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Fluctuational transitions and related phenomena in a passive all-optical bistable system

M. I. Dykman
School ofPhysics and Materials, Lancaster Uniuersity, Lancaster LAI 4YB, United Kingdom

G. P. Golubev, D. G. Luchinsky, A. L. Velikovich, and S. V. Tsuprikov
II7965 Moscow, All Unio-n Research Institute for Metrological Seruice, USSR.
(Received 12 November 1990; revised manuscript received 27 February 1991)

Fluctuational transitions between stable states of an all-optical lumped-parameter bistable system have
been observed. The dependences of the transition probabilities, and of the statistical distribution of the
transmitted-light intensity, on the intensities of incident light and noise have been investigated. Two
types of stochastic modulation, that of the incident-light intensity and that of the device itself, have been
used. They correspond to multiplicative and additive noise for the intracavity-phase gain and give rise
to qualitatively di8'erent pictures of the fluctuations. In particular, for the latter type of noise the loga-
rithm of the statistical distribution of the transmitted-light intensity is described by a multibranch func-
tion, and the peaks of the distribution are strongly asymmetric. The onset of a zero-frequency peak in
the power spectrum of the transmitted light in the range of the kinetic phase transition has been ob-
served. The experimental data are in good qualitative and quantitative agreement with the theory.

I. INTRODUCTIGN

Optically bistable systems provide an opportunity to
investigate a variety of Auctuation phenomena specific for
thermally nonequilibrium systems with coexisting stable
states. Many theoretical results and most of the experi-
mental data on Auctuations in optically bistable devices
were obtained for lasers, with the bistability correspond-
ing to coexistence of competing modes [1,2], or
switched-on and switched-off states [3], and also for hy-
brid electro-optical devices [4]. For passive all-optical
bistable systems the Auctuation phenomenon related to
bistability and investigated in most detail is the manifes-
tation of both stable states in the course of switching
caused by temporal variation of the parameters in the
presence of noise (transient bistability [S]).

In the present paper we report the results of the inves-
tigation of Auctuation phenomena arising in a passive
all-optical bistable system in stationary conditions. The
analyzed effects are related to the noise-induced transi-
tions between the stationary attraetors. It was crucial for
obtaining and interpretating experimental data that the
optical system investigated was a lumped-parameter sys-
tem and was thus described not by space- and time-
dependent variables (fields), but by the dynamical vari-
ables depending on time only (in contrast to the majority
of optically bistable systems that are continuous). In a
lumped-parameter system there are no switching waves
(cf. [6] and references therein); it does not split into the
sections with different transmission. For su anciently
weak external noise its transmission takes on one or the
other value predominantly, i.e., the system predominant-
ly occupies a narrow range in the phase space adjacent to
one or the other attractor (the stable state) and from time
to time "jumps" from one stable state to another because
of noise.

The probabilities 8'" of the Auetuational transitions

i ~j (ij =1,2) for small intensities of driving noise are
much smaller than the reciprocal relaxation (switching)
time ~. Analogous to the case of a Brownian particle
Auctuating in a bistable potential, for almost all values of
the parameters of the system the probabilities 8'&2 and
8 2, differ drastically from each other and, respectively,
the stationary populations of the attractors u, and mz
differ as well (in the absence of noise a bistable system oc-
cupies only one stable state, i.e., either m, = 1 and m2 =0,
or wi=0 and w2=1). The most interesting and specific
Auctuation phenomena arise in the narrow range of the
parameters where the populations w, and w2 are of the
same order of magnitude. This range has much i.n com-
mon [7,8] with the range of the first-order phase transi-
tion in thermal equilibrium systems where the popula-
tions of the phases are of the same order of magnitude.
Not only sma11 fluctuations about the stable states, but
also large Auctuations due to the system changing from
one state to another are substantial here. The charac-
teristic time scale for the latter fluctuations is given by
the transition probabilities. Their immediate effec is the
onset of a narrow (with a width —W « r ') peak at zero
frequency in the susceptibility and power spectrum of the
system [8,9]. Such a peak was observed earlier in analog
simulations of a Brownian motion in a symmetric
double-well potential both in the presence [10(a)] and ab-
sence [10(b),10(c)] of the external periodic field. It was
also observed for a symmetric (w i

=wz =
—,') bistable laser

[11]. It is related immediately [12] to the so-called "sto-
chastic resonance" [11,13], i.e., to the increase of the
signal-to-noise ratio with increasing noise intensity in
bistable systems. In the present paper the zero-frequency
peak has been found, and its shape and intensity have
been studied for a passive all-optical bistable device.

The particular system investigated here is a double-
cavity membrane system (DCMS) shown in Fig. l. It
consists of a thin semiconductor film (membrane) separat-
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FIG. 1. Sketch of a double-cavity membrane system
(DCMS).

