessary to explicitly include atom capture and detach-
ment kinetics from the step and island edges as well as
the formation of islands larger than pairs.

In this paper, we describe the generalization of the
BCF theory to MBE on stepped surfaces to include com-
plex adatom nucleation and detachment kinetics. Non-
linear adatom interaction terms are used to describe the
nucleation and breakup of islands with up to ten atoms.
The nucleation terms are similar to those used in kinetic
rate equations on flat surfaces [5]; however, here we com-
bine these terms with diffusion to model growth on
stepped surfaces. We show how the formulation of the
terms for nucleation via reaction sequences is quite gen-
eral and can be used to describe the reactions of an arbi-
trary number of surface species. Deviations from equilib-
rium at the step edges are also included in the model
through Arrhenius rate expressions for attachment and
detachment from the step edges. The time-dependent
nonlinear equations track the temporal evolution of the
surface concentrations during the initial and steady-state
stages of growth, as well as the equilibrium coverages
once the molecular beam is turned off and the surface is
allowed to relax.

The outline of this paper is as follows. In Sec. II, we
review the master-equation formulation of MBE begin-
ning with the representation of the growth process of our
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original model by chemical “reactions.” The master
equation is an evolution equation for the joint probability
distribution function of the various ‘“reactants” and is
equally valid under the far-from-equilibrium conditions
during growth, and the relaxation of the surface to equi-
librium once the incident molecular beam is turned off
[10]. The master equation also provides a basis from
which to derive equations for various quantities such as
average concentrations, and corrections thereto. In Sec.
III, the master equation is used to derive the continuum
equation used in our earlier work. By an appropriate
choice of cells in the coarse graining of the lattice model,
we show that the ostensibly one-dimensional equations
used in our earlier work in fact contain two-dimensional
information averaged over the lateral length of the ter-
race. The formulation of the generalized BCF equations
is given in Sec. IV, with results for this model compiled in
Sec. V. We show that although inclusion of pair forma-
tion is sufficient to model growth near step flow, for ap-
plicability of the model to a wider range of growth condi-
tions for MBE on vicinal surfaces, higher-order island
formation as well as atom detachment from the steps and
islands must be considered. Also, breakup of atoms from
islands is shown to be an essential mechanism for the
modeling of recovery of the surface after the beam flux is
switched off, which is to be expected from simulations of
MBE. Our conclusions are summarized in Sec. V1.

II. MASTER-EQUATION FORMULATION

As in our earlier work, we describe each step in the
growth process as a ‘reaction” among the various
“species.” The master equation corresponding to the re-
action sequence can then be derived following a standard
procedure, and then equations of motion for various
quantities are obtained by taking the appropriate aver-
ages [10]. There are a number of advantages of this pro-
cedure, some of which have been discussed in Ref. [6].
One of the primary advantages for the present work is
that by beginning from a lattice theory, the effect of the
implicit averaging carried out by coarse graining is evi-
dent from the start. Thus, the level of spatial information
that can be obtained from the theory is clearly displayed,
which is important for identifying the pertinent quanti-
ties when making comparisons with the results of simul-
taneous (see, for example, Ref. [11]). We will first derive
the master equation for the original model of MBE we
proposed to illustrate the basic principles of our ap-
proach and then turn to the generalized BCF model dis-
cussed in the following sections.

The substrate is a vicinal surface with an underlying
square lattice with nearest-neighbor spacing a [Fig. 1(a)].
The boundary conditions are, for the moment, left
unspecified. We suppose that the system is coarse
grained into N cells, the detailed nature of which will be
discussed later. In our original model of MBE [6], three
processes were considered: deposition of atoms from the
molecular beam onto the substrate, the diffusion of atoms
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on the substrate, and the formation of diatomic islands.
Denoting incoming atoms from the molecular beam by
A, substrate atoms by X, and diatomic islands by Y, the
reactions for the deposition and growth process are given
by

ko ky ky
A—>X, A+X—->Y, 2X >Y. (1)

The first two reactions correspond to the deposition pro-
cess, with the first reaction representing the deposition of
single atoms onto the substrate and the second account-
ing for the direct collision of arriving atoms with single
atoms on the substrate to form diatomic islands. The
third reaction represents the formation of diatomic is-
lands by the collision of mobile substrate atoms. Expres-
sion for the rate constants k; are given in Ref. [6]. In ad-
dition to the reactions (1), we include the mobility of sur-
face atoms in the form of the hopping rate from cell i to
j 4 dij .

