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The intricate connection between the distribution of exceptional points and particular fluctuation
properties of level spacings and associated eigenvector statistics is shown. A procedure is given to deter-
mine the distribution of the exceptional points of the problem H,+AH,. Its implementation is demon-
strated considering simple matrix models and the quantized chaotic quartic oscillator.

I. INTRODUCTION

The subject “quantum chaos” has attracted a great
deal of attention for more than a decade in the literature
[1-3]. Yet, a satisfactory definition is still outstanding
and may in fact never materialize [4]. It appears that the
fascinating properties of systems that are the quantum-
mechanical analog of classically chaotic systems still
await thorough comprehension, although a lot of experi-
ence and understanding has been accumulated. A certain
universality in level spacing distributions has been recog-
nized [5] and the applicability of random matrix [6]
theory has been demonstrated. The consequences of level
statistics upon the statistical behavior of the correspond-
ing eigenstates has also been dealt with more recently [7],
as this aspect is particularly relevant for experimental
work.

In this paper we attempt to address the question of
what the common properties of the quantum-mechanical
operators are that give rise to spectral properties that are
ascribed to quantum chaos. If a matrix representation of
a Hamiltonian that originates from a classically chaotic
analogy is given, what is the mathematical mechanism
that yields the special features of the spectrum within the
particular range of the parameter where classical chaos is
discerned. While cases with a classical analogy have no
intrinsic statistical element, a further puzzling question is
as follows: why is it that a statistical approach without
physical input reproduces such good agreement of the
statistical properties of the spectrum?

We believe that the common root to the answer of
these questions lies in what is called the exceptional
points [8] of an operator. Most physical problems in
quantum mechanics can be formulated by the Hamiltoni-
an Hy+AH,, where the parameter A can play the role of
a perturbation parameter, or it may serve to effect a
phase transition, or it may under variation steer the sys-
tem from an ordered into a chaotic regime. The excep-
tional points of the full operator are the points A for
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which two eigenvalues coalesce. Here we exclude
genuine degeneracies of the self-adjoint problem; in other
words, the eigenvalues coincide for no real A. The excep-
tional points occur in the complex A plane. Note that the
operator is not self-adjoint for complex A values.

The definition of exceptional points is general and ap-
plies in particular to operators in an infinite dimensional
space, also when the spectrum of the operator has a con-
tinuum part. In the present work we restrict ourselves to
finite-dimensional matrices H, and H, as in this case the
role of the exceptional points and the associated Riemann
sheet structure is thoroughly understood [9,10]. We do
not believe that restriction to matrices has a major im-
pact on our conclusions since virtually all the practical
work, even in connection with quantum chaos, is done in
a finite-dimensional matrix space.

The physical significance of the exceptional points is
due to their relation with avoided level crossing for real A
values. The spectrum E;(A), k=1,..., N, has branch-
point singularities at the exceptional points; in fact, two
of the N levels are connected via a square-root branch
point. If this happens near to the real A axis, a level
repulsion will occur for the two levels for real A values.
Globally, all the exceptional-point singularities determine
the shape of the whole spectrum. There is a nice analogy
to the more widely known connection between the pole
singularities of the scattering function and the shape of
the cross section: similar to the way the positions of the
poles, including their statistical properties, determine the
measurable cross section, the exceptional points deter-
mine the shape of the spectrum, and in particular the oc-
currences of avoided level crossings. The distribution of
the exceptional points will therefore determine the fluc-
tuation properties of level spacings.

The positions of the exceptional points are fixed in the
complex A plane and are determined solely by H, and
H,. For large matrices it is prohibitive to determine the
positions of the exceptional points. However, it is possi-
ble to determine the distribution reasonably well from the
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knowledge of the two operators. This is one major aspect
of this paper. We further demonstrate by simple exam-
ples that a high density of exceptional points is a
sufficient prerequisite for the occurrence of quantum
chaos. There are still a number of open points, some of
which are addressed in the final section.

In the following section we recapitulate the basics
about exceptional points for matrices to render the paper
self-contained. Section III presents two matrix models to
exemplify the distribution of exceptional points and level
spacing fluctuations. The effect upon the state vectors is
also discussed. In Sec. IV the matrix representation of
the quartic chaotic oscillator is investigated along the
lines developed in the preceding sections. The paper con-
cludes with a critical assessment.

