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The Ruijgrok-Cohen (RC) mirror model [Phys. Lett. A 133, 415 (1988)] of a Lorentz lattice gas, in
which particles are reAected by left and right diagonally oriented mirrors randomly placed on the sites of
a square lattice, is further investigated. Extensive computer simulations of individual trajectories up to
2 steps in length, on a lattice of 65 536X65 536 sites, are carried out. This model generates particle tra-
jectories that are related to a variety of kinetic growth and "smart" (nontrapping) walks, and provides a
kinetic interpretation of them. When all sites are covered with mirrors of both orientations with equal
probability, the trajectories are equivalent to smart kinetic walks that effectively generate the hulls of
bond percolation clusters at criticality. For this case, 10 trajectories were generated, yielding with
unprecedented accuracy an orbit size-distribution exponent of ~=2. 1423+0.0003 and a fractal dimen-
sion of df =1.75047+0.00024 (without correcting for finite-size effects), compared with theoretical pre-
dictions of —' =2.142 857. . . and 4, respectively. When the total concentration of mirrors C is less than

unity, so that the trajectories can cross, the size distribution of the closed orbits does not follow a power
law, but appears to be described by a logarithmic function. This function implies that all trajectories
eventually close. The geometry of the trajectories does not show clear self-similar or fractal behavior in
that the dependence of the mean-square displacement upon the time also appears to follow a logarithmic
function. These trajectories are related to the growing self-avoiding trail (GSAT) introduced by Lykle-
ma [J. Phys. A 18, L617 (1985)], and the present work supports the conjecture of Bradley [Phys. Rev. A
41, 914 (1990)] that the GSAT (the RC model with C =

—,
'

) is not at a critical point. It is observed that

when C & 1, the trajectories behave asymptotically like an unrestricted random walk, and so for compar-
ison the RC model in the random walk or Boltzmann approximation (BA) is also studied. In the BA, the
size distribution of returning trajectories and the geometric properties of open trajectories are investigat-
ed; the time dependence of the mean-square displacement is derived explicitly and is shown to exhibit an
Ornstein-Uhlenbeck type of behavior.

I. INTRODUCTION

In this paper we consider the Ruijgrok-Cohen (RC)
Lorentz lattice-gas model [1],which is defined as follows.
A two-dimensional square lattice (of unit spacing) is pop-
ulated with double-sided mirrors at the lattice sites (ver-
tices). These mirrors have diagonal orientations of either

tr/4 ("left" ) o—r +sr/4 ("right"), and are placed ran-
domly with probability or concentration CL and Cz, re-
spectively, where CL+Cz ~ 1. Particles (photons) move
along the bonds (edges) of the lattice at unit velocity, and
undergo right-angle rejections when they encounter a
mirror. Typical trajectories of a single particle are shown
in Figs. 1(a) and 2(a). As can be seen in these figures, a
trajectory may close on itself, forming an "orbit." Furth-
ermore, a given bond will never be traversed for a second
time in the opposite direction, as there is no way a parti-
cle can be reAected back on itself, while a bond can be
traversed by a particle more than once in the same direc-
tion, but only after the trajectory has closed on itself.

This model was introduced by RC [1] as a lattice ver-
sion of the Ehrenfest wind-tree model [2,3], a type of
Lorentz gas in which a particle moves through a set of

randomly placed, fixed scatterers in the plane. The RC
model is closely related to a model proposed by Grim-
mett [4], a tiling model introduced by both Smith [5] and
Roux and co-workers [6,7], a model of direction-rotating
scatterers introduced by Gunn and Ortuno [8], and a
similar model of Gates [9]. It is also closely related to a
variety of kinetic-walk models and to processes that
effectively generate hulls of percolation clusters [10—13]
as will be discussed below. The RC model can be
thought of as a kinetic lattice-gas formulation to these
various kinetic-walk and tiling models.

In the RC model, the particles undergo deterministic
motion in a random medium, in which the randomness
(here, the position and orientation of the mirrors) is per-
manently frozen in. It thus difI'ers from models where
particles dift'use stochastically in a nonhomogeneous sys-
tem, such as the di6'usion of a particle on a percolation
cluster (the "ant in the labyrinth" ) [14,15], or to systems
that contain a permanent structure which biases the ran-
dom motion of the particle [16,17]. In the RC model, the
trajectory of the particle is completely determined by the
fixed positions of the mirrors. Of course, the model has
the stochastic component of how those mirrors are

2410 1991 The American Physical Society



LORENTZ LATTICE-GAS AND KINETIC-WALK MODEL 2411

2/d
(b,r (s)) —b, s f for s —+~, (2)

where b, is a constant, and the brackets indicate an aver-
age over many pairs of points on one or more trajectories
whose size (total number of steps) is much greater than s.
Thus, the motion of a test particle on open trajectories
obeys a kind of enhanced diffusion, because the mean-
square displacement grows faster than the time (-s ~ ).
On the other hand, if one averages over orbits of all sizes
including small ones, or equivalently puts particles ran-
domly throughout the system without selecting the large
or "incipient" percolating orbits only, then the average
mean-square displacement of all particles (b,r (s) ) be-

placed and where the trajectory is started, and a mean-
ingful characterization of this system will require an
average over a large number of realizations.

The RC model (and its equivalent kinetic walks) has
been investigated in a variety of situations. When the
concentration of mirrors is low, the motion of the particle
through the system can be approximated by a simple ran-
dom walk, in which the trajectory either continues
straight or randomly turns +~/2 (with the given proba-
bilities), but does not "remember" what happened at that
site in a future collision. In the language of kinetic
theory, this is the Boltzmann approximation (BA) to the
scattering problem. The fractal dimension df of the walk
is equal to 2 as in simple Brownian motion. The depen-
dence of the diffusion coe%cient upon Cl and C~ in this
approximation has been derived by Kong and Cohen
[18—20]. Other kinetic-theory approximations have been
investigated by Ernst, van Velzen, and Binder [21,22].

In the limit of 100% mirror coverage and symmetric
orientation, i.e., CI =C~ =

—,', the trajectories are
equivalent to a growing self-avoiding trail (GSAT) [also
called a kinetic growth trail (KGT)] on the Manhattan
dual lattice (or the L lattice), and are isomorphic to a
growing self-avoiding walk (GSAW) [also called a kinetic
growth walk (KGW)] on the Manhattan lattice
[12,13,23 —25]. These representations are illustrated in
Fig. 1. Such walks, which never get trapped, except to
close at the starting position, are types of smart kinetic
walks (SKW) [26] or indefinitely growing self-avoiding
walks (IGSAW) [27]. The orbits have the same statistics
(i.e., probability of occurence) as paths that follow the
hull or perimeter (either internal or external) of a bond
percolation cluster on a square lattice at criticality
[4,18,25]. It follows that all trajectories (on an infinite
lattice) eventually close, and that the size distribution of
the orbits follows

P(s)-a, s' ' for s~~,
where P (s) is the probability that a trajectory closes into
an orbit of s steps and a

&
is a constant, with ~ given by

the two-dimensional (2D) percolation hull value,
Furthermore, the long trajectories are fractal with dimen-
sion df =—' [28—33]. Here the fractal dimension is
defined by the asymptotic relation between the mean-
square distance ( b, r ) between two points on a given tra-
jectory, and the number of steps s separating them [34]:

(c)

FICx. 1. (a) A typical orbit of the RC model when
CL+ C~ =1. In (b), the mirrors are represented as bonds on the
percolation lattice (inner bonds) and its dual (outer bonds),
while in (c) they are represented as two di6'erent orientations of
tiles [5—7]. In (d), the trajectory is also represented as a growing
self-avoiding trail (GSAT) on a Manhattan covering lattice, in
which the allowed directions of the "streets" alternate at every
block. In a COMSAT, the particle can revisit a site but cannot
traverse a bond more than once. In (e), the walk is shown as a
growing self-avoiding walk (GSAW) on the Manhattan lattice.
In this walk, the particle must follow the allowed directions of
the Manhattan lattice and cannot visit a site more than once. In
both (d) and (e), when there are two ways that the particle can
continue, the particle chooses each with equal probability when
Cl = —'. The underlying percolation lattice is shown by dots.
The net e6'ect of these two walks is to generate paths around
random percolation cluster [12,13]. In all representations, there
are 15 steps or places where one of two possible choices must be
ITlade.

comes proportional to s as in classical diffusion, where
the bar indicates an average over all possible starting
points on the lattice. This diffusion, however, is anoma-
lous in that the probability distribution is not Gauss-
ian [28].