The joint probability of finding x; atoms in the ith cell

FIG. 1. (a) The representation of a vicinal surface with an
underlying square lattice. (b) The coarse graining of the vicinal

surface into cells that are extended along the step direction.  at time ¢ will be denoted P(x,x,,...,xy;t)=P(x;1).
The cell boundaries are marked in emboldened lines and the cell The master equation describing the evolution of P for the
area is shaded. reaction-diffusion system (1) is given by

N
—a—P(x;t)= > [d;x; +DP(x; + l,xj—l,’i,t)——d

3 X P(x,1)]

ijovi
Lj=1

N
+ 3 [kylx; +2)(x; +1)P(x; +2,%;) — kox;(x; — 1)P(x;1)]

i=1

N
+ 3 {kol A1P(x;—1,%,2)—ko[ A]P(x;1)}

i=1

N
+ 3 (ki [A)x;+DP(x;+1,%,t)— k[ A]x;P(x;¢)} , 2)

i=1
where the notation X is an abbreviation for all of the x; not explicitly written, and [ ] denotes the concentration of the

enclosed quantity.
Equation (2) may be used to obtain coupled evolution equations for the correlation functions among the x;. For ex-
ample, the evolution equation for the average particle number in the kth cell,

N
Ceop@)= [ -+ [ TI xxdx; P(xst)= [xpdx [ -+ [ TI dx;P(x;,%50) (3)
=1 j(#k
is obtained by multiplying both sides of (2) by x, and integrating over all the x »J=1,...,N. We obtain
d N
E(xk(t)>= S D x;(0)) +ko[ A]—k [ A1x, (1)) — 2k, {x, ()] x, () —1]) 4)
j=1
[
where the quantity D, is given by in (1), the equation of motion for the average {x,(¢)) is
N coupled to the two-point function (x,(#)[x,(£)—1]).
Dy =dy—38y > d; . (5) The evolution equation for this quantity is coupled to a

i=1 three-point function, the evolution equation of which, in
Because of the nonlinearity of the island-forming reaction turn, is coupled to a four-point function, and so on. To
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make the solution of these equations tractable, this
hierarchy of equations must be truncated.

III. THE CONTINUUM LIMIT

The coarse graining in Ref. [6] used square cells. As
we will show below, an alternative construction of the
cells is more useful not only for the decoupling {x,(¢))
from the higher-order correlation functions in the hierar-
chy of evolution equations, but also in specifying the
boundary conditions at the step edges. Consider there-
fore the coarse graining shown in Fig. 1(b). Instead of us-
ing finite-volume cells, as is usually done in coarse grain-
ing, we divide the terrace into strips of width A that are
extended parallel to the step edge and therefore have
infinite volume.

There are several beneficial consequences of this coarse
graining. In the absence of long-range correlations, the
variance of the distribution of single particles in any cell
vanishes:

<[xk(t)—<xk(t)>]2>=<x]%(t))_<xk(t)>2=0, (6)

which, for large particle numbers, implies that the non-
linear term in (4) may be written as

(e (D[x (=11 ={xF () ={x,(1))? . (7

This provides the justification of the truncation carried
out in Ref. [6].

There are two further important consequences of this
coarse graining. By construction, the intercell hopping is
suppressed in the direction along the step. Furthermore,
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FIG. 2. Plan view of coarse-grained cells on a single terrace
of a vicinal surface. The shaded atoms are part of the step edge
and indicate the profile fluctuations that are averaged by the
infinite extent of the cells along the y direction.
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since the length of the cell along the step direction is
infinite, all information about the step profile is lost and
replaced simply by the average position of the step. In
effect, all of the transverse fluctuations have been aver-
aged out (Fig. 2). If, on the other hand, the cells are
chosen to be of length A’ along the step edge, then fluc-
tuations of wavelength A=~ A’"! would have to be includ-
ed. Additionally, for finite-volume cells, the variance in
the particle-number distribution would be nonzero,
which would mean that the evolution equations of
higher-order correlations would also have to be con-
sidered explicitly.

The continuum limit can now be taken as in Ref. [6],
with the reinterpretation of n;(¢#)=x;(z)/A as a concen-
tration per unit length along the step. The effective non-
linear diffusion equation reads

2

5] .9
ot n(x,z‘)—D—ax2 nix,t)+J

— 2" (x,)—20D[n (x, O, (8)

no

where D is the diffusion constant, J is the beam flux,
ny=a % is the site density, m is the number of sites
around a single atom that when filled form a diatomic is-
land, and o is a capture efficiency for diatomic-island for-
mation. Boundary conditions can then be applied at the
bounding step edges of the terrace, which can be taken to
be straight.