II. EXCEPTIONAL POINTS AND
UNPERTURBED LINES

Avoided level crossing is always associated with excep-
tional points [9,11-13] if it occurs for the levels E, (A) of
the Hamiltonian Hy+AH,. The exceptional points are
square-root branch-point singularities in the complex A
plane. We give an elementary example for illustration
and briefly list the essential aspects with regard to excep-
tional points.

Consider a two-dimensional matrix problem where H,
is diagonal with eigenvalues €, and €,, while H, is

represented in the form
H,=UDU'. (2.1)

Here, the diagonal matrix D contains the eigenvalues o,
and w, of the matrix H, and U is the rotation

cosp —sing
T |sing cosg (2.2)
The eigenvalues of the problem H,+AH are
€ te,+ Mo, to,)
E, (M= > *R , (2.3)
where
R= €17 € 7\,(601—(02) 2
2 2
172
+IAe;— 0 —w,)cos2e (2.4)

Clearly, when ¢ =0 the spectrum is given by the two lines
E)M=e, +Aoy, k=12, (2.5)

which intersect at the point of degeneracy
A=—(€,—¢€,)/(w,—w,). When the coupling between the
two levels is turned on by switching on ¢, the degeneracy
is lifted and avoided level crossing occurs. Now the two
levels coalesce in the complex A plane where R vanishes,
which happens at the complex-conjugate points
A = €176 (+2i0)
c P exp(X2ig) .

(2.6)
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At these points, the two levels E; (L) are connected by a
square-root branch point; in fact, the two levels are the
values of one analytic function on two different Riemann
sheets.

These considerations carry over to an N-dimensional
problem [9]. The diagonal matrix H, contains the ele-
ments €, and D the elements w;, k=1, ..., N; the ma-
trix U is now an N-dimensional rotation, which can be
parametrized by N(N —1)/2 angles. (In the quoted pa-
per a parametrization was chosen so that U is unity when
all angles are zero.) The exceptional points are deter-
mined by the simultaneous solution of the equations

det(E—H,—AH,)=0,

d (2.7)
E—Edet(E—Ho—kHl )=0 .
There are generically N(N —1) solutions that occur in
complex-conjugate pairs in the A plane. At those points
the N levels E; (A) are connected in pairs by square-root
branch points when they are analytically continued into
the complex A plane. Since the positions of the singulari-
ties determine the shape of the spectrum, and in particu-
lar the fluctuation properties, a closer analysis is indicat-
ed. As is exemplified in the following section, the crucial
condition for the occurrence of level statistics ascribed to
quantum chaos is a high density of exceptional points in
the complex plane within a small window of real A values.

To get an idea about the density of exceptional points

we introduce the concept of unperturbed lines. Clearly,
when U is the unit matrix (all angles are zero), the spec-
trum of Hy+AH,=H,+AD is given by the lines of Eq.
(2.5) with k=1,...,N. The N(N—1)/2 intersection
points of the N lines depend on the relative order of the
numbers €, and w,. If both sequences are in ascending
order, all intersections occur at negative A-values; con-
versely, if one sequence is ascending and the other des-
cending all intersections occur at positive A values. In
general, the order that is appropriate for the actual prob-
lem is expected to lie between the two extremes. To find
out the appropriate order we are guided by the asymptot-
ic behavior of the levels E;(A) of the full problem. For
large values of A the leading terms are given by

Ek(}\)z}&wk+ak+ Tty (2-8)

where the ellipsis denotes first- and higher-order terms in
1/A. Neglecting these terms, Eq. (2.8) yields just the un-
perturbed lines with the appropriate association of slopes
o, and intercepts a,. From perturbation arguments we
find the latter to be the diagonal elements of the ‘“back-
wards” rotated H,, viz.,

o, =(UT'HyU)yy - (2.9)

We note that a similar procedure for a suitable
definition of unperturbed lines was given elsewhere [9],
but the procedure proposed here is more efficient to im-
plement and, in fact, the lines as defined here are nearer
to the actual spectrum E; (A).

The significance of Egs. (2.8) and (2.9) lies in the easy
availability of the parameters of the unperturbed lines
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from the knowledge of H, and H, alone. The exception-
al points of the full problem are expected to lie near the
intersection points of the unperturbed lines (for the two-
dimensional problem the real parts of the exceptional
points coincide with the points of intersection). Hence,
knowledge of H, and H, alone enables us to predict for
which values of A strong fluctuations of the energy levels
are expected to occur and where they definitely do not
occur.

