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Diffusion-controlled reaction A +B = 0 in one dimension:
The role of particle mobilities and the diffusion-equation approach
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We investigate the influence of different mobilities of A and B particles on the time evolution of the
particle concentration in the diffusion-controlled reaction 3 +8~0. For different concentrations of A
and 8 particles, Monte Carlo simulations display two main behaviors, depending on whether the majori-
ty species moves or is at rest. An analytical approximation based on the difFusion equation shows
reasonable agreement with the Monte Carlo simulations and gives lower bounds for the concentrations'
decay.

I. INTRODUCTION

Diffusion-controlled reactions, where particles move
diffusively and react on contact, have been studied in-
tensely during recent years. Although exact mathemati-
cal solutions are hard to obtain, several asymptotic for-
mulas for the decay of the particle concentrations have
been established by heuristic treatments or by scaling
analyses [1—30].

In this paper we focus on the A +B—+0 reaction in
one dimension. As one already knows from the
A +B~B reaction, the asymptotic form depends on
which of the particle species is mobile or immobile.
Thus, for the one-dimensional target problem
( A +B~B with immobile A and mobile B) one obtains
for the concentration c„(t)of A particles asymptotically

c~(t)=exp( ct'~ ) . — (2)

An analytical treatment of the A +B~O reaction is
more complicated than the A +B~B reaction, due to
the fact that in the course of the reaction the number of B
particles also changes; the correlations that develop be-
tween the A and the B particles are for the A +B~Ore-
action more complex than for the A +B—+B reaction.
Furthermore, as will be evident from the following, the
relation between the initial concentrations cz =cz (0) and
cz=cz(0) is fundamental for the A +B~O reaction.
Thus one must distinguish between having equal concen-
trations of particles (c~ =c~ ) and having one species (say
A) in the minority (cz &cz). In the first case (cz =cz)
the decay of concentration follows a t ' law, a fact
which by now is well established [3,4,6, 15]. The second
case (c~ & cs ) is more delicate, (see the discussion of Ref.
[30]); evidently the time evolution cz(t) for A +B~0 is
bounded from below by the corresponding expression for

c„(t)=exp( c&t )—
(c constant), whereas for the trapping problem ( A
mobile, B immobile) one has in one dimension at ex-
tremely long times [1,2,7]

the A +B~B reaction [as given in Eqs. (1) and (2)] and
will follow these forms closely if cz &(cz.

In the present paper we investigate the behavior of the
A +B—+0 reaction in one dimension: we include cases in
which either only one of the species ( A or B) moves and
also cases in which both species are mobile. In Sec. II we
present for all of these cases the results of Monte Carlo
simulations of the reaction process on a linear chain.
Then, in Sec. III we develop an approximate treatment of
the reaction based on diffusion equations. The compar-
ison between the finding of the two approaches and a crit-
ical evaluation of the accuracy of the approximation pro-
posed are given in Sec. IV.

II. MONTE CARLO SIMULATIONS

For the simulation of the A +B—+0 reaction in one di-
mension we start from a random distribution of A and B
particles; the linear chain (with periodic boundary condi-
tions) consists of 10 —10 sites, and each site is either
empty or is occupied by one particle only. At each simu-
lation step one of the mobile particles is picked at ran-
dom and moved to one of its neighboring sites. The time
increment for each such step is taken to be the inverse of
the total number of mobile particles still present in the
system. Thus each mobile particle performs on the aver-
age one step per time unit. Note that for the described
process the diffusion coefficient of the mobile particles is
D =

—,
' (in units of lattice distance squared per unit time).

Whenever two particles of opposite type meet, they an-
nihilate each other immediately.

Figure 1 shows the time evolution c„(t)of the concen-
tration of A particles. In the simulations two types of
conditions were considered: equal initial concentrations,
c~ =cz =0.1, and unequal initial concentrations,
cz =0. 1 and c~ =0.2. The curves displayed are the aver-
age over some ten realizations of each process. Note that
the self-averaging is very good, so that the curves in Fig.
1 were not smoothed in any way. The symbols A, B, and
AB indicate the mobile species, respectively.