FIG. 2. The experimental setup. EOM is electro-optic
modulator; PD is photodiode.

ed from a dielectric mirror with a metal diaphragm. The
film itself is the first optical cavity, while the second cavi-
ty is an air-spaced gap between the film and the mirror.
Laser radiation causes heating of the film. Because of
thermal expansion the latter is bent. The bending
changes the transmission of the second cavity and thus
changes the heating itself. Such thermo-optical non-
linearity can give rise to bistability [14]. It is the small-
ness of the laser spot as compared with the diaphragm
that provides the absence of the spatial effects in the sys-
tem: the membrane bending is homogeneous within the
spot to high accuracy.

Fluctuations in the device are caused by the Auctua-
tions of the laser radiation that heats the membrane. The
advantageous feature of the DCMS is the possibility of
investigating, for a real physical system, the effects of
different types of noisy modulation with easily varying
characteristics of noise (intensity, power spectrum). In
Sec. II the Auctuations resulting from modulation of the
intensity of coherent incident radiation by almost white
noise are analyzed. Statistical distribution of the
transmitted-light intensity and the dependence of the
transition probabilities on the noise intensity are found.
The onset of the zero-frequency peak in the power spec-
trum of the transmitted-light intensity is observed and
the shape of the peak is investigated. In Sec. III the
effects of the modulation of the optically bistable DCMS
by an additional radiation with fluctuating intensity are
studied and peculiar features of the statistical distribution
of the transmitted-light intensity are revealed. Section IV
contains concluding remarks.

The incident radiation of the Ar laser (A, =0.48 pm) was
propagating normally to the mirror. The transmitted-
radiation intensity IT was registered by the oscilloscope.
It was also discretized and 2048 instant values of IT were
digitized and recorded in a computer with an eight-bit
precision. The bi- and multistability for a stabilized radi-
ation was observed (cf. [14]). The example of a section of
the input-output characteristic is shown in Fig. 3.

Two types of fluctuations can be investigated immedi-
ately with the aid of the setup shown in Fig. 2: Auctua-
tions arising because of modulation of the Ar-laser out-
put by external noise, i.e., because of noise in the radia-
tion causing bistability itself; and Auctuations of the
transmitted radiation arising because of modulating the
DCMS by an additional light with randomly varying in-
tensity (from an unstabilized He-Cd laser for the setup in
Fig. 2). In both cases it is the transmitted radiation of
the Ar laser that is registered. Its characteristics are
shown below to be strongly different for the two types of
noise. In the present section the first type of the noise is
analyzed and the results refer to the case when the He-Cd
laser is switched off.
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II. FLUCTUATION EFFECTS
DUE TO NOISY MODULATION

OF INCIDENT RADIATION

A. Experiment
I I I

3.36 4.48 S.60

The experimental setup is shown in Fig. 2. The mem-
branes in the double-cavity systems investigated were
single-crystal GaSe films with a thickness —1 pm, the di-
ameter of the diaphragm was —500 pm, and an air-
spaced gap between the film and the mirror was = 10 pm.

( w)
FIG. 3. Oscillogram of the input-output characteristic of the

DCMS; IT and I are the intensities of the transmitted and in-
cident light, respectively (IT is in arbitrary units).



FLUCTUATIONAL TRANSITIONS AND RELATED PHENOMENA. . . 2441

The dynamics of the DCMS depends on thermocon-
ductance of a membrane, its vibrational eigenfrequencies,
damping, etc. (see Ref. [15] for a detailed discussion).
For the devices investigated in the present paper the
eigenvibrations of the membrane were overdamped be-
cause of high losses at its edges (the membrane was at-
tached to the diaphragm with a grease, so that it could
move in plane, but with a substantial viscous friction).
The "slowest" dynamical time was that of thermal relax-
ation. It was found from the data on the switching of the
DCMS to be —1 msec. Simple estimates show (cf. Ref
[16]) that for membranes with typical sizes given above
the characteristic reciprocal eigenfrequencies are smaller
by a factor of 10 at least, and, since oscillations have not
been observed in the devices investigated (in contrast to
those studied in Ref. [15]),one can conclude that bending
of the film due to thermal expansion follows adiabatically
the temperature distribution formed by heating within
the laser spot and cooling via the membrane-air and
membrane-diaphragm boundaries.

B. Dynamics of the DCMS

oscillations of I. To reveal the small-amplitude vibra-
tions of the membrane, the DCMS transmission of an ad-
ditional trial radiation (that of the He-Ne laser) has been
investigated, and the aforementioned proportionality has
been seen to be fulfilled to an accuracy —10% for actual
amplitudes of I.

The form of the function M(P) in (2) depends on the
mechanism of thermal relaxation, boundary conditions at
the edges of a film, etc. It can hardly be obtained explic-
itly; an approximate expression for M(P) was found [15]
on the basis of some variational analytic approaches
developed in the theory of thermoelasticity of shells.
Since thermal relaxation for small bending is practically
independent of bending and the laser-induced heating ob-
viously depends on P periodically, the function M(P) as a
whole is assumed in (2) to be periodic in P. Because of in-
terference in the cavity M(P) is strongly nonlinear, and
on physical grounds it does not vanish (irradiation should
always give rise to heating of the system).

