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Constraints on collective density variables: one dimension
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Collective density variables p(k) are frequently employed in many-body physics to describe a wide
variety of static and dynamic phenomena. These variables are nonlinear functions of particle positions,
and consequently exhibit subtle couplings and kinematic constraints. We examine some of these features
for one-dimensional systems, using both numerical exploration and analytical techniques. In particular
we have considered the consequences of quenching density fluctuations [minimizing the p(k}'s] for sets
of wave vectors surrounding the origin. This is shown, under proper circumstances, to force other sets
of p(k) s automatically to their minima, and even to induce perfect crystallization of the many-particle
system.

I. INTRODUCTION II. ELEMENTARY RELATIONS

The distribution of matter encountered in many-
particle systems often finds its most natural expression in
terms of collective density variables. For X identical
point particles at positions r&, . . . , rN within a D-
dimensional box 0,, these collective variables are conven-
tionally defined by

N

p(k) = g exp(ik r, ) .

The k are wave vectors appropriate for Q. Examples
abound in the physics literature of the utility of the p(k)
as collective variables; illustrative cases are provided by
the random-phase approximation for conduction elec-
trons in metals [l], the study of phonons in superfluid
helium [2], detection of nucleation and crystal growth in
simulations for supercooled melts [3], and derivation of
self-consistent integral equations for pair correlation
functions in classical fluids [4,5]. But in spite of their
broad applicability and frequent use, collective density
variables remain a mathematically underexplored subject.
The present paper is intended as a modest start toward
rectifying that weakness.

Section II provides some definitions and elementary re-
lations, presented in a form valid for arbitrary integer di-
mension D ~ 1. Although we intend to address in detail
the D ) 1 cases in due course, this paper concentrates on
the relatively simple behavior for D = 1. Section III
presents results of high-precision numerical experiments
in one dimension that reveal some nontrivial aspects of
the coupling between p(k)'s. This is followed in Sec. IV
and V by the derivation and exploitation of a family of
sum rules for the collective density variables. These sum

rules generate a rationale for some of the numerical pat-
terns identified in Sec. III. Finally, Sec. VI oA'ers discus-
sion and a few concluding remarks.

p(0) =N. — (2. l)

All others are complex, with

p( —k) =p*(k), (2.2)

and have amplitudes that fluctuate between (attainable)
upper and lower limits as the X particles move about:

O~Ip(k)I~N (kxo). (2.3)

It is conventional to suppose that the box 0 is a D-
dimensional rectangular solid to which periodic bound-
ary conditions apply, i.e., 0 and its periodic images fill
the space. If any particle configuration is uniformly
translated, only the phase angles of the k&0 collective
variables change, not their magnitudes. Consequently, it
is useful to introduce the real function C(k} which mea-
sures those magnitudes:

p(k)p( —k) = Ip(k) I'=N+2C(k),
N

C(k)= g cos[k. (r —rt)] .
(2.4)

Clearly we have

C(0) = ,'N(N —l ), —

C( —k) =C(k),
—

—,'N ~ C(k) ~ ,'N(N —1 ) (k&0) . —

(2.5)

Let v(r) be a translation- and inversion-invariant parti-
cle pair potential with Fourier transform V(k):

Only the k =0 collective variable is independent of par-
ticle positions r&, . . . , rN..
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V(k) = f dr u(r)exp(ik r),
u(r)=Q 'g V(k)exp( —ik. r) .

k

(2.6)

S(M, )LS(M~) (M, )M2) . (2.14)

It is clear that S (0) includes all particle configurations,
and that

=0 ' g V(k)C(k) .
k

(2.7)

A specific choice of interaction that will be useful in the
following is the k-space square mound potential:

V, &0 (~k~&K)
V(k) = '

o (K&~k~). (2.8)

In this case N depends on only the finite set of collective
variables with wave-vector magnitudes at or below the
cutoA'K.

In the large-0 limit (K fixed), the second of Eqs. (2.6)
reduces to a standard integral form for evaluation of u(r):

The total interaction for all pairs of particles in the N-
body system may be written in the following equivalent
forms:

N
4'= g u(r, —ri )

j(1=1
=(20) ' g V(k)[p(k)p( —k) —N]

k

If S(M) contains configuration r„.. . , r~, it also con-
tains all configurations that can be generated from it by
uniform translations, by particle permutations, and by
the point-group symmetry operations for Q.