We note that for equal initial concentrations
c~ =cz =0. 1 the asymptotic regime is reached very early;
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ac, (x, t)
=Dtthcti(x, t} R—(x, t),

r}t
(3)

1
2
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where cz(x, t) and cs(x, t) are the local concentrations,
D~ and Dz are the corresponding diffusion coefficients,
and R (x, t) is a term that describes the local decrease in
the particle concentrations due to the reaction. In gen-
eral, R(x, t) depends on the joint probability density
p(r, t) for finding particles 2 and 8 at time t at the mutu-
al distrance r In. general, R (x, t) is not expressible as a
product of the local concentrations c„(x,t) and c~(x, t);
see, for instance, Ref. [16]. However, in Eq. (3) it is only
important that the particles react pairwise, so that the
same expression for R (x, t) describes both the decrease in
the number of A and in the number of B particles.

A. Equal dift'usion coe%cients D &
=D&

FIG. 1. Time evolution of the concentration c& (t) of A parti-
cles for equal (c& =c& =0.1) and for unequal initial concentra-
tions (c& =0.1, cz =0.2). The curves were obtained from
Monte Carlo simulation of the A+B~O reaction on linear
chains of 10' sites (for c& =c&) and of 10' sites (for c& Xc&}. For
c& =c& the curves were averaged over four realizations, for
c& We& over ten realizations. The symbols A, B, and AB indi-
cate the mobile species. The dashed line has the slope ——'.

from the figure we infer a slope of —0.26, very close to
the well-known t ' law. For easy reference the dashed
line in Fig. 1 indicates the slope —

—,'. Note that the t
law is obeyed, regardless of whether only one or both
types of particles are mobile; for our two cases (D„=Ds
or Ds =0) the two curves differ from each other by a fac-
tor of 2 in the time scale. For unequal particle concentra-
tions c~ &c~, however, two main behaviors become evi-
dent; the decay forms depend on whether the majority
species (B) is mobile or not. Thus, the situation in which
both 3 and B move leads to a similar decay as that ob-
tained when only 8 (the majority species) is mobile; for
D„=D~ and D„=O the corresponding decay laws differ
only by a factor of 2 in the time scale. However, very
different temporal behavior obtains when only the minor-
ity species ( 3) is mobile, the decay being considerably
slower than in the former situation. Note that this
feature parallels the findings for the A +B—+B reaction,
where the decay due to trapping, Eq. (2), is at long times
slower than that of the target problem, Eq. (1).

III. THE DIFFUSION-EQUATION APPROACH

In a continuous-medium representation a reaction be-
tween two diffusing species can be described by the two
differential equations

In the case of equal diffusion coefficients D„=D~—=D,
Eqs. (3) lead to a simple diffusion equation for the vari-
able q(x, t)=c„(x,t) c~(x,—t) [3,4]:

r}q(x, t) =Dbq(x, t} .
at

The case of unequal diffusion coefficients D„ADs will be
considered in the next subsection. We note that Eq. (4) is
a problem that (for a given set of initial conditions) can
be solved by simple analytical means. Here we proceed
by displaying this solution; in a second step we will use
the results to obtain approximate forms for c„(t).

Let q(x, O) be the initial distribution of q. Then q(x, t)
is given by the equation

q(x, t)= f q($, 0)G(x g, t)dg—, (5)

(4)

where
2

G (x, t) =(4~Dt) ' exp
4mDt

(6)

is the Green's function of the diffusion equation, Eq. (4).
If q(x, O) is random, has finite dispersion and no long-
range spatial correlations (that is true for Poissonian, i.e.,
completely random initial distribution of particles), the
distribution of q(x, t) will approach a Cxaussian for large
t; this is so because for large t G(x, t) is rather broad and
the integral on the right-hand side of Eq. (5) can be treat-
ed as a sum of a large number of independent terms, for
which the conditions of the central limit theorem apply
[29]. In fact, a recent numerical analysis of the q (x, t) be-
havior shows that in d =1 the distribution is very well
represented by a Gaussian for times such that Dt ) 100
[31].