C. Fluctuations of the phase of the DCMS
driven by a multiplicative noise

The transmission of a DCMS for a narrow (compared
with the diaphragm) beam of light is determined by the
phase gain P for the light in the air-spaced gap between
the membrane and the mirror,

Ir =IN($),
where I and Iz- are the intensities of the incident and
transmitted radiation, respectively. The expression for
N(P) has quite a simple form [15] if a DCMS is assumed
a plane-parallel three-layer system with optically horno-
geneous layers and with the nonlinearity due to bending
of the membrane. However, the semiconductor film and
the dielectric mirror are obviously not strictly parallel be-
cause of the film bending, and this results in a more so-
phisticated form of the function N(P) [and of M(P) in
(2), see below] than that obtained in Ref. [15].

To a reasonable approximation the "slow" kinetics of
the system can be described by a Debye relaxation equa-
tion for the phase gain P, which is linear in bending and
thus follows adiabatically thermal relaxation of the film:

(h+ hP =IM(P), —

/=$0+6/, M(P)=M(/+2') .

Here r is the relaxation time, Po is the phase gain in the
"dark, " and b,P is the change of P due to the laser-
induced bending. Relaxation in Eq. (2) is linearized in
b,P, while the right-hand side is assumed proportional to
the incident-radiation intensity I, i.e., proportional to the
power absorbed in the film. This proportionality was
checked experimentally by modulating I periodically in
time at frequencies co much higher than the reciprocal
switching time r ' (the frequencies used were =20 kHz,
while r was —1 msec). For cur »1 the amplitude of the
forced vibrations of P is comparatively small and M(P) in
(2) can be set constant. Therefore the amplitude of P
would be expected to be proportional to the amplitude of

Equations (1) and (2) make it possible to analyze fluc-
tuations for the case of the DCMS driven by a randomly
modulated incident radiation:

I=I (t) =I+—5I(t), (5I(t) ) =0,
(3)

(5I(r)5I(r') ) =—g
D
Tp 70 f g(x)dx = 1

p

[the function g(x) is assumed small for x »1]. The ex-
perimental data below refer to the case when the noise
5I(t) is almost Gaussian [note, however, that I(t) &0]
and almost white, i.e., its power spectrum is Oat up to fre-
quencies exceeding r ' substantially (the range of flatness
exceeded 40 kHz, while r was —1 msec). Respectively,
the correlation time ~p within which the two-time corre-
lator ( I5(t) I5(t')) dies down is small compared with r.
The intensity D of the noise could be varied easily in the
experiment.

Equations (2) and (3) describe the stochastic motion of
the phase P driven by a multiplicative noise. Allowing
for the condition M(P)%0, it is convenient following the
standard procedure [17] to rewrite (2) and (3) in the form

x+ U'(x)=5I(t), x = f "dPM '(P),
0

(4)

U(x)—:U(x, I ) = Ix+ —f —dP(P P)M (P) . —
0

For the intensity of the incident light I= (I(t) ) lying-
in the range of optical bistability, i.e., for I such that Eq.
(2) with I=I has two stable solutions P, and Pz, the po-
tential U(x) obviously, from (2) and (4), has two minima.
Their positions x, and x2 are given by x, =x(P,. ), i = 1,2.
The character of the random motion of the system de-
pends substantially on the ratio of the depths of the cor-
responding potential wells to the noise intensity. In what
follows we consider the most interesting case of "deep"
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wells or, equivalently, "weak" noise

hU;))D, b, U;=U(x, ) —U(x;), i =1,2 (5)

[x, is the position of the local maximum of the potential
that lies between x

&
and xz,' it corresponds to the unsta-

ble stationary solution of Eq. (2) for I =I].
If (5) is fulfilled, the probability W," of an i~j transi-

tion is a well-defined quantity. The transition probabili-
ties are exponentially small, 8;., ~exp( —b U;/D) [18]
(see also [8,19] for the case of Gaussian noise with arbi-
trary power spectrum),

The stationary distribution p($) over the phase for the
system (1)—(4) is given by

p (P) =p(P, I)=—Z 'M '(P)exp[ —U(x(P), I)/D],
+ oo (7)

Z = f dx exp[ —U(x, I)/D] .

The distribution (7) has sharp maxima at the values P,
and P2 of the phase in the stable states, so that one can
say about the populations w

& z of the stable states 1,2 sep-
arately

w; =Z '[2nD/U"(x; )]' exp[ —U(x; )/D], i = 1,2

(8)
w~/w2= II'»/II'» exp[[U(x2) —U(x&)]/D] .