Some basic questions concerning the configuration sets
S(M) are the following.

(a) What is the smallest M value (for given N) such
that S(M) is empty?

(b) Which nonempty sets are connected?
(c) How does dim [S(M)] vary with M?
(d) How are the p(k), or equivalently the C(k), for

~k )K distributed as a function of M? The numerical in-
vestigation reported in Sec. III provides some answers to
these queries for D =1~

III. NUMERICAL STUDY FOR D = 1

A relatively complete characterization of the classical
ground state for potentials of type (2.8) is possible for the
one-dimensional case, provided K is not too large (in a
sense to be made clear). In this circumstance x „.. . , xz
can denote particle locations on the line, and we can take
Q to be the line interval

lim u(r) = Vo(K/2vrr ) JD&z(Kr), (2.9)
0&x~ (L (j =1,. . . ,N) . (3.1)

where J, is the Bessel function of the first kind [6]. This
potential is bounded, oscillatory, and displays an algebra-
ic decay with increasing distance r. Specific forms for
D = 1,2, and 3 are the following:

u, (r) = ( Vo /err ) sin (Kr),

u~(r) =( VOK/2~r )J, (Kr),

u3(r) =( Vo/2' r )[( sin(Kr ) Kr cos(Kr)]. —
(2.10)

Since U is inversion symmetric, so too is V. Conse-
quently the number of k's for which V(k) in Eq. (2.8) is
positive must be an odd integer, say 2M+ 1:

k =0, +2~/L, +4~/I. , (3.2)

The one-dimensional perfect "crystal" has a special
significance. This corresponds to the arrangement

x~ '=(j —l)L/N+u, (3.3)

or any particle permutation thereof, wherein u is a com-
mon displacement satisfying

0&u (L/N, (3.4)

The wave vectors form a one-dimensional periodic se-
quence

Vo
' g V(k)=2M+1,

k

(2.11) but is otherwise arbitrary. One immediately finds for this
regular arrangement that

If M is suSciently small compared to N, it is reason-
able to expect (and indeed is confirmed in later sections)
that particle configurations in 0 would exist for which
simultaneously

p(k) =0 for all 0& ik~ &K . (2.12)

min N = ( V ON /2Q )(N —2M —1 ),
«i ~ ~ ~ 'N ~

the system's classical ground state.

(2.13)

In other words, the N particles could be placed so as to
suppress completely the density variations with wave-
lengths contributing nontrivially to @, Eq. (2.7). Let
S(M) stand for the set of configurations r„.. . , r~ with
this property. By definition this is the set of
configurations for which 4 attains its absolute minimum:

p(k) =N exp (iku) g 5x(k 2~nN/L ), —
oo

(3.5)

where 5K is the Kronecker delta. Hence the p(k) all van-
ish except those at the "Bragg" points [7]

k(Bragg)=2~nN/L (n =0,+1,+2, . . . ), (3.6)

for which the p(k) achieve their maximum possible mag-
nitude N [cf. Eq. (2.3)]. The corresponding pattern for
the real quantities C(k) is that they are at their minimum
( —

—,'N) or maximum [—,'N(N —1)], respectively, for k
values away from, or at, the Bragg points. The obvious
implication of these remarks is that all perfect crystal ar-
rangements in one dimension belong to the configuration
sets S(M) for M &N.

Recall that periodic boundary conditions apply. Thus
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free translation can convert any particle ordering in a
crystalline array into N —1 others. This implies that the
full set of crystalline particle arrangements in one dimen-
sion constitute (N —I )! disconnected manifolds each of
dimension 1 in the full N-dimensional configuration
space.

The potential energy for the one-dimensional system
with square mound V(k) may be written as follows:

M
4/VO=N(N —1)I2L+(2/L) g C(2vrm/L) .

m =1
(3.7)

Our numerical study has been directed toward generating
representative configurations in the sets S(M). Starting
with randomly assigned particle positions, steepest-
descent trajectories on the multidimensional N hypersur-
face were produced, the end product of which (if success-
ful) would be a system configuration for which each C in
the sum in Eq. (3.7) would attain its minimum N/2—
The resulting collection of particle configurations for
various N and M were then analyzed to illuminate ques-
tions (A) —(D) at the end of Sec. II.