When CL+Cz &1, the trajectories are no longer iso-
morphic to percolation cluster hulls in an obvious way.
In this case, Kong and Cohen [18] have found (by com-
puter simulation) that (h, r )-4Ds still holds, with the
diffusion coei5cient D dependent upon the concentration
of the mirrors. However, many questions remain: Do all
these trajectories ultimately close into orbits when
Cl +C~ ( 1? Are the individual trajectories fractal?
What is the nature of the size distribution of the orbits?

To begin to answer these questions, we have carried
out extensive computer simulations of the RC model for
various values of the mirror concentration. In contrast
to the work in Ref. [18],here we consider only individual
trajectories. These trajectories were generated on a blank
(undetermined) lattice by a kinetic growth algorithm in
which the probability of the particle continuing straight
is 1 —C~ —C~, and of making a turn is CI or C~. Once a
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site has been visited, a mirror (or straight marker) is
placed there for the duration of the given trajectory. It
can be seen that this process generates trajectories with
the same probability as they would be found in a system
already populated with mirrors, as considered in Ref.
[18]. We also made use of a programming technique [10]
that allows the simulation of growth processes on very
large virtual lattices (here 65 536 X 65 536) using a
moderate size computer (Apollo DN 4000, with 8 Mbyte
of random-access memory). With a lattice this large, we
were able to generate open and closed trajectories of up
to 2 = 16 777 216 steps without the trajectories ap-
proaching the system boundary. Thus, we were able to
get statistics unbiased by boundary effects, and subject
only to a finite-size cutoff of a very large value. More de-
tails of the simulation method, as well as the data
analysis, are given in Sec. II.

We considered only the symmetric case where
CL =C~:—C/2. First of all, we carried out a new study
of the case C =1, in which case the trajectory is a SKW
that generates the hull of a bond percolation cluster, as
shown in Fig. 1. This model serves as a comparison for
the other cases, as well as a check of our programming
and analytical techniques. A previous study of percola-
tion hulls by one of us [31] considered site rather than
bond percolation. Grassberger [11] has carried out a
simulation of bond percolation hulls; however, it was of a
somewhat different nature and does not provide the infor-
mation we are interested in. Here we have simulated 10
trajectories, using a cutoff of 2 '=2097 152 steps, in con-
trast to the 30 000 trajectories with cutoff of
2 =1048576 that were used in Ref. [31], for example.
The present work represents the results of a significant
amount of computer time (many months) as a total of
well over 10" particle steps were simulated. This work
yields ~=2. 1423+0.0003 for the size distribution ex-
ponent, which is consistent with the theoretical value of
—"=2. 142 857. . . and d =1.75047+0.00024 for the
fractal dimension, consistent with the theoretical value
[30,32] of —,'. The slightly high value of df can be attri-
buted to a "finite-size" effect of the size cutoff, which pro-
duces a measurable decrease in (Ar ) down to separa-
tion of less than 2' steps. The details of the work for
C = 1 are given in Sec. III.

When C &1, some of the sites have no mirrors where
the particle trajectories cross, as shown in Fig. 2. In this
figure, we also show the correspondence of the RC model
to a generalized tiling model [5—7]; besides the left and
right tiles, one must add "crossing" tiles for the straight
segments. When C &1, we find that the trajectories are
not simply fractal. For very long times, the mean-square
displacement appears to approach a linear function of
time multiplied by a logarithmic function, which implies
that the trajectories are not self-similar (fractal). Second-
ly, we find that the size distribution of closed orbits also
is not described by a power law, but again appears to
show logarithmic behavior. This logarithmic function
implies that all trajectories eventually close.

The trajectories for the RC model are essentially grow-
ing self-avoiding trails [35] (GSAT). A self-avoiding trail
(SAT) is a path that can cross itself at lattice sites, but

(a) (c)

%=X-p'

FIG. 2. (a) An example of the RC model with C & 1. Now
there are sites with no mirrors, where trajectories will cross. (b)
The representation showing the mirrors as percolation bonds on
the underlying lattice and its dual lattice. (c) The equivalent til-
ing representation, where new "crossing tiles" (where the trajec-
tory crosses) must be put at the site corresponding to no mirror.

cannot traverse a given bond more than once [25], and a
growing SAT is one that is produced in a step-by-step
fashion. It can be seen that in the growth algorithm that
we use to generate trajectories for the RC model, the mir-
rors (which are placed the first time a site is visited)
guarantee that when that site is revisited, the trajectory
will always turn to avoid recrossing previously traversed
bonds, except after returning to the origin. When C = 3,
the RC model corresponds precisely to the standard
GSAT introduced by Lyklema [35], in which the walker
steps with equal probability (—,') in each of the three al-
lowed directions —forward, right, or left —after visiting
a blank site. Lyklema believed the resulting walks to be
fractal with 2/df =1.070+0.006, based upon trails of
2000 steps. While our data agree with Lyklema's for tra-
jectories up to that size, they do not bear out his extrapo-
lation for larger trajectories. Rather, our conclusions
about the GSAT agree with a recent prediction of Brad-
ley [23], who showed that the GSAT obtains for a self-
attracting SAT at a temperature that is somewhat outside
the transition temperature found by Meirovitch and Lim
[36]. (A self-attracting SAT is a model for a polymer
chain in which there is a short-ranged intermolecular po-
tential between the particles along the chain. ) From this
result, Bradley concludes that the GSAT is not at a criti-
cal point, implying that df should approach 2 for long
walks, and the size distribution should not show a
power-law behavior —as we have observed. The results
for C & 1 are presented in Sec. IV.

The simulations of the particles when C & 1 suggests
that over large length scales, the trajectories act (in some
sense) like an unrestricted random walk. To investigate
that analogy, we have also considered the RC model in
the Boltzmann approximation (RC-BA), for the case of
C =1. Here P (s) is the first-passage return probability in
s steps, and is analogous to the orbit-size distribution in
the RC model. P(s) can be found exactly by means of a
recursion relation, and does not satisfy (1) but instead is
described by a logarithmic function. In fact, we show
that a logarithmic function of the same form describes
the P(s) of the RC model when C (1. We also carried
out computer simulations of the RC-BA model to study
the geometrical properties of the trajectories. While the
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random-walk nature of this model implies (2) should be
obeyed with df =2 for large s, we find that the (necessary}
use of a cutoff (at s ' =2 ') again leads to measurable
effects on the behavior of the mean-square displacement
at large separations.

We have not considered cases where CLACK, but
leave this for future work. We have calculated the com-
plete time dependence of the mean-square displacement
for general CL and Cz in the RC-BA model, and find
that this model represents an Ornstein-Uhlenbeck pro-
cess [37]. In the limit of large times, the mean-square dis-
placement is linear in the time with a diffusion coefficient
in agreement with previous work [18—20]. These results
are presented in an appendix. Finally, the conclusions
and suggestions for further work are presented in Sec. VI.

II. SIMULATION PROCEDURE

A. The trajectory-generating algorithm

Individual trajectories were generated by a trajectory
growth algorithm, in which the lattice starts out com-
pletely blank (undetermined), and mirrors are placed at
lattice sites as they are visited by the particle. The four
directions are labeled 0, 1, 2, and 3 in counterclockwise
order. The effect of a right mirror is to change a direc-
tion d into (1 —d) mod 4, while the effect of a left mirror
is to change d into 3 —d. (We note that, in contrast, in
the Gunn-Ortuno [8] model, a clockwise-rotating scatter-
er changes d into (d —1) rnod4 and a counterclockwise
rotating scatterer changes d into (d +1) mod 4. These
two models can be shown to be equivalent only when
CL =C~ =

—,'. )
The particle is started at the origin of the blank lattice,

with unit velocity in an arbitrary direction (say 0). It
then moves to the nearest neighbor [coordinates (1,0)],
where a left or right mirror is placed with the appropriate
probability, changing the direction of the particle accord-
ingly. When CL +C~ &1, there is also a possibility that
no mirror is placed at the site, and the particle continues
straight. The state of each site (left mirror, right mirror,
or no mirror) is fixed for the duration of the simulation of
each individual particle's trajectory in the (not unlikely)
event that the site is revisited by the particie. The pro-
cedure is repeated until the particle is back at the origin
with a velocity in the direction 0, or until the upper size
cutoff is reached.