III. SIMPLE EXAMPLES

For illustration we present two matrix examples in
which typical Gaussian-orthogonal-ensemble (GOE)-type
level statistics are generated as well as the associated ex-
pected statistical properties of the state vectors. We
choose as examples two cases that we consider as the ex-
treme ends of a variety of intermediate possibilities. The
one example produces a maximum density of exceptional
points within a small window of real A values, while the
other example produces a diluted density over a wide
range of real A values.

A. High density of exceptional points

We start with lines generated by the Hamiltonian ma-
trices (NV even)

Ho=k8, , and H,=D= %—k Si ks
k=1,...,N, G

which yields all lines intersecting at A=1. The fact that
we have chosen a harmonic spectrum for both Hamiltoni-
ans is immaterial for the following. We now rotate H, by
an orthogonal matrix U. Similar to the discussion of the
two-dimensional case in the preceding section, we now
except N(N —1)/2 complex-conjugate pairs of exception-
al points to emerge from the common intersection point.
Clearly the result will depend on the specific choice of the
rotation. We return to this aspect in Sec. V. By choosing
a random orthogonal matrix where the angles are taken
at random from the interval ( —¢g, @), it turns out that
for N=400 the nearest-neighbor distribution of the ener-
gy levels matches the Wigner surmise for angles as small
as ¢,=0.003. Likewise, the A;(L) curve, which was in-
vestigated for 1 <L <12, moves up from the constant
value A;= 4 to its GOE prediction with increasing ¢ in
a corresponding way. We stress the rather sudden
change from a harmonic spectrum to a GOE-type situa-
tion. For ¢,=0.003, these results hold only in the im-
mediate vicinity of A=1, while the harmonic nature of
the spectrum is left virtually unchanged for A values fur-
ther away from unity. The level statistics are based on
unfolded spectra.

The behavior of the eigenvectors is in accordance with
the observations for the spectrum. The eigenvectors are
almost identical to the unperturbed ones for A¥1. In
other words, when ordering the eigenvectors according to
an ascending order of the eigenvalues, they form for A <1
essentially a unit matrix, while for A>1 their order is
simply reversed (up to possible minus signs). Note that
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for A— o the exact form a actually is
0 +1
A(0)=U , (3.2)
+1 0

where U is the matrix that rotates H,. Owing to the
small value of ¢,, U is very close to a unit matrix. For
A=1 the eigenvectors change dramatically. The strong
mixing of the states brought about by the immediate vi-
cinity of a high density of exceptional points effects a
drastic delocalization. As a measure we use the average
localization length [7]

d:CXp(<S)_<SGOE>) )
where (S ) is the information entropy averaged over all

state vectors, viz.,

N
Sp=—SwInw,,, w;=|A4R),[>

i=1

(8)= L 5 S
TR

(3.3)

(3.4)

with A4(A), , containing the eigenvectors as column vec-
tors, and {(Sgog) is the corresponding quantity for a
pure random (GOE) orthogonal matrix. For large N its
leading term is known to be [7] ~InN. With our normal-
ization the average length d is unity for a completely
delocalized unit vector and zero (up to 1/N terms) for a
localized one. The length d is plotted as a function of A
in Fig. 1. Obviously, in the vicinity of A=1 it comes
close to its maximum value unity, while otherwise it is
virtually zero corresponding to the localized eigenvec-
tors, which are essentially of the form (0...1...0). The
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FIG. 1. Average delocalization length of eigenvectors vs A
for ¢,=0.003 for high density of exceptional points. At A=1
most eigenvectors (see Fig. 2) are delocalized, while for A far-
ther away from unity the eigenvectors are virtually unaffected
and of the localized form (0...1...0).
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FIG. 2. Distribution of the individual localization lengths for
A=1 of the average shown in Fig. 1. Note that a few vectors
remain localized despite the strong mixing taking place at A=1.

width of the bell-shaped curve increases with the max-
imum angle ¢@,. It is of interest to look at the fluctuations
of the individual lengths d;, =expS;. Their distribution is
plotted for A=1 in Fig. 2 showing that some eigenvectors
are localized while others are completely spread out.

These results are significant for a number of reasons.
We note the extremely high sensitivity under variation of
the maximal angle ¢, This was discussed [13] at length
in relation to the motion of the exceptional points and its
physical effect in quantum chaos. If another set of ran-
dom numbers is used for the angles, the local values of
spectrum and eigenvectors are strongly affected, yet the
statistical properties are left unchanged. The same holds
under variation of ¢;=>0.003 at A=1.