IV. GENERALIZED
BURTON-CABRERA-FRANK
EQUATIONS

We now describe the generalization of this approach to
include the formation of islands with larger numbers of
atoms, as well as the detachment of atoms from islands
and steps. We consider first the interactions between
adatoms and islands on the terraces. Each surface
species with j atoms will now be denoted as Y;. Thus,
single adatoms, which were denoted X in the preceding
section are now denoted Y,;. Atoms from the incoming
beam are still denoted 4. The reaction sequence describ-
ing the deposition, island formation, and growth process-
es, is constructed in analogy with (1). Allowing the for-
mation of islands with larger numbers of atoms leads to
the additional reactions that generalize the second and
third reactions in (1) to include up to n-atom islands. The
reactions that form the basis of the generalized BCF
theory are thus given by

kg k 3 r;
A—Y,, A‘*"Yj—>Yj+1, Y1+qu‘——>yj+1 9)

J
for j=1,2,...,n. Reactions involving A represent the
deposition process, with the first reaction describing
deposition of single adsorbed adatoms from the beam,
and subsequent ones accounting for direct collision of ar-
riving adatoms with substrate atoms and islands. Note
that the reverse reactions in each, evaporation of atoms
from the surface and islands, may be neglected for MBE
as mentioned above. The forward reactions on the right-
hand side correspond to the collision of a migrating atom
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with another atom or island. The reverse reaction corre-  Sec. II. The number of j-atom species in the ith cell is
sponds to their breakup into a j — 1 island and a free ada-  denoted Y and we employ the notation
tom. Since we do not include any reactions to account  y'=(p{/ y‘f) .o,y ) for the collection of the y/. We
for the coalescence of islands, the following treatment is  also introduce Y—(y“) y?, ...,y'"™) as a collective ab-
restricted to dilute concentrations of islands. breviation for all of the y”) grouped according to the

number of atoms in the island. The master equation for
P(Y;t) for the reactions (9) including the diffusion of
adatoms is constructed in an analogous manner to (2).

The master equation for the reaction sequence (9) again  The steps involving the deposition of adatoms contribute
involves first coarse graining the system into N cells as in  the terms

A. Master-equation formulation

N N n
S (ko[ APV =1,¥50)—ko[AIP(Y;0)+ 3 3 (K[ 4)0P+DP(y+ 1,y V= 1,¥;0)—k,[ Ay P(Y;1))
k=1j=1

i=1
(10)

where the first term represents the deposition of single adatoms while the second term represents the creation of a
(j + 1)-atom island by deposition onto a j-atom island. We have defined k, =0 to simplify the expressions.

Island formation and growth is divided into two types of terms. The first type involves the formation of a diatomic
island by the collision of two single atoms, with the dissociation of the diatomic islands described by the reverse reac-
tion. The contribution to the master equation is

N
S [nGP+ 2P+ DP IV +2,Y0)—rp Py —1)P(Y;t ]

i=1
2) _ (2) sy — ) p(Y-
—|—2 g,y +1)P(y 2,y;'+1,Y;t)—q,y;P(Y;t)] . (11)
i=1

The second type of term describes the growth of the islands by the capture of diffusing adatoms, and the decay of is-
lands by the emission of single adatoms:

z 2 [P+ DD+ DPGOI+ 1,y 0+ 1L,y V= 1,50 —rp Yy P(Y;10)]
i=1j=1

||M2

n . A .
2 g, T+ DPyN =1, =1,y TV +1,¥;6)— gy TUP(Y;0)]  (12)

In (11) and (12), we have introduced r; =0 and ¢; =0 to simplify the form of the expressions.
Finally, there is a term describing the cell-to-cell diffusion of only the single adatoms:
N A
S 4,V +DPyN+1,y0—1,Y;0)—d;y"P(Y;t)] . (13)
ij=1
The time development of P from some prescribed initial condition is given by the sum of (10)—(13).
Equations of motion for the correlation functions among the y’ can be obtained from the master equation for P as in
Sec. II. The average number of j-particle clusters in the kth cell is given by

N n
= [ [ 11 II»Pdy{"P(Y;)= [yPdy [ - [ TI I dvi"P(Y;0) . (14)

i=11=1 i (Fk) 1 (IF))

The coupled evolution equations for the {y{/’(¢)) are obtained in analogy with the procedure used in obtaining (4). We
find

%(yk”(t))— ZDjk(y“) 1)) ko[ 41—k, [ AN p(0)) —2r {yP()[y () —1]1)
ji=1

+2g, (yP() = 3 N+ 3 ¢, V@),
j=2 j=2
(15)

%(y}g"(z))=kj_1[A]<y,§f—“(t)>—kj[A]<y;f>(t>)+rj_1<y,i”<z>y,£f—“<t>>

—ri () — g, (yP()) +q;{y T (D),
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where D, is given by (5) and where in writing the second
of equations (15) we have assumed yi!’—1=~y{". Note
that the islands are assumed to be immobile. As in Sec.
111, the absence of long-range correlations means that the
variance of single adatoms in the cells vanishes. Thus,
the averages of products can be written as the product of
averages in (15), thereby decoupling the hierarchy of
equations.