As a final preliminary to discussion of the numerical
results, we consider the effect on the collective variables
of small distortions from the perfect crystalline arrange-
ment. Therefore generalize Eq. (3.3) to

x =(j—1)L/N+u+sJ, (3.8)

where the s will be treated as infinitesimals. The require-
ment that all of the C's in expression (3.7) be simultane-
ously at their minima gives rise to the following simul-
taneous equations after linearizing with respect to the s'

N
sin (2~rm j/N )sJ =0,

i=1

cos (2mmj /N)s~ =0, . .

i=1
m =1,2, . . . ,M .

(3.9)

If M & N/2, these equations are linearly independent and
provide 2M constraints on the N variables s„.. . , s&,
consequently the dimension of the configuration set S (M)
in the immediate neighborhood of any crystal
configuration must be N —2M. However, if N is even
and m =M=N/2, all coeKcient sines in the first of Eqs.
(3.9) vanish to yield one fewer constraint; in this case the
local dimension of S(N/2) near crystallinity is one,
presumably corresponding just to uniform translation.
Increasing M into the range N/2 &M &N does not pro-
duce more constraints, but merely replicates those al-
ready in hand. The local dimension of S(M) thus is
given by the expression

max(N —2M, 1) (0+M(N) . (3.10)

One of the tasks of numerical investigation is to validate
this expression as the global dimension of S (M)
throughout the N-dimensional configuration space.

Evidently S(N) is empty. The most uniform distribu-
tion of N particles on a line is the periodic crystalline ar-
ray, and this inevitably generates Bragg maxima at the
points (3.6). No particle configuration exists permitting a
wider range of k values surrounding the origin to have to-

N/2 M N —1 (N even),

(N —I)/2~M~N —1 (N odd),
(3.1 1)

only a perfect crystalline arrangement permits N to attain
its absolute minimum. This confirms the prior suggestion
based on linear constraints (3.9). However irregular the
initial particle configuration might be, the steepest-
descent minimization in this family of cases (3.11) invari-
ably spaces the particles evenly on the line. Thus it is
only necessary to suppress density Auctuations about
halfway from the origin in k space to the nearest k(Bragg)
to force the one-dimensional system to crystallize.

Next we consider the M ranges

0~M+[(N —2)/3] (N even) .

O~M [(2N —3)/6] (N odd),
(3.12)

where [ ] denotes "integer part. " Here only those C(k)'s
within the range of the square mound V(k) are forced to
equal the minimum —N/2. All others seem to be free to
vary between the limits shown in Eq. (2.5). Examination
of particle configurations emerging from the steepest-
descent procedure shows them to be quite disordered,
typically without any hint of crystallinity. Obviously a
wide range of configurations belong to the corresponding
S(M) of which the displacements s, Eq. (3.8), are large
and only weakly correlated at most.

The least obvious and therefore most intriguing behav-
ior develops in the intermediate regime:

[(N 2) I3] & M & N/2 (N even),

[(2N —3)/6] (M ((N —1)/2 (N odd) .
(3.13)

As M increases from the lower to the upper end of the
range indicated, more and more intervals of contiguous k
values arise, appearing farther and farther from the ori-
gin, in which the C(k) have been implicitly forced to
their lower limit —N/2. This occurs even though the k
values involved lie outside the range of V(k). Thus the
intermediate regime (3.13) systematically interpolates the
small-M case where only C(k)'s within the range of V(k)
are minimized, to the large-M case where all C(k)'s are
minimized except for those at the Bragg points.

tally suppressed density fluctuations.
Our steepest-descent numerical studies have included

many system sizes in the range 2 ~N ~ 100, various M
values primarily in the range 1~M N/2, and collec-
tions of random initial configurations for each N, M as
seemed appropriate and feasible. Calculations were car-
ried out to high precision, with the configuration-
dependent part of N typically converged to its absolute
minimum to 12 significant figures. The following general
comment should be noted: For all N examined, and with
M &N, the steepest-descent trajectories always converged
to the absolute N minimum. Evidently the N hypersur-
face contains no relative minima lying above the classical
ground state.

The pattern of results obtained is clear and systematic.
We believe it extends to all N ~ 2.