For small D the ratio w, /wz is seen from (5) and (8) to be
exponentially large or small for almost all values of the
average intensity I of the incident light that determines
the form of the potential U(x). Only in a narrow range
I I, ~

((I„where—I, is the solution of the equation

FIG. 4. Statistical distribution P(IT) of the transmitted-light
intensity IT measured (data points) and calculated (solid curve)
for a noise-modulated incident radiation.

value of the transmission N(P) [see Eq. (1)]; it reproduces
the distribution P;„(I) of the incident-light intensity
P(IT~/)=N '(P)P;„(ITN '(P)}. Within a time —w this
distribution becomes smeared over the values of P close
to P;, with i corresponding to the stable state occupied in-

itially. Finally, over the time —8', . ' the smearing over
both ranges of P, those close to P& and Pz, becomes sub-
stantial, and the distribution takes on the form of the
convolution of P (IT ~P) and p (P) (7). Assuming P;„(I)
Gaussian we arrive at the expression

U(x&, I, )= U(x2, I, ) (9)
X exp — [ITN '(P)——I ] (10)

are w, and w2 of the same order of magnitude. As it has
been explained, this is the range of a "kinetic" phase
transition.

D. Discussion of the experimental results

1. Statistical distribution

The statistical distribution P(IT) of the transmitted-
light intensity obtained experimentally for a noise-
modulated incident radiation is shown in Fig. 4. The
value of I= (I ) was chosen in such a way that it lay in
the range of bistable transmission of the DCMS (cf. Fig.
3) and was close to the critical value I, given by (9).
Therefore, in agreement with (8), there are two prom-
inent peaks in P(IT ), and their areas are close in order of
magnitude. To describe P(IT) we note that the Iluctua-
tions of the incident light influence the transmitted light
both "directly, " i.e., irrespective of the change of the
transmission of the DCMS, and via Auctuations of the
latter. The respective contributions to the Auctuations of
IT are characterized by the correlation times ~o and ~,
which are substantially different. For v.

o « ~« 8';~ the
distribution P(IT) is formed over three stages. Within a
time -~o there is formed the distribution for a given

o =2Dro 'g(0) .

For small noise intensities D [see (5)] the factor p(P) as
given by (7) has two sharp maxima at P =P, and P2 with
the half widths —(D/r)' rM(P; )[1 IrM'(P; )]-
(i = 1,2). The second integral in (10) is much more
smooth, since o cc D /ro &)D /r (in the limit of the
white-noise modulation o —+ ~ ). Therefore, to a good ap-
proximation

P(IT)= g w, (vcr, )
'r exp

/' =1,2

1 2(IT IT; )

cr, =crN (P;), Iz;=IN($;) .

The distribution (11) has two peaks lying at IT=IT, 2,
i.e., at the stable values of IT in the absence of noisy
modulation of the incident radiation. The areas of the
peaks at IT& and IT2 are equal to w

&
and w2, respectively;

their characteristic widths are given by N(P, 2)&o, and
the ratio of the widths to the positions of the maxima is
&o /I and equals that for the peak in the distribution
P;„(I)of the incident radiation. This makes it possible to
describe the observed distribution P (IT) in Fig. 4 quanti-
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tatively basing upon the independent experimental data
for IT, 2, v'o /I, and ui, /w2. The latter ratio is given [see
(8)] by the ratio of the transition probabilities which has
been obtained immediately (see Sec. II D2). The agree-
ment between the corresponding simple calculations and
the immediate data on P(IT) is seen from Fig. 4 to be
good. We stress that the theory does not contain any ad-
justable parameter, and the above relations are valid for
any particular form of the transmission X(P). The ex-
pression (11} is based, in essence, on two assumptions
only, namely, that (i) the shape of the distribution of the
incident-radiation intensity is Gaussian, and (ii) the ratio
~o/~ is small.

2. Transition probabilities

[for the data in Fig. 5(a) r= 1 msec, WJ '= 1 sec, ro=10
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The sequence of the discretized values of the
transmitted-light intensity IT(t) that displays explicitly
the fluctuations and the fluctuational transitions in par-
ticular is shown in Fig. 5(a). The interval b, t between
sequential records of IT(t) [sequential points in Fig. 5(a)]
was chosen in such a way that

(12)

@sec, and b, t =20 msec]. The condition (12} means that
the sequential IT(t„)(t„t—„,= b.t) refer with the
overwhelming probability to the same stable state of the
DCMS: the probabilities of transitions between the
stable states within the interval ht are 8'"ht (& 1.
Therefore sequential IT(t„) would be expected to lie
mostly in the vicinity of the same value IT, of the
transmitted-light intensity (i =1,2). This is seen from
Fig. 5(a) to be true. However, there is a relatively large
amount of sequential values of IT that differ noticeably
one from another and could be related to different stable
states. As a rule, such "outbursts" have no "postaction, "
i.e., if several sequential IT(t„ i, ) (k ~0) lie close to IT„
e.g., and IT(t„+,) lies rather far from IT„ then the values
of IT(t„+k ) for several k ) 1 will lie most probably in the
vicinity of IT& again. It is natural to associate such out-
bursts of IT with the short outbursts of the incident-
radiation intensity I(t) which do not result in the transi-
tions of the DCMS's phase P from one stable state to
another, but form the wings of the relatively broad peaks
of the distribution P (IT ) (11). If for a given b, t the rela-
tive areas of these wings taken conventionally for each
peak over the range of the maximum of the other peak
exceed substantially 8'"b t, the probabilities of the above
"short" outbursts of IT ("false" transitions) are obvious
to exceed these of the "true" transitions.