A reasonable measure for the smallness of the max-
imum angle is the quantity Ngj3. If this is kept smaller
than, say, 0.01, the leading matrix elements of U are 0.99
or larger (always smaller than 1.0). For the value chosen
above, it turns out that a, =€, =k with the effect that
the unperturbed lines as defined in Eq. (2.8) are almost
identical to the lines when ¢,=0. The intersection points
of the unperturbed lines occur in an extremely small
range of A values, which corresponds to the high density
of exceptional points for the actual finite value of ¢,.
However, if ¢, is increased further and further, the un-
perturbed lines will eventually form a random set of lines
in that the intercepts are randomly distributed. The in-
tersection points will be spread out over a large range of
A values and so will the actual exceptional points. Ac-
cordingly, the statistical properties for spectrum and
eigenvectors occur now over a large range of A values.
The situation of randomly distributed unperturbed lines
appears of interest for its own sake and we turn to it in
the following example.

B. Diluted density of exceptional points

We start with the Hamiltonian matrix

H0=k8k,k' and H1=D=ﬁ %—k]Sk’k,,
k=1,...,N, (3.9
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where /(n) is a random permutation of the natural num-
bers n. The spectrum is given by the lines
E/=k+MAs(N/2—k). The corresponding nearest-
neighbor distribution is a Poisson distribution for a large
range of A values (A=0 excluded). The eigenvectors are
all of the form (0...1...0) but their sequence (the
column vectors) in the diagonalizing matrix A is random-
ly distributed. Only for A> A, are they ordered as in
the previous example; by A, we denote the rightmost
intersection point of the levels.

When rotating H, to produce level repulsion, it now
turns out that a considerably larger value ¢, is needed to
change the Poisson distribution into a Wigner curve.
Only for ¢,=0.05 is the transition about to take place
(N=400). The A;(L) curve, when plotted for 1 =L =15,
has moved down nicely with increasing ¢, from the
straight line L/15 to its GOE prediction. In this example
the change from the ordered to the chaotic situation is
much less dramatic than in the previous example.

The value ¢,=0.05 implies that U is no longer close to
a unit matrix. As a consequence, when comparing with
the lines for ¢,=0 the unperturbed lines are reshuffled
since the order of the «; is different from the order for
the €, =k. However, while this affects substantially the
individual positions of the intersection points, it does not
change their distribution. As a consequence, the level
statistics hold now for a large range of A values. The
consequence for the eigenvector statistics is of a similar
nature in that delocalization is found for all A>0. From
Figs. 3 and 4 we see that for ¢,=0.05 the delocalization
is not as strongly pronounced as in the previous example.
Note that the distribution in Fig. 4 shows virtually no
contribution for d >0.6. The delocalization does become
stronger when ¢, is further increased. It is interesting to
note the pattern in Fig. 3: as indicated by the maximum,
the mixing for finite A values brings about a more pro-
nounced delocalization than the one enforced for large A
value. Here we refer to an important difference to the
previous example in that delocalization persists even for
A— . The eigenvectors appear in a matrix like the one
in Eq. (3.2) but now with a U that effects delocalization.
The levels, however, become equidistant for A>>A_ ...

04 t

0.3 +

0.1

0.0 N N

FIG. 3. Average delocalization length for ¢,=0.05 for the
diluted density of exceptional points. Note the maximum at
A==*1.4 as discussed in the text.
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FIG. 4. Individual delocalization length distribution of the
diluted density of exceptional points at A=2.0. The qualitative
pattern persists for a large range of A values.

IV. THE CHAOTIC QUARTIC OSCILLATOR

To demonstrate our procedure for a physical problem,
we have chosen an example that has been addressed by
many authors [14-18] from various viewpoints. We
choose the Hamiltonians

Ho=1p*+1q' +3PH+10%,
4.1)

H 1 = ';—q 2Q2 1)
so that the full problem H,+AH, is equivalent to the
Hamiltonians of the quoted papers up to scaling and a ro-
tation of the coordinates. The classical problem is inte-
grable for A=0 and becomes fully chaotic at A=1.
Beyond this point the quantized problem becomes un-
bounded from below.

The quantum-mechanical treatment is done by matrix
diagonalization usually in the harmonic-oscillator basis.
To avoid trivial degeneracies in the spectrum, the sym-
metries are reduced out; we consider the states symmetric
under permutation of the lower and upper case coordi-
nates, and of those the positive parity states. In the spirit
of our approach we choose H, diagonal. This is obvious-
ly achieved by diagonalizing it in the standard way. It
yields the diagonal elements €, and the transformation
matrix with which to obtain the matrix representation of
H, in that basis. From the diagonalization of H, so ob-
tained we obtain the diagonal matrix D containing the o,
and the rotation matrix U for which H,=UDU~!. We
performed our calculations for N=1482. Comparing the
spectrum of the full problem with values reported by pre-
vious authors confirms that our numerical procedure is
safe.