The calculations show that when M is in the range
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Confine attention for the moment to X an even integer.
Set

M=N/2 l —(N even) (3.14)

so that when

1 ~ l ~ N/2 —[(N + 1)/3] (3.15) Co

0C)
~ ~

~0

the variations in I span the intermediate regime. We have
found that starting from the first positive k value and
proceeding along the positive k axis, the alternating inter-
vals respectively of minimal and of nonminimal C(k)'s
have lengths that follow simple arithmetic progressions.
Specifically the sequence runs as follows:

—10 —~

I

10
I

20
I

30
I

40 50

N/2 —I minimal C(k)'s,

(2l —2)+ 1 nonminimal C (k)'s,

(N/2 —I)—(2l —2) minimal C(k)'s,

2( 2l —2 ) + 1 nonmini mal C ( k )'s,

(N/2 l) —2(2—1 —2) minimal C(k)'s,
3(2l —2) + 1 nonminimal C (k)'s,

(3.16)

etc. The progressions continue unless or until the length
of the interval of minimal C(k)'s vanishes, and beyond
that point an uninterrupted infinite sequence of non-
minimal C (k)'s appear.

The behavior just described is particularly simple when
I= l. Then the only nonminimal C(k)'s are those at the
Bragg points (3.6) and at the k's midway between succes-
sive Bragg points. The system configurations are those of
two independently translatable sublattices each contain-
ing half of the particles, e.g. ,

FIG. 2. Particle displacements sj vs j for the case N=49,
l =1 (i.e., M =23), corresponding to a large-amplitude modulat-
ed Brillouin-zone-boundary phonon. This should be compared
to the contrasting small-amplitude case displayed in Fig. 1.

M=(N —1)/2 —l (N odd) (3.18)

The presence of the two independent sublattice displace-
ments u

&
and u2 makes it clear that the global dimension

of the corresponding configuration set S(N/2 —1) is 2, in
agreement with the local dimension implied earlier by the
constraint equations, (3.9). Note that the two sublattices
can be translated into coincidence and then particles per-
muted between them, in this way all configurations can
be continuously deformed to one another so the set
S (N/2 1) is fully —connected.

The odd-X cases are quite similar, but require slight
notational changes. Now set

x21, = (2j —2)L /N+ u, ,

x2 =(2j—1)L/N+u2, (1 ~j ~N/2) . (3.17)

so that the intermediate regime specified by the second of
relations (3.13) is spanned by

1~ I ~ [N/6] . (3.19)

0 ~
Once again, starting from the first positive k value and
proceeding along the positive-k axis, alternating intervals
of minimal and of nonminimal C(k)'s have lengths in ar-
ithmetic progression (at least until the former vanish).
Now one finds, for odd X, that the sequence is

V)

0
T

I

0 10
I

20
I

30
I

40 50

(N —1 ) /2 —I minimal C ( k)'s,

(2l —2) +2 nonminimal C ( k)'s,

(N —1)/2 I —(2l —1) min—imal C(k)'s,

2(2l —2)+3 nonminimal C(k)'s,

(N —1)/2 —l —2(2l —1) minimal C(k)'s,

3(2l —2)+4 nonminimal C(k)'s,

(3.20)

FICz. 1. Particle displacements s, vs j for the case N=49,
I=1 (i.e., M=23). The particles are arranged in order along
the system with length L =1. The displacements shown are
measured relative to a perfect crystalline arrangement. The
configuration amounts to a small-amplitude, modulated
Brillouin-zone-boundary phonon.

etc. The preceding argument for infinitesimal displace-
ments suggests that for N odd, l =1 [i.e., M=(N —3)l
2], the dimension of the configuration set should be 3.
The numerical work confirms that this is indeed the case
even for finite displacements. Figures 1 and 2 help to il-
lustrate this point by showing two collections of displace-
ments obtained numerically for N =49, l =1. As in Eq.
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(3.8) above, these displacements are reckoned as relative
to a perfect reference lattice, and have the character of a
zone-boundary phonon with a long-wavelength modula-
tion that just accommodates the odd number of particles.
The three degrees of freedom present are (a) the uniform
translation mode, (b) the amplitude of the modulated
phonon, and (c) the phase of the modulation. For the
small-amplitude example displayed in Fig. 1 the modula-
tion envelope is nearly a pure sinusoid. By contrast the
large-amplitude example in Fig. 2 possesses essentially a
peaked triangular-wave envelope. Intermediate ampli-
tude cases interpolate between these extremes.