B. Rate constants, boundary conditions,
and the continuum limit

We have previously derived the rate constants for the
forward reactions in the continuum limit [6]. If J is the
adatom beam flux to the surface, then k ; =Jm j /Ny,
where n, is the site density. The factor m; is the number
of sites around an adsorbed entity with j atoms that will

Ri(ny,n; _y,n;n; . )=0cDn(n; _—n;)+J |m;_,

nj_z

ANDREA K. MYERS-BEAGHTON AND DIMITRI D. VVEDENSKY 44

form a (j +1)-atom island when filled. For a (001) sur-
face, m; =4 or 5 if the adatom site itself is included. For
Jj>2, m; will depend on the morphology of the island;
here, we determine m; assuming a shape for each island
that is as close as possible to a square. Secondly, we
showed that ;=0 ;D for the rate at which single mobile
adatoms collide with other adsorbed entities. Here o is
the capture efficiency of a j-atom island, which we will
take to be a constant ¢ of order 1 for all islands as a first
approximation. D is the diffusivity of a single adatom,
D =va’exp(—Ep, /kyT), where v is an adatom vibration-
al frequency on the order of 103 571 g is the nearest-
neighbor hopping distance, Ej, is the effective activation
energy for diffusion of a lone adatom, kp is Boltzmann’s
constant, and T is the substrate temperature. Thus the
net rate at which an island with j atoms is formed is given
in the continuum limit by

nj

i tgjnj 41— q;n; (16)
0

for j =22. The continuum form of the equations (15) is thus given by

2
ot

%nj(x,t)=Rj(n1(x,t),n2(x,t). L),

_a_nl(x,t)ZD%nI(x,t)+J+Rl(nl(x,t),nz(x,t), ),
X

where n;(x,t) is the concentration per unit length of j-atom species.

J

The equally spaced steps move at a velocity v(z). It is convenient to transform to a frame of reference that moves

with the steps, in which case, Egs. (17) become

ar
B e =02 )+ R, (1 (x, ), 1%, 0), - - )
atn] X,t _vax nj X, j niix, s\ X, T),. 00 )

It now remains to specify the boundary conditions at
the step edges. Previously, we have utilized absorbing
boundary conditions [n(0,¢2)=n (h,t)=0]. This assump-
tion of “sticky” adatoms, which cannot detach them-
selves from the step once incorporated, was consistent
with our neglect of breakup of atoms from islands. Now,
assuming that islands have a finite probability of breaking
up, we must also include the detachment of single ada-
toms from the step edge. In order to analyze the attach-
ment and detachment processes of single adatoms from
the step edge, we will again use a reaction representation.

Let Y;" and Y represent single adatoms directly
below and above a step edge, respectively. In reality, the
step may have a complex two-dimensional profile; here
we simplify it by denoting Y, as singly bonded or kink-
site atoms attached to the step (which may desorb onto
the terrace), while S simply denotes the entire step edge.
The reactions for the exchange of single adatoms between
the step and the region on the terrace directly below and
above the step are

2
—a—n1(x,t)=D—a——n1(x,t)+J+v—a—n1(x,t)+Rl(nl(x,t),nz(x,t), o),
ox? ox

+ +
s Sd

Yf —8, Y,->Y{,
(19)

s Sd

Y -8, Y,>Y[ .