Although we only put down mirrors as we go along,
the statistics are clearly the same as if the mirrors existed
previously, since the mirrors are placed with independent
probability, and once determined, are not changed for the
duration of each particular trajectory.

B. Data analysis procedure

The size of a trajectory s is defined as the length of the
trajectory or the number of steps along the lattice bonds.
It is thus equivalent to the time elapsed, since the velocity
is assumed to be unity. The statistics of s were analyzed
by making a histogram, as follows. If a trajectory has
closed on itself before the cutoff was reached, the occupa-
tion number of a bin representing the size of the trajecto-

ry was increased by 1. We used base-2 logarithmic bins
representing orbit sizes in the range of 4—7, 8 —15,
16—31, . . . steps (index 2, 3, . . . ). That is, the occupa-
tion number of the bin B„' is equal to the number of orbits
whose size s is in the range 2"~ s & 2"+ '. The normalized
occupation is given by B„=B„'/X,where N is the total
number of trajectories simulated (i.e., realizations). Thus
B„ is the probability that the size falls in the nth bin, and
is related to P (s) by

2n +1

8„= g P(s) . (3)

The value of 8', at the cutoff n =n *=logz(s*) is equal

to the number of trajectories that have just closed, or are
still open, when s reaches s*. The normalized value
8 + =8' + /N is related to P (s) by

8,= g P(s) .

$ =2
(4)

In the simulations presented here, we used cutoffs of
n =21 and 24, resulting in 20 or 23 values of 8„(as
80 =8

I =0).
We define N(s) as the probability that a trajectory

closes in s, or greater, steps:

N(s) = g P (s') .
S =S

When s=2", for n =2, 3, . . . , we write N„=N(2").
This quantity can be found from the B„by

8„
n'=n

(6)

and N g=B,.
If the size distribution (1) holds, then it follows that

N(s}-a2s ' for s —+ oo, (7)

=log2(1+8„ /N„+, ) . (8)

If N(s) obeys (7), then X„~r—2 as n ~ oo. However,
the converse of this statement is not necessarily true: if
X„~const, it does not necessarily follow that N (s) -s
since N(s} may also contain logarithmic terms. The
latter would be seen by a very slow approach of X„ to a
constant value. In fact, we will find this behavior occurs
in some cases below.

Note X„ is the slope of the line connecting the two
points at n and n +1 on a plot of logN„versus n, and is
consequently a sensitive characterization of the size dis-
tribution behavior. However, X, is susceptible to numer-
ical Auctuations and thus requires quite precise data
[compared with a simple log-log plot of N (s) versus s].

When (7) is applicable (i.e., the case C = 1), we will also
consider a "running average" of the values of X„,starting

where a2=a&/(r —2). To determine w from N„, we in-
troduce the following quantity:

X„=log2(N„ /N„+, )
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from the maximum, defined as follows: X +,=X +

X „=(X, , +X + )/2, or in general

X„= 1

n* —n

n —1

g X„
n'=n

1 N„
n* —n N g

L

Thus X„ is the slope of the line connecting the points at n
and n*, on a plot of log21V„versus n. It follows that X„
also tends to r —2 for large n if N(s) follows (7); however,
this quantity has smaller fluctuations than the X„because
of the larger difference between the numerator and
denominator in the logarithmic function in (9).

The trajectories that remained open at the cutoff were
used to study the geometric or fractal properties. For
these trajectories, we created a list of the x and y coordi-
nates of every point 64 steps apart. For a cutoff of
s *=2 ', this list contained 2' + 1 = 32 769 entries (in-
cluding the coordinates of the starting point). The list
was analyzed as follows. First the square distances be-
tween each of the 32 768 adjacent entries on the list were
averaged, yielding the mean-square distance of points
separated by 64 steps on the trajectory, (b, r (64) ). Then
the distances between the 32 767 pairs of coordinates two
apart on the list were averaged, yielding (b, r (128)), the
distances between the 32 769—4= 32 765 pairs of coordi-
nates four apart on the list, yielding (b,r (256) ), and so
on. Note that while the final value ( hr (2 ') ) made use
of only a single measurement between the first and last
points on the list, the penultimate value (b,r (2 ) ) made
use of distances between 16385 pairs of points. For
128~s +2 we thus used overlapping pairs of points
from the list. In total, 458769 distance measurements
were used from each trajectory, resulting in 16 values of
( b r (s) ), for points separated by s =2,2, . . . , 2 ' steps.
Likewise, for a cutoff of 2 the list for each trajectory
contained 262 145 entries, from which 4458 868 square
distance measurements were made, and yielded 19 values
of (br (s)).

To analyze these measurements of ( b, r (s) ), we intro-
duce the quantity

Y(s)—:log2[( b, r (2s) ) /(b, r (s) ) ], (10)

C. Image storage

which is the slope of the line connecting the points at s
and 2s on a plot of log( hr (s) ) versus logs. If Eq. (2) is
valid, then Y(s)~2/df as s~ oo. Note that the limiting
behavior of X and Y that follows from (1) and (2) differs
by exactly unity if the hyperscaling relation 2/df =w —1

is valid. We also introduce the notation Y„=Y(2") and
( b,r„)—:( b,r (2")), and write (10) as

Y„=log&[(b, r„+, ) /(b, r„)] .

determine the point s position within that block. Actual
memory was not assigned to a block until the particle en-
tered it. In order to keep track of the memory assign-
ments, a 256 X 256 array was used as a "lookup table" to
tell where in the memory that block was assigned. This
array gives the upper part or the so-called "offset" of the
actual memory address, while the lower part of the ad-
dress comes from the lower 8 bits of the x and y coordi-
nates. Actually, only one-dimensional arrays were used,
and the application of bit shifting, masking, etc. , made
the whole process very fast and eScient —nearly the
same speed as a typical lookup in a standard two-
dimensional array.

The advantage of this scheme is that only a small frac-
tion of the memory for a 65 536 X 65 536 array is actually
used. Allowing two bits for each lattice point for the four
states —blank (unspecified), left mirror, right mirror, and
no mirror —this array would require 4 X 65 536 /8
=2 '=2X10 bytes of fast memory (one byte=8 binary
places), which is available on only the largest existing
computers. However, when a typical simulation of the
RC model is carried out, only a small region of the lattice
is actually visited. This is partly because the trajectory is
ramified, but also simply because there is a tendency for
the trajectory to go off far in just one direction from the
origin and never visit other parts of the lattice. By using
our storage scheme, we do not have to reserve memory
for these areas that are never visited.

Another advantage of this memory allocation pro-
cedure comes in resetting the lattice to the blank condi-
tion, which must be done after each trajectory is complet-
ed. For a large array, this operation itself would take a
significant amount of time, and would be required for
each trajectory, even very small closed ones. In our
method, only the blocks that have been entered by the
trajectory need to be reset when the trajectory is com-
plete, significantly reducing the average time required for
this operation.

Typically, slightly more than one byte of memory in
the main data array was used for each step of a trajecto-
ry, for long trajectories. For example, for the simulations
of trajectories that reached the cutoff of 2 '=2097152
steps at C =1, about 2.4 Mbyte of memory were used
(about one-thousandth of the memory that would be re-
quired for the entire lattice). Since a byte stores four data
points, this memory can store about 10 points. Thus,
about 20% of the allocated memory was assigned to oc-
cupied sites —a fairly high percentage. An additional ar-
ray of 65 536 32-bit integers was used for the block look-
up table. The latter can be thought of as the memory
"overhead" for this procedure, and can be seen to be rela-
tively small.

III. RESULTS FOR C = 1

The image storage (compression) scheme introduced in
Ref. [8] was implemented here as follows: a virtual lattice
of 65 536 X 65 536 sites was used. This lattice was con-
ceptually divided into 256 X 256 blocks of 256 X 256 sites
each. Of the 16 bits of the x and y coordinates of each
lattice point, the upper 8 bits were used to determine the
block in which the point falls, while the lower 8 bits

A. Orbit-size distribution

For C =1 we generated a total of 10 trial trajectories,
using a cutoff of s*=2 ' steps. Here we carry a detailed
analysis of the data and its errors. We note that these
data may be useful for future studies of finite-size correc-
tions.
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TABLE I. Statistics from the simulation of 10 trajectories of the RC model with C = 1. 8„(n (21)
is the fraction of orbits whose size (total length) was in the interval (2",2"+'—1), while B» is the frac-
tion of trajectories that did not close at the cutoff n =21. N„ is the upper cumulative distribution, and
X„and X„are estimates of ~—2, as explained under Eqs. (8) and (9). The numbers in parentheses
represent the errors in the last digit(s).