The true transitions can be singled out by coarse-
graining the data in Fig. 5(a) over time. This can be
done, e.g. , by changing form IT(t„) to the "filtered"
quantity

(13)

The procedure (13) is a discrete analog of a standard
filtration described by the equation dIT /dt +IT /7f
=IT /rf with the time constant of the filtration

» » »
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FIG. 5. (a) Sequential values of the transmitted-light intensi-

ty IT(nest), ht =20 msec, for a noise-modulated incident radia-
tion; (b) filtered" intensity IT(nest). The filtration time ~f =60
msec. The "boundaries" I» 2 are shown dotted.

rf =b, t/llnq I
(14)

The filtration (13) averages out the registered
transmitted-light intensity and thus reduces the strag-
gling of the data points. As one can easily see for ~f ))vo

the distribution of IT is given by Eq. (11) with o having
been replaced by o (1—q)/(1+q). The peaks of this dis-
tribution are therefore narrower than those of (11) and
the probabilities of large, short outbursts of IT are ex-
ponentially smaller than those of IT; e.g. , the probability
density of reaching the value IT2 when the DCMS's
phase P occupies the state 1 is propor-
tional to exp[ (I» I») /o, ]— for— IT and
exp[ (IT2 IT, ) (1+q—)/(1 —q)o, ] for IT-.

To determine the transition probabilities we introduce
some auxiliary boundaries I~, and I~2 of the ranges that
enclose the values IT, and IT2 and the ranges of the small
fiuctuations about IT, and IT2 [in what follows we assume

IT, & Ii», & I~2 & IT2, see Fig. 5(b)]. We suppose that one
transition 1 —+2 has occurred within the interval
t & t & t„, if IT(t„)~ I~&, IT(t ) &I~„and IIi,
&IT(r„)&I» for t &t„&r„. The transition 2~1 is
defined similarly. The above procedure is reasonable pro-
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vided the resulting values of the transition probabilities
8' are independent both of the boundaries I&2 and I~,
and of the filtration time r& (14) in quite broad ranges of
these quantities.

The limitations on I&2 and I~& follow from the condi-
tion that they should obviously lie in the gap between the
ranges of the small fluctuations of IT about IT, and IT2.
The lower limit on rI (obviously r&) bt) is imposed by
the effectiveness of the filtration: the probability of a
false transition of IT in the course of a short outburst of
noise should be small compared to that of a true transi-
tion, i.e., of a transition of the phase P from one state to
the other. The upper limit on zI is imposed by the condi-
tion that the time necessary for I(t) to cross the bound-
ary I&, (i =1,2) after the phase has changed from the
state 3-i to the state i should be small as compared with

W~~
'. Allowing for (13) and (14), this means that

,
" I ((1/ln

~
( IT, IT2 /(—IT; I~; ) ~—

(we see, in particular, that the limits on r& and IJi, 2 are
interrelated).

The existence of the range of ~& and I~& 2, where 8';. as
determined following the above procedure are indepen-
dent of these quantities, has been shown for the DCMS
experimentally. The values of the transition probabilities
8', 2 and 8'2& were obtained from the relation

Wz = ( T, )' where ( T. ; ) was the average time the sys-
tem spent in the state i. The dependence of 8', z on the
noise intensity D is shown in Fig. 6 (the data refer to the
phase-transition range where W, ~ = Wz, ). As it has been
expected this dependence is of the activation type to a
good accuracy.

wz of the stable states are close in order of magnitude
[8,9]. To reveal such a peak we have investigated the
power spectrum of the intensity of the light transmitted
by the DCMS,

Eo 2

Q(co)= I dt e' '[IT(t) (—IT)]
4+to —

&o

(16)

At weak noise for almost all values of the average
incident-light intensity I, the spectrum Q(co) was practi-
cally fiat for frequencies co/2' ~ 10 kHz. A narrow peak
at zero frequency arose indeed only in a narrow interval
of I where the transition probabilities 8'» and 8'2& were
close to each other. It is shown in Fig. 7(a).

The shape of the zero-frequency peak is insensitive to
particular details of the kinetics of the system and the
characteristics of noise (in particular, its power spec-
trum). If noise is sufficiently weak, the peak is described
by the expression

3. Zero frequency -peak in the power spectrum

The very general feature of fluctuating bistable systems
is the onset of narrow zero-frequency spectral peaks for
the parameter values lying in the range of the kinetic
phase transition where the stationary populations m

&
and

8.4

(Hs)

4.0

g.6

50 ~oO &50

o3 (Hs)
2.00

FIG. 6. Logarithm of the transition probability W» vs the
reciprocal noise intensity D for noise-modulated incident ra-
diation in the range of the kinetic phase transition. The solid
straight line is the result of the method of least squares.