The equations on the left-hand side represent the attach-
ment of free atoms to the step edge, and the right-hand
side equations indicate the detachment of weakly bonded
atoms from the step back onto the terrace. These pro-
cesses are depicted in Fig. 3. As has been done by others
[4], we could assign different rates for attachment and de-
tachment of atoms above and below a step, but here, for
simplicity, we assume the kinetics are symmetric on ei-
ther side of a step with s;”=s, =s, and s; =s; =s,.
Below, ng(t) denotes the concentration of Y, atoms on
the step edge which can hop back onto the terrace. The
concentrations of the different types of atom
configurations (singly or multiply bonded) at the step
edge will depend on the step morphology and may
change during growth. However, modeling of the
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changes in n, during growth would require an explicitly
two-dimensional theory which would incorporate
diffusion and interactions along the step edge. As a first
approximation, assume that the step morphology remains
the same throughout growth so that n. (¢)=n,, a con-
stant. Then, we recognize that the net flux of single ada-
toms incorporated into the step from either above or
below equals the difference between the rates at which
atoms attach and detach from the step edge:
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FIG. 3. Depiction of adatom attachment and detachment ki-
D dan =5,n(0,8)—syn, , netics below the step edge and island breakup on the terraces.
dx x=0
(20) It is convenient to introduce dimensionless variables by
d ijDnj/(th), x—x/h, t—t/(ny/J), and
p&r =—s,n(h,t)+syn, . v—vny/(Jh). This results in the following set of non-
dx |x=hn linear equations including islands with up to N atoms:
J
ay, _az}ﬁ 9y, N1 N
aa = 3’ +1 +va—-ax —2ay,(By;+m;)—a 22 Yi(Byi+m;)+2y,p,+ 23 ViV
i= ji=
(21)
dy; 9y

a—g_va_a—xl_+a[ﬁyl(yj~l~yj)+(mj—1yj—1_mjyj)]+7’j-+-1,Vj+l_ijj , JZ22.

The dimensionless parameter a =Jh2/Dn, represents the ratio of the diffusion time for an adatom to reach a terrace
(h2/D) to the interarrival time of atoms per site (ny/J), B=on, /h? is a measure of the rate of island formation, and
Y;=q;h 2/D is the ratio of the diffusion time to the average lifetime of a j-atom island. The boundary conditions are

dy S,n d
: =5,n(0,)— -2 DL
ang dx |,=

dx x =0

Above, S,=s,h/D and S;=s;h/D in the radiation
boundary conditions for the adatom concentration are a
measure of the rates of attachment and detachment to the
diffusion rate, respectively. The boundary conditions for
the islands are determined by the requirement that there
can be no islands atop a newly formed step at x =1, since
the step edge has just been freshly formed.

Solution of these equations requires an expression for
the velocity of the step train. This can be derived by con-
sidering the flux at the step edge due to diffusing adatoms
from above and below the step, and the convective flux of
immobile islands by the moving step:

_ dy,

_ _ D
dx

v
x=0 dx

+va Y jY;(0,2) . (23)
J

x=1

We now assign values to the several new parameters
for island and step breakup that we have incorporated
into the equations: g;, s,, 54, and n,. We will estimate
the rates using Arrhenius expressions. Assuming that the
average energy of attachment between two nearest-
neighbor atoms is Ey yields g;,=g=vexp[—(Ep
+Ey)/kgT] for the rate of breakup of an atom from an
island, assumed to be the same for all islands so that
y;=v. In Fig. 4, we show for up to four-atom clusters
the atoms that are regarded to be kinetically “active,” in
the sense that detachment from the cluster occurs at the
indicated sites. The detachment from other sites could be

S
=—S,n(h,t)+
an

alls _ .
; y;(LH=0, j=2. (22)

0

[

included in the model, but because of the longer lifetimes
at sites with increasing numbers of nearest neighbors,
these processes would not affect the growth in a
significant way [12]. However, for a detailed study of

(@)

j=2:

3

©)

j=4: OC%QO 098
0

®

=3 OCO
®

FIG. 4. Symmetrically distinct clusters including up to four
atoms. The shaded atoms are those where detachment from the
cluster occurs.
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recovery pathways during the equilibration of the sur-
face, these slower kinetic paths may have to be included.

Estimation of the step kinetic parameters s,, $,, and n;
is more difficult since the values of these parameters will
depend on the two-dimensional morphology of the step
edge, which is not included in our one-dimensional
theory. Assuming a straight step edge, we obtain
sy=va exp[ —(Ep+Ey)/kpT]/4, where the factor of 4
occurs because only one hop in four directions [assuming
a (001) surface] will result in detachment of the atom
below (or above) the step. Furthermore, we assume that
the rate of attachment of an atom to the step is propor-
tional to its mobility; hence s,=vaexp(—Ep/
kpT)/4. As discussed previously, we take n; to be an ad-
justable constant between zero and n,.