Nf (z) = / (1 —
zy, )

g a,z',
j=O

where ao = 1. It follows that
N

lnf (z)= g ln(1 —zy;)

g y,"z"In
i=1 n=l

(4.4)

IV. EXACT SUM RULES: PRELIMINARY = —g S„z"ln .
n=1

(4.5)

The intriguing results of Sec. III suggest that, lurking
beneath the surface, are analytical relationships among
the collective variables. To avoid unnecessary notational
complexity we will now adopt units such that L =2m,'
then the index in p is an integer and the Ix I can be re-
garded as angles.

An indication that non-numerical analysis might be
fruitful emerges immediately from the elementary exam-
ple %=4, i = 1, (i.e., M =1). Here we have or equivalently

= —y S„z"-'
n =1

(4.6)

There are several ways in which Eq. (4.5) can be em-
ployed. To establish Newton's relations, we observe that

d lnf (z) = f'(z)If (z)
dz

4

p, = g exp(ixj)=0 .
j=l

(4.1)
f'(z)+f (z) g S„z" '=0 .

n=1
(4.7)

The separate terms in this sum are unit vectors in the
complex plane, and in order for them to add to zero, they
must geometrically form a rhombus. When raised to any
positive or negative odd power, say 2n —1, the pairs of
antiparallel vectors forming opposite sides of this
rhombus rotate in the complex plane, but remain antipar-
allel. Consequently another rhombus is formed, and so

N oo N+n

g ja,z' '+ g g a „S„z' '=0.
n =1 j=n

Adopting the notation, consistent with (4.4), that

(4.8)

a =0 for j (0 or j )X, (4.9)

Utilizing Eq. (4.4), this last relation can be written out ex-
plicitly as

PZn —1 0 .

For an even index, the corresponding powers produce
parallel opposite sides which do not cancel. Hence
minimal and nonminimal C s alternate with m, in exact
accord with the scheme (3.16) above.

The elementary example just discussed clearly involves
constraints on higher-order moments of a set of discrete
variables —the y. = exp (ix )—given low-order mo-
ments. A general procedure for addressing this kind of
problem was first devised by I. Newton [8], whose ap-
proach we now review briefly and then extend to the col-
lective variable relationships at issue. Given N indepen-
dent variables y„,yN, define

Eq. (4.8) simplifies to

gz~ '(ja + g a „S )=0,
j= 1 n =1

which, since z is arbitrary, yields Newton s result

(4. 10)

ja + g a, „S„=O (j=1,2, 3, . . . ) .
n=1

(4.1 1)

Equation (4.11), taken at j = 1, . . . , N, iteratively
expresses a„.. . , aN in terms of S„.. . , SN. A typical
question it might be used to answer would be the follow-
ing: How can SN+, be expressed in terms of Sl, . . . , SN?
The response could either involve solving the (Ã 1+) ts
equation for SN+ 1

..

N
S„= gy, " . (4.3)

N

Sg+i= —$ a~+, „(Si, . . . , S~)S~,
n=1

(4.12)

At most X of these sums can be independently specified;
all others can in principle be expressed as functions of the
X fixed S„'s.

We start by representing the Iy I, whose order is im-
material, by the generating function

or, without bothering to solve for the Ia I, could instead
observe that the first X + 1 equations formally constitute
a homogeneous linear system on X + 1 variables:
1,a 1, . . . , aN, whose determinant must thereby vanish.
However, there is a more direct approach, based on Eq.
(4.5), in the form
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f (z) = exp —g S„z"/n
n =1

(4.13)

Since f (z) is of degree N in z, we can rewrite (4.13) as

the form

j—1

PJ
= —2, a& „P„—jaj

n=1
(5.7)

f (z) =PN exp —g S„z"/n
n =1

(4.14)

where PN is the projection onto Nth order polynomials:

and iterate, starting at j=Ã+1. If many of the set
(p+ ~, . . . , p+N ) vanish, the task is substantially
simplified. For example, consider the case M=X of Sec.
III, i.e.,

00 N

PN ggjz = ggjz
j=O j=O

P+1 P+2 '
P+N

(4.15)
Equations (5.1) and (5.5) then imply at once that

(5.8)

Thus f (z) is expressed in terms of the S&, . . . , SN alone,
and we can reapply (4.5) to get

(5.9)

Subsequently setting j=N+ 1, . . . , N —1 in (5.7) leads to

n=1 n=1
g S„z"/n = —ln PN exp —g S„z"/n (4.16)

PN+1 (5.10)

whose expansion recovers any S„ in terms of S1, . . . , SN.