A few comments about the spectrum of H, seem ade-
quate. It is known that the operator g2Q? is unbounded
and has a continuous spectrum ranging over the whole
positive real axis. Any truncated matrix representation is
necessarily of a different mathematical nature. In partic-
ular, the eigenvalues of the truncated matrix will neces-
sarily depend on the dimension chosen. However, as long
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as the full problem H,+AH, is known to have a discrete
spectrum (which is known to be the case for A<1), a
finite-dimensional matrix representation is expected to
yield reliable results at least for the lower part of the
spectrum. While this is in fact exploited by everybody
who calculates spectra numerically for a physical prob-
lem, the importance for our approach lies in the fact that
we now consider the matrix problem on its own without
reference to its original setting. We follow the analysis
according to the lines described in the preceding two sec-
tions. In other words, we will now find the occurrence of
fluctuations that are ascribed to quantum chaos as a
property of the matrix operators H, and H, alone. For
the purpose of this paper the original classical counter-
part is not of primary concern, yet it is instructive to
compare our findings with the available knowledge of the
problem.

Knowledge of the €, the w;, and of U gives the unper-
turbed lines using Eqgs. (2.8) and (2.9). It turns out that
the intersection points within the lower third of the
relevant energy range are stable under variation of N. A
curve depicting the distribution of the number of inter-
section points within a small window of real A values
versus A is given in Fig. 5. We discern a pronounced
maximum in the vicinity of A=1. Intersection points
beyond A=1 are inherent to the finite-dimensional matrix
problem. The maximum at A=1 of the distribution be-
comes more and more pronounced with increasing N.
This pattern was found within the range of N values con-
sidered and is also intuitively expected: the largest eigen-
values of H | certainly increase steadily with increasing N,
hence the steepest (negative) slopes of the unperturbed
lines increase with increasing N; further, the ratio of the
largest eigenvalues of H to those of H, tends towards
unity with increasing N, which indicates an accumulation
of intersection points at A=1 with corresponding energy
values near zero. In Fig. 6 we illustrate the unperturbed
lines for N=50; for much larger values of N many more
lines would cross the abscissa in close vicinity of A=1.
We have thus found a maximum density of exceptional
points at the parameter value that is known to be the crit-
ical value of the classical and the corresponding infinite-

0.8

0.8 r

P(N)

0.4 |

0.2

0.0

FIG. 5. Number distribution of intersection points of the un-
perturbed lines for the quartic chaotic oscillator. The normali-
zation is arbitrary; there are further intersections for A values
beyond the range displayed.
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FIG. 6. Pattern of the unperturbed lines of the quartic chaot-
ic oscillator. For the sake of clarity the small value N=50 and
only a section of the energy range has been chosen. For increas-
ing N more and more intersection points occur in close vicinity
of A=1.

dimensional quantum-mechanical problem. Also note
that the monotonic increase of the density of intersection
points (and thus exceptional points) under variation of A
from O to 1 is in line with increasing chaos under such pa-
rameter change.

There is an appreciable spread of the density; in other
words, the density is not as concentrated as in the exam-
ple discussed in Sec. III A. This is reflected in the behav-
ior of the eigenvectors of the full problem, which are not
as delocalized as in Sec. IITA. In Figs. 7 and 8 we
present the averaged delocalization length as a function
of A and a distribution function of the individual lengths
at A=0.9. While the statistical properties of the eigen-
vectors resemble more those of Sec. I1I B, the level statis-
tics are known to be in line with GOE results for the A
value considered.

0.5

0.4 -

0.3

0.2 ¢

0.1 °© oo o

0.0 1 - -
3 2 g 0 1

FIG. 7. Average delocalization length for the quartic chaotic
oscillator. Note that delocalization is not very strongly pro-
nounced yet substantially stronger for positive A values than for
negative ones.
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FIG. 8. Individual delocalization length distribution for the
quartic chaotic oscillator at A=0.9.