C. Recovery and the equilibrium limit

It is also possible to model recovery of the surface mor-
phology after cessation of growth since we have allowed
for the possibility of breakup of atoms from steps and is-
lands. The equations governing the recovery process are
similar to (5), but with the adatom flux term J removed.
Additionally, the island-formation terms corresponding
to direct collision of atoms from the beam with adsorbed
species are omitted by setting m; =0 for all j. The result-
ing equations are

ay, _ %, y;
a—=—"+va——2
o1 ) va—- aB(y,)?
N—1
—apB 2 yiyitv |2y, + }‘, Vil
a - (24)
dy;  dy
a?—va—a—+a,3y1 Yi—1—y;)
Ty 1Y) J22.

The equilibrium concentrations correspond to the long-
time solution of (24). In the original BCF theory, the
equilibrium adatom concentration was determined by the
balance between desorbing surface atoms and the equilib-
rium flux from the vapor as n{9=7J°. Here, the equilib-
rium adatom concentration is determined by the atom at-
tachment and detachment processes at the step edge:

Sdns

eq —= . 25
1 S,an, @3

The equilibrium island concentrations are also constant
across the terrace and are given by

aBy iy —(aByi? +y)pj D +yyid)=
iz2. (6

These equations for the island concentration form a tridi-
agonal matrix that can be easily solved by Gaussian elim-
ination.

V. RESULTS AND DISCUSSION

Reflection high-energy electron-diffraction (RHEED)
measurements, widely used as a probe during MBE on
semiconductor surfaces [13,14], provide a means for test-
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ing our nonlinear theory. Full dynamical RHEED calcu-
lations from model surfaces for comparison with experi-
ment have to date only been attempted with simple
periodic configurations [15,16]. Another approach has
been to compare the RHEED intensity with the surface
step density, which appears to incorporate many of the
qualitative features of the temporal RHEED measure-
ments [12]. The continuum model, however, does not
provide the information about surface-height correlations
necessary to calculate the step density. Thus we utilize
kinematic theory, which requires only the surface cover-
ages, to compare the transient behavior of our nonlinear
theory with RHEED measurements of MBE on stepped
surfaces. Although an approximation for RHEED,
single-scattering theory is directly applicable to He-atom
or x-ray scattering measurements.

Since the step train is periodic in the terrace length
down the staircase, an off-Bragg kinematic calculation at
S,,S, =0 will yield a zero intensity signal due to cancella-
tion between alternate layers. Thus, it is more appropri-
ate to calculate the kinematic intensity down the staircase
at S,=w/a and S, =m/h, where the terraces add con-
structively [17]:

IS, =n/h,S,=n/a;t)
fl
0

Figure 5 shows the kinematic intensity as a function of
a for B=324 calculated numerically from the nonlinear
equations using a finite-difference method [18]. The in-
tensity is shown for 5 monolayers of growth and a subse-
quent period of recovery. At the left is shown the intensi-
ty for the original theory with diatomic islands only and
infinitely “‘sticky” adatoms (Ey— o, ¥y =0, S;=0, and
S,— ). The transient behavior of the calculated inten-
sity during growth exhibits a remarkable resemblance to
temporal RHEED measurements of MBE on stepped sur-
faces [19]. Decaying intensity oscillations are observed at
high a (low temperature) which disappear at low a (high
temperature). In the RHEED measurements, a tempera-
ture T, was defined as the temperature where the tem-
poral oscillations are no longer detectable during growth;
this was interpreted to correspond to the onset of step
flow, i.e., growth dominated by incorporation of atoms at
the step edge [19].

We have shown that T, can be predicted from our
original model [6] as the point at which pair formation
may be neglected and epitaxial growth proceeds
predomlnantly by step propagation:

=(Ep /kp)[In(va?/2Jh*]~'. We obtained excellent
agreement between the values of T, determined by the
nonlinear model and those obtained from both Monte
Carlo simulations and measurements on vicinal
GaAs(001) surfaces for different Ga and As, fluxes [19].
Nucleation reduces the effective diffusivity of the ada-
toms by several orders of magnitude, and therefore a real-
istic model of MBE on vicinal surfaces must include the
nonlinear interactions responsible for island formation.

Although the inclusion of diatomic-island formation as
described above represents a considerable improvement

2

= e ™dx (27)

N
1-2 3 jy;(x,0)
j=1
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FIG. 5. Kinematic intensity at S, =m/h and S, = /a for growth and recovery. The left panel shows the nonlinear theory includ-
ing nucleation with diatomic islands only for =324, and the right panel includes islands with up to ten atoms as well as atom de-

tachment from the islands and step edges.

over previous linear BCF theories, several important de-
tails of the nucleation kinetics have been omitted from
the simplified equations; namely, inclusion of higher-
order island-formation and atom-detachment Kkinetics.
On the right-hand side of Fig. 5, we show the intensity of
inclusion for islands with up to ten atoms in (21), with a
finite probability of detachment Ey/E,=0.2 and with
ng/n,=0.25, which was chosen to yield a total concen-

tration of material under the step edge at T, to be close
to that for the original model, about 1%. The general-
ized theory shows not only a different recovery profile but
also a quicker development of oscillations with increasing
a. Below, we discuss these differences and the underlying
growth kinetics which are responsible for them.