V. EXACT SUM RULES

J
jaj+ g aj „P„=O, (j =1, . . . , N)

n =1
(5.1)

now determines a1, . . . , aN in terms of p1, . . . , pN, but

aN+„. . . , a» remain to be found. For this purpose we

also examine the generating function
N

g(z) = Q(1 —z/y, )
i =1

The collective variables of interest, the pk, are indeed
moments of the y. = exp (ix ), but both positive and neg-
ative powers are included. Suppose that N=2N is even;
then the information given is that of p+». . . , p+N. The
subset of Eqs. (4.11)

Continuing the process, one easily verifies for this case
that

I p„ I

=N g &x (~ —jN ),
J= oO

(5.12)

where as before 5z is the Kronecker delta. Thus we have
verified that the only nonminimal p„'s are those at the
Bragg points, i.e., enforcing M=X=X/2 indeed creates
only a perfect crystal as indicated by the numerical study.

Cases with smaller M proceed similarly, although with
increased complexity. For a systematic description, it is
best to generalize the direct expansion of (4.16) to the col-
lective coordinates. Let us now suppose that N is odd,
N =2&+ 1, and for minor notational convenience intro-
duce the "normalized" collective variables

while j =N in (5.7) then yields pN = —NaN, or since aN is
just a unit vector,

(5.1 1)

j=0
bzJ. (5.2)

qk=pk/k (kWO) . (5.13)

By following the same procedure as before, we are led to We will regard q+1, . . . , q+N together with the phase
factorjb+ gb „p „=0,

n=1

so that, using the easily established identities

(5.3)
N

co=exp i gx
j=1

(5.14)

aNb =
N (5.4) as our basic independent variables. We start by copying

(4.13) as
we have

J
jaN j+ g aN 1+ p „=0 (j= 1, . . . , N —1) . (5 5)

n=1

N 2N+ 1

(1—y z)= g a zj
j=1 j=0

This evaluates aN+1, . . . , a2N

p». . . , P N, to which
in terms of = exp —g q„z"

n =1
(5.15)

N

a2N= exp i g x
j=1

(5.6)

is appended, serving as an undetermined phase factor.
There is now no problem in principle to computing the

pj. for j)N in terms of p+„. . . , p+N. We use (4.11) in

N

q„z"
n=1

N
a zj=P exp-j N

j=O

Letting y ~1/yj, z~ 1 /z in (5.15), we also have

(5.16)

but instead of proceeding to form (4.14), we project out
only through zN:
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N N

g [1—1/(y z)]=—(1/co)z g (1—y z) g x~/N.

Next, let I = 1, in which case

so that

= exp g q „z
n =1

(5.17) g q„z"=—ln (1—
q&z

—coq &z
+' —coz +'),

n=1

(5.25)
N N

+ (1—y,z)= g a,z'
j=1 j =0

= —coz exp g q „z
n=1

It follows that, in obvious notation,

(5.18)

nlN (5.26)

and the associated configuration space S[(N 3)—/2] is
determined by three parameters co, qN, and q N. On the
one hand, we can find explicitly the full set of Iq„]. To
do so it is convenient to remove the eFect of the center-
of-mass position by setting

N

a z~= coz P—
& exp

j=N+1

N

q „z
n=1

(5.19) while concurrently letting z~zcu' . This eliminates co

in (5.25):

Hence combining Eqs. (5.15), (5.16), and (5.19) we arrive
at the identity g qz"= —ln(l —Q~z —g gz

' —z +'),
n=1

(5.27)

QO N
q„z"=—ln Pg exp —g q„z"

n=1 n=1
and in fact does the same in the general expression (5.20).
Thus expanding (5.20) in multinomial form,

—coz I'
N exp

N

g q „z
n=1

(5.20) ~~ s —u~ t —u sN+ t(N+ 1)
~N (5.28)

A number of consequences fiow easily from (5.20) to
shed further light upon our numerical investigations. To
begin, suppose that

p„=O for ~n
~

&N 1, 1&N/2 —. (5.21)

Then the argument [] of the logarithm in (5.20) takes the
form

N+I

n =N —I+1
Cnz +COZ

and (5.20) thus implies that for l )0,

p„@0 only if (N —l+ l)p ~n ~

& (N+1)p,

p = 1,2, 3~. . .