FIG. 7. Low-frequency power spectrum of the transmitted-
radiation intensity in the kinetic phase transition range with a
distinct zero-frequency peak for (a) noise-driven incident radia-
tion, (b) DCMS driven by an additional fluctuating light beam.
Solid lines correspond to Eq. (17) [with an added background in
(a)].
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N(N2
Qo(co } (IT, IT—2)

X(W,2+ W2, )/[co +(8,2+ W2, ) ] . (17)

It is Lorentzian in shape. Its half width equals to
the sum of the transition probabilities. Its integral inten-
sity is seen from (8) to be proportional to
exp[ —

~
U(x„I) U(—x2, I)~/D] and thus it depends ex-

ponentially sharply on the difference between the given I
and the critical value I, (9) corresponding to the phase-
transition point (similar exponential dependence was ob-
served in Ref. [20] for a "high-frequency replica" [8] of
the zero-frequency peak in the periodically driven bist-
able system).

Equation (17) has been shown to describe the observed
zero-frequency peak quite well (see Fig. 7). Note that
there are no adjustable parameters in the theory, since
the values of 8')2 and 8'2), and IT, and IT2 have been
determined from other experiments.

We note in concluding this section that the advantage
of the above way of driving optically bistable systems by
noise is the possibility of varying easily the power spec-
trum and intensity of noise while retaining the other
characteristics constant. The detailed data on the effects
of colored noise will be given elsewhere. Here we men-
tion only that in agreement with the above analysis the
change in the power spectrum that did not break the con-
dition 7 p((7 influenced immediately the transition prob-
abilities only. The statistical distribution P(IT) and the
zero-frequency peak were inAuenced only via the change
of 8', .

(19)

We note that I (t) as a whole could be changed with the
aid of neutral filters, but the noise intensity D and I
are interrelated and could not be varied independently; to
a good accuracy D ~ I

Just as in the case of noisy modulation of the coherent
incident radiation, in the present case of noisy modula-
tion of the DCMS by additional radiation both the fluc-
tuations of the transmitted-light intensity IT about its
stable values and the fluctuational transitions have been
observed. They are seen from Fig. 8 where a sample of
the sequential data recorded with the time interval
At=10 msec is shown. These data made it possible to
find immediately the stationary distribution P (IT ) of the
transmitted-light intensity and to determine the transi-
tion probabilities. The evolution of the obtained distribu-
tion P (IT ) with the varying intensity I of the coherent in-
cident light for a given I is seen from Fig. 9(a). It is two
peaked in the range of optical bistability. The specific
feature obvious from Fig. 9(a) is strong asymmetry of the
peaks.

A. Theory of the shape of the stationary distribution

The noise under consideration is additive for the phase
of the DCMS [see (18) and (19)], and in contrast to the
case considered in Sec. II and described by Eqs. (2) and
(3) the fiuctuations of IT are due to the phase fiuctuations
only. The statistical distribution of the phase p (P) is of
the form

III. EFFECTS OF MODULATION
OF THE TRANSMISSION

BY AN ADDITIONAL LIGHT BEAM
WITH RANDOMLY VARYING INTENSITY

p (P)=Z 'exp[ —U (P)/D ],

(p)
Z = d exp

m

(20)

In the present section we analyze the effects of modula-
tion of an optically bistable DCMS by radiation from an
additional (to that causing bistability) unstabilized laser
(the He-Cd laser in Fig. 2). The latter caused fiuctuating
heating of the semiconductor film. The intracavity in-
terference of the modulating radiation was negligible
because the beam was inclined with respect to the cavity
axis. Therefore heating was proportional to the
modulating-light intensity I (t).

It follows from the above model of the dynamics of the
DCMS that the transmission of the coherent radiation of
the Ar laser in the presence of the modulating radiation
is described by Eq. (1), while Eq. (2} for the phase gain in
the DCMS takes the form

(18)

~ C

~ ~
0 0

~ ~ 0

~ Sg o

~ ~
'~

I =. .v 4 ~ &c MAp t&

(we note that just as for the potential U(x(P)) (4), the

[we assume I ( t) to be properly normalized].
The direct measurements of I (t) showed its spectral

density of fluctuations to be flat up to frequencies =20
kHz. Therefore in (18) we set the function I (t) equal to
the sum of the regular term I and the white Gaussian
noise 5I (t):

FIG. 8. Sequential values of the transmitted-light intensity

IT(n At), 4t = 10 msec, for the DCMS driven by an additional

fluctuating light beam.
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(a)
P(I )=K(I )exp[ —V(I )/D ], V(I )= U ($(I ))

(22)

K(IT)=IT 'Z', IT=IN($(IT)) .
P=P(IT )

a

j, s

FIG. 9. (a) Experimentally measured statistical distribution
P (IT) for the DCMS driven by an additional fluctuating light
beam for dift'erent values of the intensity of the incident light (in
arbitrary units): I=8.4, 8.6, 8.8, 9.0, 9.2 for the curves a —e.
(b) P (IT) for a Fabry-Perot cavity described by Eqs. (1), (21),
and (26) (the finesse F =0.9) for diA'erent values of the parame-
ter I in Eq. (18): I=2.56, 2.57, 2.58, 2.59, 2.60 for the curves
a —e.