In Fig. 5 a reduced but still substantial density of ex-
ceptional points can be noticed for negative values of A.
To the best of our knowledge this region has not been ex-
plored, probably since a manifestation of classical chaos
is not (easily) visible, although the problem remains as
much nonintegrable as for A positive. From the low den-
sity of exceptional points we expect a situation similar to
the example in Sec. III B. The analysis of level statistics
confirms this nicely in that a distribution is found that is
intermediate between a Poisson and a Wigner distribu-
tion. The nearest-neighbor spacings can in this case be
fitted by Brody [19] distribution. A plot of A;(L) is illus-
trated in Fig. 9.

For A <0 we found it amusing to increase all the angles
of the orthogonal matrix U by a factor 2 [20]. Needless
to say, in doing so all contact with the classical problem
is lost as the coupling matrix elements are larger on aver-
age than the ones prescribed by the original problem.

1.0 7
./'
0.8 t 7
. P
7
-/.
0.6 f //
= e
< 04 | s i
/' o © o ©0© °©
0.2 } /(,)/'O o ©
'/
0.0 : -
0 5 10 15
L

FIG. 9. Aj3(L) of the quartic chaotic oscillator at A= —1.0.
The intermediate character of the curve reflects the correspond-
ing classical situation.
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The effect of this operation fulfills all expectations: the
emergent level statistic is in agreement with GOE results.
The delocalization of the state vectors is enhanced.

V. SUMMARY AND DISCUSSION

The connection between fluctuations in the level spac-
ings and the distribution of the exceptional points of the
Hamiltonian Hy+AH has been discussed. A procedure
to obtain such a distribution by the use of unperturbed
lines has been given. The usefulness of the approach has
been demonstrated by revisiting the quartic chaotic har-
monic oscillator.

The point of view presented in this work is certainly
not traditional within the vast literature concerning
quantum chaos. While final answers cannot be supplied
at this stage, we feel that our contribution does convey a
great deal of insight. Below we address a number of
points that we believe can be tackled along the lines of
this paper.

Even if a high density of exceptional points is found at
a certain range of A values, GOE-type fluctuations must
not necessarily occur, although we presume that it is
generically the case. In other words, in the example of
Sec. IIT A, some specific nontrivial rotational matrices U
could possibly be construed that would produce spectra
with little or no fluctuations for the spacings. However,
the slightest generic perturbation of that situation would
bring back GOE-type fluctuations [13]. It appears that
the matrix U in the quartic chaotic oscillator is
sufficiently generic to generate the GOE-type spectrum,
although there is no random element in it. What must be
studied in this context is finding the (probably small) set
of constellations of exceptional points, which yields no
fluctuations, and determining the corresponding rotation
matrices U, which produces such a constellation. From
our experience we conjecture that this may be possible
only for very specific spectra (like harmonic) of both
operators, Hy and H;. We stress that it is not possible to
prescribe a particular set of exceptional points, since
there are strong correlations between them [13].
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We have found that quantum chaos is the more likely
to occur the higher the density of exceptional points. A
more quantitative relation between the dimension N, the
density of the exceptional points, and the size of the an-
gles determining the rotation U would be desirable. Note
that the angles essentially determine the size of the cou-
pling matrix elements while the density of exceptional
points with due regard to N is related to an average level
spacing. It has been observed [21] that the quotient of
these two physical quantities is crucial for the occurrence
of quantum chaos.

The most interesting aspects of substructure in Aj,
namely its possible relationship to existing closed orbits
[22] (if the classical analogy is at hand) and the oc-
currence of scars [23], must, in principle, be contained in
the information residing in the exceptional points. More
refined investigations that take into account degeneracies
or whole groupings of degeneracies of either H, or H, or
both are expected to shed further light upon these equa-
tions. A detailed study of the hydrogen atom in a strong
magnetic field, analyzed by our approach, could serve as
a guideline. Work along these lines is in progress.

We mention that we argued in a previous paper [13]
that transitional regions of finite Fermi systems that un-
dergo a phase transition are generically expected to show
patterns ascribed to quantum chaos. The procedure also
explains why traditional approximation methods like a
mean-field approach are bound to fail in these regions.
The reasoning is based on the augmented occurrence of
exceptional points in the transitional region.

With the approach adopted in this paper, one might
try to give a characterization of quantum chaos: quan-
tum chaos is quantum mechanics under special condi-
tions. If avoided level crossing (or tunneling) occurs on a
large scale, then quantum chaos is likely to occur. The
high sensitivity [13] under generic perturbation of spec-
trum and state vectors is explained in terms of the high
density of exceptional points. In contrast to the classical
case, the transition from order to chaos is smooth, al-
though it can be dramatic.
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