(5.22)

In other words, there are nonzero sequences of length
(2l —1 )p + 1 interspersed with zero sequences of length
N l —(21 —1)p. T—he first nonimposed zero sequence

p = 1 is absent unless N l —(2l —1))0, —i.e.,
I & (N+1)/3=(N+1)/6.

For small l in (5.21), one can make a much more de-
tailed characterization. First, let l =0, the special case
excluded from (5.22). Then (5.20) reads

If n &N, the nonvanishing q„appear as (p+ 1) triplets,
with s =p —t, 0+ t +p, n =pN+t, or

(p —u —1)!
t'~+' (p t —u )!(t—u )!u—!

u

(5.29)

we need the possible sets of roots of the foregoing po-
lynominal. Setting

q~ =p~/N =r exp ( —ip/2),
z= exp( —ix), (5.31)

these are given by

sin (Nx /2) =r sin [(x —P)/2], (5.32)

which is plotted in Fig. 3 for various values of r. At
r =0, i.e., p+1= =p+N =0, we of course have the per-
fect crystal:

We are also in a position to analyze the x-space
configurations associated with l =1, as illustrated in Figs.
1 and 2. Since

N
1 —z exp(ix, ) =1—

Q
—z —q -z~+' —z' +'

j=l
(5.30)

q„z"=—ln (1—coz ),
n=1

(5.23) x ' '= 2vrj /N (j=0, . . . , N 1) . —(5.33)

so that only the

PNp
—clN (5.24)

are nonvanishing —a perfect crystal with center of mass

For small r, Eq. (5.32) is solved to leading order by

x~. =x~' '+( —1)~(2r/N) sin [(x' ' —p)/2], (5.34)

a pair of half-wave sinusoidal distributions. As r in-

creases, the trigonometric form distorts increasingly until
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sin (Nx /2) —sin [(x —P)/2]

(N —1)x+P=2 sin
4
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4

(5.35)
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2m j—(
—1)JP

N —( —1)J
(5.36)
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(5.38)

and the real collective variables

3

sin(kx, ),cos(kxj ), sk =
Ck

j=1
(6.2)

g=1
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to leading order. There are two consequences. The first
is that

C„=N—(n /2) gx +
J

sQ
-N (4n—/N)e, (6.6)

restricting space to the immediate vicinity of a hyper-
plane. The second, assuming again that g x =0, is that

Is„/ = n $x, ,'n'—$—x,'+
J J

I

w3

I

-2 n Ni/'2 '~ 2 3/2
6

J
(6.7)

FIG. 4. Accessible (c,s, co) space for N=3 particles at co=0.
s ((2 /3)(n /N)e (6.8)

gx~ =(2N!N )E+ .
J

—(8/N)e (6.5)

fact bounded by cusps. Extension to g x.AO creates a
spiral configuration with axis along the g x direction.
Here we see that c +s =5+4 cos(3x) 1 on the bound-
ary, so that c and s are in fact independent inside the (c,s)
unit circle.

The cusp nature of the Ipk, coI boundary holds for
N &3 as well. Again suppose N=2N+1, and consider
C~ near its maximum of N. Then (mod 2m) all xi are
small, and so

C~ =N( 1 —e)

= icos(Nx )

J

=N ——N x+2
2 J

J

tells us that

a cusp within the hyperplane. Thus the surface is very
spiky. The generalization to N ) 3 of the existence of the
inscribed circle c +s &1 of independent variation for
N =3 remains an open problem.

In anticipation of subsequent publications, it might be
mentioned that the D = 1 results reported here have simi-
larity to behavior in D=2 and 3. Numerical studies
demonstrate that by inhibiting density fluctuations within
a sufficiently large k-space domain around k=O, the par-
ticle system is forced to crystallize. But unlike the D =1
case, the D =2 and 3 cases appear to exhibit a sharp tran-
sition (in the large-N limit) between predominately amor-
phous configurations and clearly crystalline con-
figurations, as the number of vanishing p(k)'s increases.
That is, a phase transition can be induced by changing
the range E of repulsive interaction in k space [Eq. (2.8) ].

Finally, we emphasize the desirability of studying the
positive-temperature thermal behavior of many-particle
systems in D =1,2, and 3 with interactions of the form
given by Eqs. (2.7) and (2.8).
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