potential U (P) is proportional to P for ~P~ ))1, there-
fore exp[ —U (P)/D ] falls down rapidly for the large
~(t ~). In the range of optical bistability the potential
U (P ) has two minima lying at P =P, 2 where P, z are the
stable solutions of Eq. (18) with I (t) =I

The quantity investigated experimentally is not p (P)
but the distribution of the transmitted-light intensity
P (IT). It is substantial for the noisy modulation de-
scribed by (18) and (19) that P (IT) as determined from
the experiment [and equal by definition to the relative
number of the discretized IT(t) lying between IT b,IT—
and IT+BIT] is the coarse-grained "bare" distribution
P(IT):

(23)

(the subscript k in ITk' numbers the different values of
IT"). In the case (23) P (IT) has intense peaks at IT,
and/or IT2. The shape of the ith peak near the maximum
is Gaussian [cf. Eq. (11)]with the characteristic width

d2p
o; =2Dm (24)

dIT

The expression (24) is simplified in the important case
when in (1) and (2) M(P) =aN(P) (a=const), i.e., when
the power absorbed in the semiconductor film is simply
proportional to the transmitted-light intensity:

o; =a rp;(p; —1), p, = d lnIT

dlnI rT,.
'

Both the exponential and the prefactor in (22) are
singular. Since on physical grounds the function N(P) is
periodic, there are at least two extreme points P=P" in
each 2ir interval of P where dN/dP vanishes. The func-
tion K (IT) diverges for IT =IT"=IN($—")corresponding
to the extrema of N(P). In the general case of N(P) par-
abolic near the extrema K(IT) ~ ~IT IT'~ —' . Obvious-
ly, K(IT) vanishes identically for IT lying outside the in-
terval between the minimum and maximum of IN(P).
(We note that both for standard models of a bistable
Fabry-Perot cavity [6] (see also below) and for the model
of the DCMS as a plane-parallel three-layer system [15]
the function N(P) has only two extrema, the absolute
minimum and maximum, within a period. )

The values IT=I&'-' are also singular (branch) points of
the potential V (IT). As a whole V(IT) is a multibranch
function since the P- axis is mapped by the relation
IT=IN(P) onto the finite interval between the minimum
and maximum values of IT'. The "sequential branches"
of V(IT) correspond to the sections of U (P) for succes-
sive intervals of P. For the optically bistable DCMS
V(IT) has two minima and one local maximum. We
stress that the extrema can lie on different branches of
V(IT) (see Fig. 10).

The distribution P(IT) for sufficiently small noise in-
tensity D has pronounced maxima for IT =I»,I», cor-
responding to the minima of V (IT), and it also has singu-
larities for IT=IT". The structure of the physically ob-
servable coarse-grained distribution P (IT) (21) depends
on the interrelation between the interval of the coarse-
graining b IT, the distances ~IT" IT; ~

(i = 1—, 2) and
+D . The most simple structure arises for

1 IT+ AIT
P (IT ) = J P(IT )dIT ~(P)=aN(P) .

(25)

where
Here p, is determined by the transmission in the absence
of noise, i.e., by the input-output characteristic IT(I) of
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Iz '"' are the smallest and the largest values of Iz". ), and
these are the respective peaks of P (Iz. ) which would be
expected to merge pairwise for not too small noise inten-
sities D . The resulting peaks would be noticeably asym-
metric, with their "external" wings, i.e., those on the side
of the nearest edge of the distribution [P (Iz )=0 for
Iz. (Iz '"' bI—r or Iz )Ir '"'+b, Iz.], being much more
steep than the "internal" ones.

B. Discussion of results

FIG. 10. (a) Multibranch effective potential V(I&) for the dis-

tribution of the intensity of light transmitted by a nonlinear
Fabry-Perot cavity described by Eqs. (1), (21), and (26). (b) The
corresponding effective potential U (P) for the distribution
over the phase.

the DCMS, and can be thus measured in the independent
experiment [although this is not trivial in view of the
shift of the input-output characteristic due to the finite
average heating of the film (~ I ) by the noisy radiation].

In addition to the Gaussian peak (or two peaks) at I~;
with the area close to unity, there arise also strongly
asymmetric peaks in P (Ir) at Iz&' with the shapes de-
scribed by the function 6(x + b, )&x +6
—6(x —h)&x —b„where b, =BI& and x =+[I&—I&&~]

[the signs + and —refer to the peaks that correspond to
the minima and maxima of N(P), respectively]. The
heights of these peaks are proportional to the products of
the large factor (bIr) '~ and the exponentially small
factors proportional to exp [

—[ V (Iz'k') V,.„]/D }, —
where V;„=min( V(Izt), V(Izz)), and their areas are
small.