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

0.125 46(37)
0.099 30(34)
0.080 13(28)
0.068 87(24)
0.060 48(22)
0.054 10{22)
0.048 74(23)
0.043 81(20)
0.039 88(18)
0.035 87(19)
0.032 00(14)
0.029 28(20)
0.026 51(18)
0.023 97(17)
0.021 56(16)
0.01968(14)
0.017 86(14)
0.016 35(13)
0.014 72(10)
0.141 43(34)

1.000 00
0.874 54(37)
0.775 24(40)
0.695 11(42)
0.626 24(50)
0.565 76(51)
0.511 67(51)
0.462 93(53)
0.419 12(47)
0.379 23(49)
0.343 36(50)
0.31136(48)
0.282 08(42)
0.255 58(43)
0.231 60(40)
0.21004(36)
0.19036{35)
0.172 50(34)
0.156 15(33)
0.141 43(34)

0.1934(6)
0.1739{6)
0.1574(6)
0.1505(6)
0.1465(5)
0.1450(6)
0.1444(7)
0.1434(6)
0.1443(7)
0.1433(8)
0.1412(6)
0.1425{9)
0.1424(10)
0.1421(10)
0.1410(10)
0.1419(10)
0.1421(11)
0.1437(12)
0.1428(11)

0.1485(2)
0.1460(2)
0.1444(2)
0.1436(2)
0.1431(2)
0.1429{2)
0.1427(2)
0.1426(3)
0.1425{3)
0.1423(3)
0.1422(3)
0.1423{4)
0.1423(4)
0.1423(5)
0.1423(5)
0.1426(6)
0.1429(7)
0.1433(8)
0.1428(11)

Total 1.00000

s=4 s=12

2
24
27

s=8
8

/ L

12
210

p' g Q 6
212

FIG. 3. Probability of generating orbits of less than s =16
steps in length, for the RC model with C =1. In each weight,
the power of 2 in the denominator rejects the probability that
the mirrors occur in the given orientation (probability ~

for

each mirror), and the numerator gives the number of distinct
ways the given orbit (including rotated and reflected versions)
can be generated.

In Table I we list the data on the orbit-size distribu-
tion. The errors listed in this table were calculated as fol-
lows: Of the 95 separate computer runs, 66 were of ex-
actly 10000 trajectories each. For these 66 runs, we cal-
culated the standard deviation of each quanity then di-
vided by &66 to find the expected error. This error was
then extrapolated to the total of 10 trajectories by multi-
plying it by (6.6X 10 /10 )'~ . In other words, we used
the full 10 trajectories to find the mean values, and the
6.6X10 trajectories in the uniform runs to estimate the
errors in the mean.

The first entry gives the fraction of trajectories in each
bin, B„.We can check the first two entries of B„using an
exact enumeration of the possible orbits, which is shown
in Fig. 3. The only contribution to Bz is from a simple
square orbit (s =4), which occurs with probability —,', and
the entry in Table I gives B~ =0.12546+0.00037. Like-
wise, for B3 we get probability —„ for the trajectories of
size 8, plus», + —,'„+„'4, for trajectories of size 12, for a
total expected number, ",,', =0.09912, compared with a
measured value B3=0.099 30+0.000 34. Thus the mea-
sured values and error bars prove to be consistent with
the exact results.

Next in Table I we list the cumulative distribution
function X„and the quantities X„and X„calculated
from (8) and (9). These values of X„and X„are plotted in
Fig. 4. It can be seen that the X„approach a constant for
n ~ 11, whose value is consistent with the theoretical pre-
diction [10,31,32] r 2= —,

' =0.142 857. .—. within about
+0.001. Because X„approaches a constant —implying
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0.146

0. 144

0. 142

0. 144

0. 142

[1

t3

0. 140
2 4 6 8 10 12 14 16 18 20

FIG. 4. The values of X„(0)and X„( ) for the RC model with C =1, plotted as a function of n =log&(s). X„ is the slope of the

line connecting two adjacent data points of N„—n on a log-log plot, while X„ is the slope between the point at n and the point at the

cutoK It can be seen that finite-size efFects in X„become insignificant for n ~ 11. The theoretical asymptotic value —( ———) is

shown for comparison.

that (1) is followed —it is appropriate to consider the
average X„. It can be seen in Fig. 4 that X„also ap-
proaches —,', and that the finite-size effects (apparent only
for n 5 10) and ffuctuations are smaller than those for X„.
Taking X» as the most precise value of X„still unbiased

by the finite-size effects, we obtain z —2=0. 1423+0.0003.
The theoretical value is within two error bars (standard
deviations) of this result. Note that in this determination
of ~, we did not need to consider finite-size corrections,
which generally necessitates the simultaneous use of oth-
er critical exponents. Our error in r is just 0.014%.

As mentioned above, the errors in each of the quanti-
ties in Table I were determined by analyzing their Auc-

tuations in 66 separate runs. In fact, these errors can also
be predicted theoretically, since the data represent the re-
sults of independently sampling a given distribution
(which, of course, we are trying to determine). If a cer-
tain event "1"(such as an orbit size falling in a certain
bin ) occurs with probability p, then after N trials, the ex-
pected number of occurrences of "1"(divided by N), and
its standard deviation will be given by

8( n i /N ) =p+ [p ( 1 p) /N ]
'— (12)

where the value of p can be estimated from the observed
number of occurrences, that is, from n, /N. Equation
(12) can be derived from a straightforward application of
probability theory. It can be used to estimate the errors
in B„and N„. For example, for B4, Table I gives
B 04. 080 13=p, and (12) predicts an expected error of

+0.000 27, compared with the measured error of
+0.00028 (Table I). In a similar way, one can verify that
all the observed errors in the B„and N„are consistent
with (12).

To determine the errors in X„and X„, we need to
know the statistical properties of ratios of occurrences of
two different events (such as, those of an orbit size falling
in two different bins). Let "1"and "2" be two disjoint
events, occurring with probabilities p and q, respectively,
where p+q ~1—equality occurring when there are no
other possible outcomes. Let n, and nz be the number of
occurrences of these two events. By being disjoint, we
mean that there are no common elements, or, in other
words, that no single event increments both n, and nz.
We find that the expected value and the standard devia-
tion of the ratio of n i /nz in a sample of N trials (asymp-
totically for large N) are given by

' 1/2

@( /„) Q+ p 7+q
ni 12p (13)

for large N. In order to use (13) to estimate the error in

X„, one must use the second formula in (8) for X„, be-
cause it involves the ratio of B„and N„+ I, which are dis-
joint quantities. [The first formula in (8) cannot be used
because N„and N„+ I are not disjoint —there are events
that increase both of these quantities. ] Then, using

p =B„and q =N„+i, (13) gives the error in B„/N„+i,
and then from (8) we find that X„will have an estimated



LORENTZ LATTICE-GAS AND KINETIC-WALK MODEL 2417

error of

1 1 1+
ln2 E (14)

For example, for the error in X4, using iV5 =0.595 00 and
iY4=0. 77524, we find +0.0006, which agrees with the
measured error (Table I).

In the calculation of the errors of X„, it is necessary to
rewrite the ratio N„/N + in (9) as 1+(N„N,—)/N ~,
since N„N+—and N, are disjoint quantities. Then (13)
can be applied to find the expected error of this ratio, and
from (9) we find that the error in X„ is given by

1 1 1+
(n' n)—ln2

1/2

The predictions of this formula agree with the observed
errors in the X„. In the following simulations, we will use
the above formulas to estimate the errors in these quanti-
ties.