The distribution of material on the terrace during
growth is shown in Fig. 6 for the generalized theory with

Total coverage

! 1 L ! 1 1 1

90eL15) SUOTE UOTIRIUIDUOD [BI0]

0 1 2 3 4 5 6 1
Time (monolayers deposited)

1 1 1 1
0.2 0.4 0.6 0.8 1.0
x (distance along terrace)

FIG. 6. Total concentration of adatoms and islands for the generalized theory (4) for =0.1, =324, Ey/Ep=0.2 eV, J=1
monolayer/s, and n, /ny=0.25. The left panel shows temporal evolution of total coverage, and the right panel depicts the concentra-
tion distribution along the terrace for selected times.
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the above parameters at a=0.1, well removed from step
propagation mode. The left panel shows the total cover-
age, O= f Y Ejvz Jjn; /ng)dx as a function of time, while
the right panel shows the distribution of the total materi-
al over the terrace at selected times. Growth of 5 mono-
layers is shown as well as a brief recovery period. At the
beginning of growth (a), the velocity is still small and the
atoms and islands build up almost symmetrically around
the center of the terrace. After the deposition of about 1
monolayer (b), a large amount of material has nucleated
on the terrace, slightly skewed due to the increasing ve-
locity (note that steps are assumed to move to the right in
the figure). As the step pushes through the area of high
island concentration, its velocity increases sharply due to
incorporation of these islands and the step shoots across
the surface; at 1.5 monolayers of growth (c) the total
amount of material on the terrace has decreased
significantly and the distribution is almost linear. The
nucleation and island buildup process repeats itself, but
to a lesser extent, as seen in point d, until a steady-state
concentration profile is achieved (e). After the cessation
of growth at 5 monolayers, the total concentration on the
terrace drops swiftly as shown in f and g. At lower a,
due to the small amount of nucleation and high mobility
of the adatoms, the coverage does not oscillate as shown
in Fig. 6 but instead increases monotonically to its
steady-state distribution.

In marked contrast to the generalized theory, the in-
tensity for the original model in Fig. 5 does not recovery
after the cessation of growth, aside from a very small ini-
tial increase due to attachment of adatoms at the steps,
since the diatomic islands are not allowed to decay. The
recovery profile for the generalized theory, on the other
hand, compares qualitatively well to measurements [19].
Recovery is swifter at lower a (higher temperature) and
proceeds from an initial decrease of single-adatom con-
centration due to incorporation at steps and nucleation,
and a slower decay of the islands themselves through the
release of adatoms which are adsorbed into the step edge.
Since the recovery of the intensity is calculated using ki-
nematic theory, it represents the decrease of coverage of
the terraces due to atom capture at steps. Thus their de-
tailed shape may differ from those of RHEED recovery
curves, which may incorporate information about
changes in the intralayer morphology due to smoothing
of rough step and island edges. The kinematic analysis
should, however, be directly applicable to other types of
measurements where multiple scattering does not play
such a strong role, such as He-atom and x-ray scattering.

Unlike the model without island and step-edge break-
up, the generalized theory exhibits equilibrium concen-
trations of atoms and islands which are constant across
the terrace. The equilibrium coverage of the terrace with
adatoms is determined solely by the balance of attach-
ment and detachment processes at the step edge:
n$d/ny=(S;/S,ng/n,y). A larger rate of absorption of
adatoms by the step edge compared to the emission rate
yields a smaller equilibrium concentration. The equilibri-
um island concentrations are determined by the interplay
between the collision rate of adatoms with other species,
which is proportional to af3, and the breakup rate of is-
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Additionally, if no detachment is allowed from the step
edges, the steps can only move forward or remain station-
ary. However, if a finite detachment rate is included,
there is a very short period at the beginning of growth for
the generalized theory where the step velocity is negative.
Since at the start of growth the rate at which atoms de-
tach from the step edge outweighs the small initial flux to
the step edge from adsorbed atoms on the terrace, the
step moves backwards. As growth proceeds, however,
buildup of concentration on the terraces leads to a net
positive flux of material to the terraces and the steps
move forward. This effect may be suppressed by allowing
the step to equilibrate prior to growth by releasing atoms
to the terrace.