If D' exceeds or is of the order of ~Ir, 2
—I~&'~, the

peaks of the two types overlap and the resulting distribu-
tion P (Iz ) has one distinct peak (or two distinct peaks if
the system is in the range of the kinetic phase transition).
For high-quality bistable cavities the values of I~, and Iz-2
often lie close to Iz'. '"' and I~™x},respectively (Iri '"' and

The above qualitative picture agrees with the experi-
mental results displayed in Fig. 9(a). We have observed
two distinct peaks in P (Iz). The ratio of their intensities
depended crucially on the intensity of the coherent in-
cident radiation I: for relatively small I the peak near I&-,
was dominating, while for relatively large I, vice versa,
the dominating peak was that near Iz-2. In the intermedi-
ate range (it was not too narrow because the noise intensi-
ty D was not very small) both peaks were seen well.
The external wings of the peaks are very steep indeed,
and the peaks corresponding to the singularities of IC (Ir)
are not resolved.

It is seen from Fig. 9(a) that the widths of the peaks of
P (Iz ) corresponding to higher transmission exceed
these of the lower-transmission peaks by several times.
This is in qualitative agreement with the expression (25),
since for the actual input-output characteristic pz was no-
ticeably higher than p, (both p, and p2 were less than 1

for almost all I). Also in qualitative agreement with Eq.
(25) the widths of the peaks increased with I approaching
the value where the corresponding stable state (and the
peak itself) disappeared.

Since we do not have a quantitative model of the
DCMS, we could not give a detailed theoretical descrip-
tion of the curves in Fig. 9(a). To illustrate the evolution
of P (Iz. ) the calculations have been performed for a
model nonlinear Fabry-Perot cavity. Such calculations
are interesting in particular because of their immediate
relevance to many actual optically bistable devices. In
the model used the nonlinearity of the Fabry-Perot cavity
has been assumed to result from the linear dependence of
the intracavity reAection on light intensity, and relaxa-
tion of the intracavity phase gain has been described by
the Debye equation (2). The functions M(P) and N(P) in
(1) and (2) for such a model take the form [6]

M(P) = A~[1+Fsin (P/2) ]

N(P)= Az[1+F sin (P/2)]

where F is finesse.
The results obtained for the model (26) are shown in

Fig. 9(b). The multibranch potential is shown in Fig.
10(a). The theoretical and experimental curves in Fig. 9
are obvious to be very similar in structure, and the evolu-
tions of the theoretical and experimental distributions are
similar as well. This demonstrates the universality of the
observed qualitative feature of the statistical distribution
of I~ for noise-driven bistable cavities.

It is obvious that the activation energies AU
&

and
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b, U 2 of the transitions 1~2 and 2~1 (the states 1 and
2 correspond to the lower and higher transmission) would
decrease and increase with the incident-light intensity I,
respectively, and tend to zero for I approaching the
upper and lower boundaries of the range of bistability.
These arguments are confirmed by the data on ln8'&2 and
ln 8 2] shown in Fig. 1 1.

The activation energy EU, is related directly to the
ratio of the stationary distribution over the phase p (P)
in its local minimum (b, to p (P;). It is the feature of the
branching potential V(I7 ) that the latter is not the case
for P (IT ): the logarithm of the ratio of P (IT; ) to
P (IT ) in its local minimum is much less than the
logarithm of 8' '. The former logarithm is not equal to
b, U,. /D, but approximately equals [ V(IT")

)—V(IT;)]/D &&b, U;/D, where IT"' is the value of
the transmitted-light intensity for which the lowest
branches of the potential V(IT ) cross one another [see
Fig. 10(a)].

7.5

6.0

g 5

0

8.0 8.3 8.6 8.9

I (arb. units)

FIG. 11. Measured values of lnW» (solid squares) and lnW»
(open squares) vs the incident-light intensity I.

IV. CONCLUSION

It follows from the above results that the double-cavity
membrane systems provide an opportunity of the experi-
mental investigation of noise-driven dynamics in real
physical objects: passive optically bistable systems. The
effects of various types of noise with easily varying inten-
sity and power spectrum can be studied here. Such
universal bistable systems phenomena as fluctuational
transitions between the stable states, double-peak statisti-
cal distribution, and the onset of zero-frequency peak in
the power spectrum of the transmitted-light intensity in
the range of the kinetic phase transition cannot only be
observed, but can also be fully investigated. On the other
hand, the investigation of Auctuation phenomena and the
comparison with theory have demonstrated the possibili-
ty of gaining a deeper insight into the underlying physics
of the system and revealed a lot of specific features (and
sometimes quite unusual ones, such as, e.g. , the multi-

branch "potential" for the statistical distribution) of fluc-
tuations under optical bistability.

We note in conclusion that, for passive optically bist-
able devices, it is their "internal" variables that fluctuate
because of the external noise, while the quantities investi-
gated directly are the characteristics of the transmitted
radiation. It has been demonstrated above, however, that
there exists a set of complementary experiments which
makes it possible to avoid ambiguity and to reveal the
characteristics of the system itself.
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