B. Geometric properties

In Table II we list log&(br„) and the slope between
successive points Y„determined from the 141433 trials
(out of 10 ) that remained open at the cutoff, n*=21.
The values of Y„are plotted in Fig. 5 and show that be-
sides the typical finite-size effects for small length scales
(here, n 813), there is another "finite-size" effect that
causes the slope Y„ to decrease again for n + 15. Presum-
ably, this decrease occurs because many of the open tra-

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

log, &b, r„'&

6.6139(0)
7.7469(0)
8.8842(0)

10.0239(0)
11.1650(0)
12.3070(1)
13.4494(1)
14.5919(1)
15.7344(2)
16.8769(2)
18.0191(4)
19.1606(6)
20.3021(8)
21.4409(11)
22.5619(20)
23.6138(30)

Y„

1.13303(1)
1.13724(1)
1.13973(2)
1.141 15(2)
1.141 95(3)
1.142 39(5)
1.142 53(7)
1.142 48(10)
1 ~ 142 55(15)
1 ~ 142 19(22)
1.141 53(36)
1.141 44(48)
1.138 84(84)
1.120 98(137)
1.051 90(237)

jectories that were used to find Y„were in fact close to
closing when the cutoff was reached and consequently
were more compact on large length scales than a corre-
sponding piece of an infinite walk would be. We have ob-

TABLE II. The geometric properties of 141433 trajectories
still open at 2 ' steps, out of 10 realizations, for the RC model
with C =1. (hr„) is the mean-square distance between pairs of
points separated by 2" steps along those trajectories. The quan-
tity Y„, defined in Eq. (11), is an estimate for
2/df = —=1.142857. . . . The finite-size effects are evidently
smallest for n =14, since Y„reaches its maximum value there.
The Y„are plotted in Fig. 5.

1.144

1.143

1.142

1.141

1.14

1.139

1.138

1.137
10 12 14 16 18 20

FIG. 5. The values of Y„ for the RC model with C =1 taken from Table II, plotted as a function of n. For small n there are
finite-size effects due to the lattice spacing, and for large n there are finite-size effects caused by the cutoff at n *=21. The theoretical
asymptotic value —(

———) is shown for comparison.
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served this effect for separations as small as 2' steps,
which is —,', the total length of these trajectories. Note,
however, that the y axis in Fig. 5 has a highly expanded
scale, and a peak is only evident because of our precise
data. No matter how large a size cutoft is used, a peak in
Y„will always be seen with sufficiently precise data, be-
cause of the two finite-size effects.

The errors here were estimated from analyzing the
runs of 10000 trials each. We cannot estimate these er-
rors from a formula like (12) or (13), because the mea-
surements of ( b,r„) are not independent random quanti-
ties.

We take the maximum value Y&5 =1.142 55+0.000 15
as the best estimate for 2/df . This implies
df = 1.750 47+0.000 24, which is slightly greater than the
theoretical value of df =4. We have not made any
corrections for the two finite-size effects, which may ex-
plain the small discrepancy in df (which, however, is still
within two standard deviations of the exact value). The
values of (b, r ) near this peak imply that b& =0.8315,
where b, is defined in (2).

IV. RESULTS FOR C (1
A. Orbit-size distribution

We carried out simulations for C =—', , 0.8, 0.98, and
0.998 with n ' =21, using 30 000—150 000 trajectories
each. The measured values of B„are listed in Table III.

As C decreases, the number of open trajectories at the
cutoff, B,+, rapidly increases. Because the trajectories
that reach the cutoff require the most time to generate,
and furthermore are used to calculate the mean-square
distances, which is quite time consuming, the amount of
computational work for a given number of trajectories in-
creased rapidly for smaller C.

The value of B2, which gives the probability of the or-
bit closing in 4—7 steps, decreases as C decreases. An ex-
act enumeration similar to that shown in Fig. 3 but for
C (1 yields B2=(C IS)[1+3(1—C) ], or B2=0.0329,
0.0573, 0.1154, and 0.1240 for C =—', , 0.8, 0.98, and 0.998,
respectively. In comparison, the measured values from
Table III and the errors bars calculated from (13) are
0.0325+0.0005, 0.0561+0.0012, 0. 1169+0.0016, and
0. 1225+0.0019, respectively. Thus, these results are con-
sistent with the exact results.

Figure 6 shows the plot of X„ for the four values of
C & 1, along with the plot for C =1. The deviations from
the behavior for C =1 are striking. Even for C =0.998,
X„ follows the behavior of C = 1 only to about n =8, and
then begins to decrease markedly, in spite of the fact that
after 512 steps (n =9) the expected number of straight
segments is only (0.002)(512)=1. The values of X„keep
dropping and do not reach a constant value, so that even
at 2 ' steps, the size distribution is not consistent with a
power law. For smaller values of C, a more pronounced
decrease in X„ is seen, and there are observable
differences with C =1 already when n =2. The curve for

TABLE III. The first four columns give B„ofthe RC model for C & 1. The actual number of trajec-
tories X simulated for each value of C is shown in parentheses. The last column gives 8„ for the RC-
BA model (with C = 1), determined recursively from (25) and (26); the exact enumeration of B2 and 83
for this model is illustrated in Fig. 11.The resulting X„and 1/X„(for both models) are plotted in Figs.
6 and 7, respectively.

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

2
3

(150000)

0.0325
0.0284
0.0268
0.0239
0.0234
0.0216
0.0205
0.0189
0.0186
0.0179
0.0168
0.0159
0.0150
0.0150
0.0141
0.0140
0.0132
0.0121
0.0117
0.6400

C =0.8

(36 000)

0.0561
0.0444
0.0380
0.0326
0.0283
0.0271
0.0244
0.0226
0.0225
0.0203
0.0188
0.0178
0.0169
0.0164
0.0159
0.0144
0.0131
0.0132
0.0131
0.5441

C =0.98
(40 500)

0.1169
0.0900
0.0709
0.0576
0.0502
0.0427
0.0365
0.0329
0.0277
0.0244
0.0226
0.0188
0.0187
0.0165
0.0144
0.0132
0.0121
0.0113
0.0101
0.3124

C =0.998
(30000)

0.1225
0.0980
0.0795
0.0691
0.0612
0.0531
0.0482
0.0420
0.0369
0.0334
0.0274
0.0239
0.0223
0.0194
0.0176
0.0137
0.0134
0.0111
0.0095
0.1979

c =1.0 (BA)
(exact)

0.125 000 000
0.087 890 625
0.066 834 867
0.054 195 228
0.045 713 557
0.039 487 992
0.034 635 229
0.030 703 967
0.027 438 784
0.024 680 704
0.022 322 534
0.020 287 393
0.018 517 617
0.016968 575
0.015 604 949
0.014 398 334
0.013 325 610
0.012 367 767
0.011 509 050
0.318 117219

Total 1.0000 1.0000 1.0000 1.0000 1.000 000 000
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0. 05

2 4 6 8 10 12 14 16 18 20

FIG. 6. X„vs n for the RC model, with C =1, 0.998, 0.98, 0.8, and —(top to bottom, curves with error bars). Also shown is the

curve for the RC-BA model (C =1) (middle curve with no error bars). For C & 1, no constant value is reached within the 2 '-step

cutoff, indicating that the size distribution is not a power law. Lines connecting the data are to help guide the eye.

C=0.98 nearly follows that of the RC-BA model for
C =1 (discussed in Sec. V), which is also plotted in this
figure. The slow decrease in X„ for C & 1 is suggestive of
logarithmic behavior in N(s).

An N(s) containing logarithmic terms is known to
occur for particles undergoing Markovian random walks
on the lattice, which corresponds to the Boltzmann ap-
proximation in the RC model (RC-BA). In Sec. V, we
show that for the RC-BA model, the asymptotic behavior
of N(s) is of the form

a3N(s)— for s~ ~,
(lns +c3 )

where I is a constant, which implies that

(17)

%'e consider in more detail the case C =—', , which cor-
responds to the GSAT [35], and for which we have car-
ried out the largest number of simulations (150000) for
the cases C & 1. To make a sensitive test of the nature of
the logarithmic behavior of N (s), we consider that N (s)
follows the more general asymptotic form:

a3N(s)-
ns c3

a3

n ln2+c3
(16) fPZ

n ln2+c3
for n —+~ . (18)

for large s or n, where a3 and c3 are constants. On a plot
of 1/N„versus n =logos, the behavior represented by (16)
will produce a straight line. In Figs. 7(a) and 7(b) we plot
the data of the RC simulations for C & 1 this way and
find very good evidence for linearity for large n. As C de-
creases, the linear behavior extends to lower values of n.
Figure 7(b) shows the data for C =—', on an enlarged scale,
showing that linear behavior is followed to high pre-
cision. From the values of the slopes and intercepts, we
have determined the values of a3 and c3, and these are
listed in Table IV. Note that in Fig. 7(a) we also show
the data for the RC-BA (for C = 1), which falls very close
to a straight line as predicted, and for contrast show the
data for the simulations of the RC model when C =1. In
the latter case, linear behavior is never reached, since
N(s) does not follow (16).