Finally, we note that oscillations appear more quickly
with increasing a (decreasing temperature) when a
greater degree of nucleation is included. This is in closer
agreement with RHEED measurements [19], which ex-
hibit several noticeable oscillations already at 40° below
T.. Figure 7 shows the total number of atoms in each
type of surface species at steady state for two different a
corresponding to a step-flow regime and to an island-
formation-dominated regime. At a¢=0.1 it is clear that
at least 10-atom islands must be included; for lower tem-

103 jjing)

102 j(nyng)

1 2 3 4 5 6 7 8 9 10
j» atoms in island

FIG. 7. Number of atoms in each species on the terraces,
Jj(n;/ny), as a function of a for f=324, Ey/Ep=0.2 eV, J=1
monolayer/s, and n; /ny=0.25 in the generalized theory. Note
the difference in scale.
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perature it will be necessary to include terms for coales-
cence of islands, and other models for deposition on flat
surfaces are probably more appropriate. However, at
step flow a=0.0014, the total concentration of material
on the terrace is very small, and formation of triatomic
islands or higher only counts for a small percentage of
the total material on the terrace. This confirms the as-
sumption of our original theory, that near-step-flow in-
clusion of only diatomic islands is sufficient.

Although the nonlinear theory only explicitly considers
one spatial dimension, it does contain some of the
features of the full two-dimensional system in an indirect
way. Instead of representing growth confined to a
stepped one-dimensional chain of lattice sites, the theory
instead treats a mean-field concentration in the y direc-
tion. For instance, the two-dimensional shape of the is-
lands in incorporated through m;, which are calculated
assuming square islands and would be different for a
strictly one-dimensional system. Since scanning-
tunneling-microscope images have shown that flucuta-
tions in the step profile can be quite large [20], we also in-
corporate some of the effects of the two-dimensional step
morphology in an average way. Determination of the de-
tailed two-dimensional step profile would require in-
clusion of the y dependence of the concentrations and y
diffusion directly in the equations; unfortunately the
equations then become intractable. So, our approach is
to try to include those aspects of growth which depend
on the step morphology in our one-dimensional model in
an indirect way by decoupling growth along the step edge
with growth along the step train. We include the effect of
step roughness implicitly by varying the step kinetic pa-
rameters S,, S, and n; to model different capture and
emission rates for different surface morphologies. A very
rough, meandering step, for example, might have a larger
capture rate s; than a smooth step. Due to this inclusion
of an approximation to the two-dimensional step kinetics,
the generalized theory is qualitatively superior to the
original model and is applicable to a much larger variety
of systems and growth conditions, although the increase
in the number of parameters in the generalized theory
does mean an inevitable loss of predictive power. We
plan to incorporate the y dimension into our growth
equations in the future so that the effects of step-edge
fluctuations may be treated more exactly.
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VI. CONCLUSIONS

The inclusion of interactions between the surface
species in BCF theory is shown to provide a realistic
model of MBE on stepped surfaces over a wide range of
growth conditions. Due to the inclusion of adatom in-
teractions in the form of nucleation, the nonlinear theory
reproduces the full time-dependent behavior of RHEED
measurements of MBE during growth on stepped sur-
faces, including intensity oscillations, decay, and depen-
dence on the growth conditions. Here, we have shown
that recovery of the stepped surface as well as growth can
be modeled by including breakup of atoms from the is-
lands and the step edge. Additionally, we have shown
that the original model (with diatomic nucleation only) is
valid near step propagation mode, but that it is necessary
to include islands with an increasong number of atoms
(up to ten in this work) as well as their breakup to model
growth regimes where nucleation competes with incor-
poration at steps.

In addition to including nucleation of a single species
on a stepped surface, the equations could also treat an ar-
bitrary number of different diffusing species. Thus the
model may be easily extended to more complicated sys-
tems. Recently, we have used the theory to model the
growth of semiconductor alloys [9] and quantum wires
with various degrees of interaction among the two
diffusing species. The formalism of the reaction-diffusion
equations could also be used to incorporate decomposi-
tion and reaction of molecular adsorbates, such as SiH, in
Si MBE, or Ga(CHj;); and similar organo-metallic com-
pounds in metal-organic molecular-beam epitaxy. In
conclusion, the nonlinear diffusion equations provide a
detailed and flexible model of epitaxial growth on vicinal
surfaces, within the intrinsic limitations of the assump-
tion of one dimensionality of the step train.
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