If (17) is followed, then a plot of 1/X„versus n will yield
a straight line with slope (ln2)/m. In Fig. 8 we make this
plot with the data for C =—', . These data faH near a line
with slope ln2 (implying m =1), thus providing further
evidence that (16) is obeyed. The intercept of the line
gives c3=23, in agreement with the value found above
(Table IV).

An interesting consequence of N„obeying (16) is that
the errors in X„,calculated from (14), will be independent
of n. Indeed, one can see in Fig. 6 that this is the case
when C &1. Note that because X„does not tend to a
constant value, it is not useful to consider the quantity X„
here.

Thus, the RC model when C &1 acts like a random
walk (the RC-BA model) with respect to the orbit-size
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1 x - - - - K- - - - -x —- - - K- - - - -x- --

x--- "

8 10 12 14 16 18 20

FIG. 9. Y„ for the RC model with C= 1 (Q), 0.998 ( ), 0.98 (s ) 0.8 (0), and —(4). For C (1, no constant value is reached for
large n, indicating that no consistent self-similar (fractal) behavior is attained. Also shown is the result for the RC-BA model with
C = l (X).

1.09

1.08

1.07

1.06

1.04

1.03

1.02
6 8 10 12 14 16 18 20 22 24

n

FIG. 10. Y„ for the RC model with C = —,which corresponds to the GSAT model [35]. Results are shown for cutoff's of 2 ' (E)
and 2 (+) steps. These data are in general agreement with Lyklema's data, given for s ~2000 (n =11),but they do not bear out his
extrapolation to an infinite system ( ———,with error bar).
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can either be moving on an open trajectory or in a closed
orbit. As a consequence, we can write

s —1

s'=1

where b4 and b5 are constants. Thus, these two measures
of the mean-square displacement behave differently. Al-
though we have not measured precisely these two func-
tions, they suggest that the quantity that we did measure,
( b, r (s) ), is of a similar form:

(19) ( b, r (s) ) -b6s(ins+c4 )i' (23)

-(a2b2+a, b3 )s (21)

for large s, where we have made use of the hyperscaling
relation 1 —r=2/df. Thus, one finds the average mean-
square displacement is proportional to the time, as in or-
dinary diffusion [18]. It is interesting to look at the nu-
merical values of the constants above. In Sec. III we
found a, =0.162 and a2=1.13. We can find b2 from the
measurement of (b, r (s) ) at s =s', since in that case it is
equal to (r (s)), ,„~,~. Using the data for s*=2 ' of
Table II, we find b2=(2 ' '/2 ') =0.770. Thus, the
first term in (21) is a2b2 =0.87. We cannot find the value
of the second term (the contribution from closed orbits)
because we have not determined the value of b3 and the
effect of the oscillations, but we expect it to be small.
Indeed, the measurements [18] of (r (s))-4Ds yield
4D =0.89, so we deduce that a&b3 must be =0.02. Thus,
the open trajectories contribute the most by far (0.87
versus 0.02) to ( r ( s ) ) .

For C (1, it is still found [18] that (r (s))-4Ds.
N(s) behaves as in (16), then it follows from (19) that

( r (s) ), ,„(,) —b4s(lns +c3 ),
( r (s) )„„.. .-b s(lns +c )

where (r (s) ),~,„i,~
is the average mean-square distance

between the first point (origin) and last point of open tra-
jectories of s steps in length, while (r (s))„„,d i, i is the
average mean-square distance between the origin and the
point reached after s steps, on closed orbits of size s'
steps, where s & s'. Here we use r rather than hr to in-
dicate that the distance is measured between the origin
and the point s steps away, rather than between pairs of
points along the path, as is done in determining
( b, r (s) ). The latter quantity is equivalent to
(r (s) ),~,„i,~

only when s =s*. The quantity
(r (s) ),i„,d ~, ~

will be an oscillating function of s (for a
fixed s'), since whenever s is an integer multiple of s' the
particle will be back at the origin.

When C =1, the system is at a critical point, and one
would expect that all measures of the mean-square dis-
tance will scale as in (2). Thus,

(r (s) ), ,„i,~-b2s for s ~ 00
2/df

(r (s))„„,d ~, i-b3(s') for s )s' and s'~oo (20)

(where in the second case we describe the magnitude of
the mean-square displacement since it is an oscillating
function). Furthermore, for C= 1, P(s) follows (1) and
N(s) follows (7). Thus, (19) gives

s' ((s)

for s «s*, where p, b6, and c4 are constants. Equation
(23) implies by (11) that

Y„—1+
n 1n2+c4

(24)

for large n If (2. 3) is followed, a plot of 1/( Y„—1) versus
n will yield a straight line with slope (ln2)/p. In Fig. 8
we show this plot for data of C =—', . The linear behavior
of the plot supports the conjecture that (br (s) ) obeys
(23), and the value of the slope implies that p =2. Fur-
thermore, the intercept gives c4 =22, so within errors we
find c& =c3 [as (22) would suggest]. In the following, we
will assume this equality holds. Analyzing the data for
(b,r ), we further find that b6=0.0037. In Table IV, we
give the value of b6 for C =0.8 and 0.98 also. For these
cases, we also verified that c4 =c3.

Note that while (16) applies to the RC-BA model, (19)
does not. This is because in the BA the particles are nev-
er in closed orbits, but continue on different trajectories
after returning to the origin. Thus, the mean-square dis-
tances in that case are not expected to follow the behav-
ior of (22).

V. RESULTS FOR THE BOLTZMANN
APPROXIMATION WITH C = 1

A. Orbit-size distribution

In the Boltzmann approximation to the Ruijgrok-
Cohen model, the encounters of the trajectory with the
mirrors are treated as independent random processes,
with no memory about the state of a site as to its occupa-
tion by a mirror when the site is revisited in the future.
Here we consider CL =Cz = —,

' (or C =1), in which case
the particles are effectively undergoing a simple random
walk which turns either right or left, with equal probabil-
ity, at every step.

We can derive an exact recursive expression for the
size distribution of closed trajectories, P (s), for the RC-
BA model. The closed trajectories are ones in which the
particle first returns to the origin with a velocity in the
original direction. These trajectories are analogous to the
orbits considered in the RC model —but of course here
the particle will not continue on the same trajectory after
it leaves the origin for the second time, as it does in the
RC model. Thus P(s) is simply the first return probabili-
ty for the random walk, which can be found using
renewal theory [38]. We introduce u (s) as the probabili-
ty that a particle will return to the original state (position
and direction of motion) after s steps, irrespective of how
many times it has been there before. We label the steps
in the four directions as R, L, U, and D for right, left, up,
and down, respectively. If the initial velocity of the parti-
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(25)

cle is in the direction R, then the final step must also be
an R. For example, the two trajectories that can close in
four steps are (R)ULDR and (R)DLUR. Walks can only
close in 4i steps, where i is an integer, and are made up of
i steps in each of the four directions. The probability that
a trajectory closes in 4i steps (i ~ 1) is given by

4i +1
2E

u(4i)= . — (i ~1),
l

s=4

24

s =12
r 24

212

r 12
12

40
12

8
12

s —1

P(s)= u(s) —g u (i)P(s i)—
i=1

(26)

for s + 1. This relation allows P(s) to be determined re-
cursively. Using (26) we have evaluated P(s) for s ~ 2 ',
and then found the B„siung (3). While this calculation
involved 2. 5 X 10" fioating-point calculation's (carried out
on an IBM RS 6000 computer), we believe that the accu-
mulated round-off errors were not significant. The results
are shown in Table III. Evidently the B„ for the RC-BA
model are smaller than those of the RC model (Table I).
To illustrate why this is so, in Fig. 11 we show all trajec-
tories that contribute to B2 and B3. Although there are

TABLE V. The mean-square distances (br') and the result-
ing Y„calculated from the 15900 walks (out of 50000 realiza-
tions) still open at the cutoF s =2 ', for the RC-BA model
(C' =1).

where ( ) is the number of ways of choosing i L's and i
R's out of a total of 2i I.'s and R's, and similarly for U's
and D's, the factor ( —,') ' represents the probability of
making 4i given turns, and the additional factor of —, ac-
counts for the requirement that the last step must be an
R. Note that (25) is very similar to the corresponding ex-
pression for u for a standard random walk on a two-
dimensional square lattice, where the walker can step in
all four directions with equal probability —in which case
the RHS of (25) gives u (2i)/2 [38].

According to the theory of recurrent events [38], P (s)
follows from u (i) by

s=8 r iW 6
12

8
28

6
AE 28

6
212

32
212

iver

8

2 "2

FIG. 11. Weights of first-return trajectories for the RC-BA
model (C = 1) for s =4, 8, and 12 steps. Double and triple lines
indicate where a trajectory is traversed two or three times, re-
spectively. In the bottom right diagram, there are two ways
(clockwise and counterclockwise) to traverse the loop, giving an
additional factor of 2 in the weight. The results for s =4 imply
B2 = 8, and those for s = 8 and 12 imply B,= 14/2
+ 136/2' =—„' =0.878 906 25 in agreement with the values list-
ed in Table III.

many more possible trajectories that can close in 8 or 12
steps in the RC-BA model compared to the RC model
(Fig. 3), they occur with lower probability, because a fac-
tor of —,

' must be associated with each turn of the trajecto-
ry. In contrast, in the RC model, a single mirror can be
responsible for two turns, which leads to fewer factors of
—,
' in the weights.

Equation (26) can be solved formally by generating
function techniques. One finds that the generating func-
tion of P (s) satisfies [38]

log, ( Ar') Y„
P(z)—:g P (s)z'= 1 —1/U(z),

s =1
(27)

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

6.0002
7.0001
8.0001
9.0001

10.0005
11.0006
12.0009
13.0016
14.0027
15.0042
16.0067
17.0120
18.0219
19.0342
20.0540
21.0993

1.0000
1.0000
1.0000
1.0003
1.0001
1.0003
1.0007
1.0012
1.0015
1.0024
1.0054
1.0099
1.0123
1.0198
1.0453

where

U(z) = 1+ g z 'u (4i)
i=1

1
rC (z')+-

77 2 (28)

——(1/27r) ln(1 —z) for z~ 1 .

N(s)— 2'
Ins+ c3

(29)

and

Here K (m) is the elliptic integral, as defined in Ref. [39].
By Tauberian theorems [38,40], (28) implies that
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d—N (s) 2m.

s(lns+c3)
(30)

ry. Thus, choosing specific trajectories to calculate
mean-square displacement in random walks can cause
subtle deviations in the expected behavior.

for s~~, where c3 is a constant. Normally, the con-
stant c3 is not included in the expression for the asymp-
totic behavior for the return probability, ' we include it
here as a way to conveniently take into account higher-
order terms in 1/lns. The 1/N„ that follow from (26) are
plotted in Fig. 7, and the corresponding X„are plotted in
Fig.6. The slope of the line through the data in Fig. 7 is
In2/2~, consistent with (29), and the intercept gives
c3=5.28. Equation (29) was used in the analysis in Sec.
IV, where it was found that N(s) of the RC model for
C & 1 follows similar behavior.

B. Geometric properties

We also carried out simulations of the trajectories of
the RC-BA model, to investigate their geometrical prop-
erties. Other than "forgetting" the state of the sites after
visiting them, we carried out the simulation in much the
same way as in Sec. III. We started with a particle at the
origin, with an initial velocity in a given direction, and
carried out a random walk that turned at each step. For
those trajectories that never returned to the origin with a
velocity in the initial direction when the cutoff $*=2 '

was reached, we calculated ( b,r„) in the same way as in
the RC model. From (b,r„) we determined Y„by (11).
Of course, we did not need to put the mirrors on a lattice
here as in the RC model simulations and instead used
simple variables for the x and y coordinates of the posi-
tion of the particle.

We carried out 50000 trials in total. The size distribu-
tion of returning trajectories ("orbits") was binned as in
the RC-model simulations; the resulting B„were con-
sistent with the exact values listed in Table III within er-
ror bars calculated from (13).

We calculated ( b, r ) and the resulting Y„ for all walks
that reached the cutoff. For an unrestricted random
walk, one would expect [18] that ( b, r ) -4Ds with D =

~

for large s, implying Y„~1 for large n. However, be-
cause we consider only those walks that remain open
when the cutoff is reached, discarding those that returned
to the origin, we have biased the ensemble. As a conse-
quence, (Ar ) is not precisely proportional to s, and the
Y„are not precisely equal to 1. The values of Y„are list-
ed in Table V and are plotted in Fig. 9. It can be seen
that Y„=1 for small separations, but as the cutoff is
reached, the mean-square separation is somewhat larger
than for a pure random walk, rejected in a small but
significant increase in Y„ for the last few values in n.

These deviations of Y„ from unity are larger than the
deviations we found in Y„ from the value —„' for the RC
model at C=1. For example, Y&5

—1=0.0026 for the
RC-BA model (Table V) while it is —0.0003 in the simu-
lation of the RC model at C =1 (Table II). The devia-
tions are positive in the RC-BA model, but negative in
the RC model. In both cases, an open trajectory of 2 '

steps has noticeably different properties than one would
find on a piece 2 '-steps long of an infinite open trajecto-

VI. CONCLUSIONS

We have studied the distribution of individual orbits
and the geometric (fractal) properties of the trajectories
for three distinct cases: (i) the RC model for C= 1,
which corresponds to hull percolation, (ii) the RC model
for C &1, especially C =—'„which corresponds to the
GSAT with equal probability of stepping in any of the
three allowed directions, and (iii) the RC-BA model for
C =1. The three cases can be summarized in the follow-
ing by comparing the behavior of N(s) and (br (s) ).

(i) For the RC model with C = 1,

N(s)-a2s

(b,r (s)) b,s-
(ii) for the RC model with C ( 1,

(2')

Q3N(s)-
ln$ +c3

(4r (s) ) -b6s(lns+c3)

(iii) for the RC-BA model with C = 1,

N(s)- 2'
nS C3

(br (s))-s

(16)

(23')

(29)

(31)

with b, =0.8315, a&=i. 13, and a3(C), c3(C), and b6(C)
given in Table IV.

For the RC model with C =1, we have verified the
theoretical results for ~ and dI for percolation hulls to
unprecedented accuracy. For the RC model with C & 1,
we found that the trajectories do not show simple
fractal-like behavior, nor do the orbits follow a power-
law size distribution for s as large as 2 '. The important
difference between C & 1 and C = 1 is undoubtedly that in
the former case the trajectory is allowed to cross itself.
Allowing only 0.2% of the sites to have no mirrors
(C =0.998) causes an easily noticeable change in the
orbit-size distribution and in the behavior of the mean-
square displacement. Evidently, a non-Brownian fractal
(d&%2) is possible only for noncrossing trajectories,
which occurs for C =1 only. When we allow the trajec-
tories to cross, the mean-square displacement shows loga-
rithmic behavior, implying that the trajectories are not
self-similar. Our results support the conjecture of Brad-
ley [23] that the GSAT, identical to the RC model for
C =—', , is not at a critical point. We have fit the data for
C & 1 to the logarithmic behavior of forms that were sug-
gested by the RC-BA model. This logarithmic form im-
plies that all trajectories will eventually close —there is a
zero probability for the particle to escape to infinity (as a
random walk in three dimensions does, for example [38]).
We have not proven this result theoretically. For the
RC-BA model with C = 1, the results on the size distribu-
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tion of "orbits" (recurrent circuits) were derived analyti-
cally. The orbit-size distribution in this case is qualita-
tively similar to the distribution found in the RC model
for all C (1. We also carried out simulations to study
the behavior of the mean-square distance.

We have made a general analysis of the statistical er-
rors that would be expected from sampling a given distri-
bution. This analysis makes it unnecessary to "batch"
runs to determine the errors. This analysis does not ap-
ply to the measurement of ( Ar ), but in this case one can
determine the errors by keeping track of both ( b, r (s) )
and (Ar (s)) for all trajectories.

While we have answered many of the questions raised
in the Introduction, this work suggests many more. We
end with a list of some questions which we believe may be
of interest for future investigation.

(1) For the cases of C & 1, further simulations need to
be carried out to investigate the nature of the orbits' size
distribution and geometric properties. Especially, how do
the various measures of the mean-square distance,
(b,r (s)), (r (s)),ia„d ~, .~, and (r (s)), ,„i,i, behave' ?

Do the latter two follow the behavior predicted in (22)'?
The apparent behavior of the size distribution (16) im-
plies that all trajectories will eventually close. Can this
be proven theoretically'

(2) For the geometric and fractal properties, we have
considered only (b, r ). What is the behavior of the
higher moments and of the distribution itself7 This ques-
tion is in analogy to that of the higher moments for the
ensemble-averaged displacement, addressed in Ref. [18].
Can the system be described as a multifractal when
C =1?

(3) How does the system behave when CLACK? For
CL +Cz =1, it is known [6] that the system is still at the
percolation point, but the orbits become stretched out.

(4) For a large closed orbit when C & 1, what is the be-
havior of the outside hull [41] (which is simply the
boundary at the exterior of the orbit)? Is it a fractal with
dimension —', as found by Grossman and Aharony [41] for
percolation clusters (C =1) and by Mandelbrot [34] for
Brownian trails (trails of a simple random walk)?

(5) Would the conclusions be generally the same for the
Crunn-Ortuno (CxO) model [8), where sites rotate rather
than reAect particles? Note an interesting difference in
reversibility between the two models: when a particle's
velocity is reversed, the trajectory is retraced in the RC
model, but not in the GO model.
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APPENDIX: THE DIFFUSION COEFFICIENT
IN THE BOI.TZMANN APPROXIMATION

the RC-BA model. The second derivative of (r ) gives
the velocity autocorrelation function (VACF), which has
been determined by van Velzen and Ernst [21] for the RC
model. The following derivation uses a somewhat
different method than used in Ref. [21].

Following Ref. [18] (with some small changes in nota-
tion) we introduce f, (x,y, t) as the probability that a par-
ticle is going in the i direction at the lattice position (x,y)
and at time t (here t replaces s in the text). These func-
tions satisfy the following equations [18] (written in a
shorthand notation):

fii ( x + l,y ) = ( 1 —C)fo + CJt f, + CL f3,
f i(x,y +1)=(1—C)f i+Ctifo+CLf2

f~(x —l,y) =(1—C)f2+C~ f3+Ct f, ,

f3(x,y —1)=(1—C)f3+Ctif2+Ct fo

(A 1)

where we have suppressed only the t variable and again
the prime indicates time t+1. The initial condition is
f+(0,0)=f (0,0)=—,', and f+(x,O)=0 for all xAO. We
define the nth moments (+ and —) at time t by

where the dependence on t, as well as the dependence on
x and y on the right-hand side [where every f is evaluated
at (x,y)], has been suppressed. The prime on the left-
hand side indicates that the function is evaluated at time
t+1.

We are interested in finding out how the mean-square
displacements (x ) and (y ) grow with time, for an ini-
tial condition of a single particle at the origin and equally
likely to be going in any one of the four directions:
f, (0,0,0)=—,

' for i =0, 1,2, 3. To solve for the mean-
square displacement, one essentially must diagonalize the
above equations. This can effectively be carried out by
inspection, as described below.

Consider the trajectory shown in Fig. 12. As explained
in that figure, the particle's motion with respect to the
coordinates (=x +y is a simple one-dimensional walk in
which the particle continues to jump in the same direc-
tion until a left mirror is struck, at which point the direc-
tion of the particle's motion is reversed. Rejecting off a
right mirror does not change the sense of the motion in
the g direction. Likewise, with respect to the coordinates
g=x —y, the direction of a particle's motion is un-
changed until a right mirror is struck.

Thus, it is sufficient to consider only a one-dimensional
walk that continues in the same direction with probabili-
ty 1 —c and changes direction with probability c at each
lattice site, where c =CL for motion in the g direction
and c =Cz for motion in the g direction. Define f+ (x, t)
and f (x, t) as the average number of particles going
right and left, respectively, at position x and time t.
These distribution functions satisfy the equations

f '+ (x +1)=(1 c)f+(x)+cf (x), —

f ' (x —1)=(1 c)f (x)+cf+(x), —

Here we derive the time dependence of the mean-
square displacement of a particle from the origin (r ) for

(x")+=— g x "f+(x,t), (A3)
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which implies [since 5(0)=0)

5(t) =1+(1—2c)+ . +(1—2c)'

= [ 1 —( 1 —Zc)'] /2c .

Next we write b,(t)—:&x ). Equation (A7) becomes

b(t +1)=b(t)+2(1 —2c)5(t)+1 . (A10)

and introduce &x")—:&x")++&x") . For n =0, by
summing (A2) over all x, we find

&1)' =(1—c)&1) +c&1)
&1)' =(1—c)&1) +c&1), ,

which yields

(A4)

(A5)

FICx. 12. A sample trajectory of a particle, used for the
analysis of the RC-BA model. The values of constant g=x +y
are shown as diagonal lines. &hen the particle continues
straight or reAects off a right mirror (probability 1 —CL) the
direction of the motion projected onto the g axis does not
change, while when the particle rejects off a left mirror (proba-
bility CL ) the direction of the motion projected on this axis re-
verses. Thus, the motion of the particle projected on the g axis
undergoes a one-dimensional random walk in which the proba-
bility of continuing in the same direction is (1—CL), and the
probability of changing direction is CL.

Using b, (0)=0, we find

f —1

b,(t)= g [1+2(1—Zc)5(n)]
n=0

(1—2c)=t+ [2ct —1+(1—2c)'] .22 (Al 1)

For long times, this implies b, (t) -2Dt with D given by

1 —c
2c

(A12)

In the limit that c is small and t is large, such that
ct =0(1), (Al 1) goes over to

A(t)- (2ct —1+e '"),1

2C
(A13)

which is in the form of the Ornstein-Uhlenbeck expres-
sion for the mean-square displacement of a particle under
the inhuence of a random force, in a one-dimensional
continuum [37]. For times small compared to 1/c, (Al 1)
and (A13) are proportional to t, refiecting linear motion
of the particle, while for long times it is proportional to t,
rejecting difFusive motion. This model therefore
represents an exactly soluble lattice representation of the
Ornstein-Uhlenbeck process.

For the full two-dimensional problem, we have

The first equation in (A5) expresses the conservation of
total probability, while the second shows how the
difFerence in number between right- and left-moving par-
ticles changes when cW —,'.

For the first moment, we multiply the two equations in
(A2) by x + 1 and x —1, respectively, and sum over all x
to find

&x)' =(1—C)[&x) +&1) ]+C[&x) +&1) ],

&(x+y) )=I+X,
&(x —y) & =t+%,

where

(1 —ZCL )
[2C t —1+(1—2C )'],

2C L
L

(1—ZCit )
[2C t —1+(1—2C )'] .R R

R

(A 14)

(A15)

(A6)

&x )' =(1—c)[&x &
—&1) ]+c [&x ) —&1) ] .

To get these expressions, we have simply replaced c in
(All) by CL and Cit, respectively, as explained above.
The second derivative of these expressions with respect to
time gives the VACF as found by van Velzen and Ernst
[21]. Taking the sum and difference of the two equations
in (A14), we find

Doing a similar calculation for the two second moments,
and adding them together, we find

&x'&'= &x'&+2(1 —2c)[&x )+ —&x ) ]+1 . (A7)

&x +y ) =t +(X+%)/2
&xy) =(X—A)/4 .

(A16)

To solve this equation we need an explicit expression for
the quantity 5(t) —= &x )+ —&x ) . Taking the difference
between the two equations in (A6), we find

5(t +1)=(1 2c)5(t)+1, —
CI. +CR

(A17)

By x-y symmetry, it follows that &x2) = &y2), and for
large t we find
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where the term in parentheses is the diffusion coefficient
for motion projected along the x axis, as given in Ref.
[18]. When CLAD, the diffusion is anisotropic and
characterized by two different values [21] of D. These
values can be found by examining the long-time behavior
of the quantities in (A14), divided by 2, since the unit vec-

tars in these directions are (x +y)/&2 and (x —y)/V2.
In the direction of increasing x +y (angle m. /4),
D =(1—CL )/4CL, while in the direction of increasing
x —y (angle 7r—/4), D =(1—Cz )/4C~. These values of
D are in agreement with the results of van Velzen and
Ernst [21].
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