In the Gaussian regime the distribution of q is fully
characterized by the mean p = ( q ) and the dispersion
cr =(q ) —(q ); here ( ) denotes the ensemble average.
Averaging Eq. (5) gives

(q(x, t)) = fG(x g, t)(q($—,0 ) }gd, (7)

and

ac„(x,t)
=D„bc„(x,t) R(x, t)—at

because the Green's function is nonrandom. Thus, since
(q($, 0)) =c„c~,we have p, =—(q(x, t)) =c„—c~. The
time evolution of the second moment (q ) is given by
the equation
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(q (t))—:(q(x, t)q(x, t))
= f f G(g, t)g(g —g)G( —q, t)dgdq, (8)

o(t) p' u p,c„(t)= —exp — +—erfc
&2m 2o'(t) 2 &2o(t).

where g(x)=(q(y, O)q(y+x, O)). In terms of the spatial
Fourier transform of g(x) and G(x, t), say g(k)=fg (x)e'" dx, the right-hand side of Eq. (8) can be writ-
ten as

(15)

where erfc(x) is the complementary error function [32].
For equal initial concentrations cz =CB, the mean p
equals zero and cA (t) simplifies to

(q (t)) = fg(k)exp( 2D—tk )dk,1

2' (9) o (t) (c„+cB)'
5z4 3r~25/4 3/4

where the explicit form of the Fourier transform of Eq.
(6), G(k, t)=exp( Dtk —), was used.

In the case of an initially totally disordered distribution
of point particles one finds (see the Appendix)

g(k)=CA+CB+2m(CA —cB) 5(k) . (10)

Substituting this result into Eq. (9), one obtains the
second moment (q (t) ) and hence the dispersion cr (t):

Cg +CB
o (t)=

&8~Dt

At longer times, for which the q distribution is Gaussian,
one has as probability density P(q, t)

1 (q —p)'
P(q, t)dq = exp — dqV'2~o(t) . 2o. (t)

1/4
2Dt

+CA +CB

Notice that this result reproduces the t " law.
On the other hand, in the case that the A particles are

in the minority, cA &cB, one obtains from Eq. (15) at
large t

(cA cB)—
cA(t) =t exp — +2vrDt

(CA +CB )
(17)

Note that the results displayed in Eqs. (15), (16), and (17)
have exactly the same form as those presented in Ref.
[30] (see Eqs. (15), (16), and (20) of Ref. [30], where one
sets w =c„+cB,b =cB—c„, and X=(8vrDt)'~ ). This
is quite remarkable, since the results in Ref. [30] were de-
rived based on a method using fluctuation statistics.
Furthermore, in Ref. [30] we pointed out that in the case
in which only the minority species ( A) moves and the
majority species is at rest, Eq. (15) is only approximate,
being valid in an intermediate time regime only and not
for large t.

(q —cA +cB ) V'2vrDt
X exp

CA +CB
(12)

In order to calculate the average particle concentration
cA(t)=(CA(x, t)) from P(q, t) we must use an approxi-
mation. The main idea of this approximation is to as-
sume that in regions where the 3 particles are in the ma-
jority there are no B particles present and vice versa.
This situation is approximately fulfilled when the local re-
action rate (given by R ) is large compared to the diffusion
term, so that one has clear-cut A and B regions. Then
one can identify q(x, t) with c„(x,t) when q(x, t) is posi-
tive, and with cB(x,t) otherwise. Generally we define

dq(x, t) =D A bc A (x, t) DB bcB (x, t), —
clt

(18)

which is not a closed equation for q. A way out of this
difficulty is to invoke again the picture of well-separated
A and B domains, and approximate c, (x, t) by c;(x, t) ac-
cording to Eq. (13). Formally one can now write

aq(x, t) =VD(q)Vq(x, t),
at

(19)

B. Unequal difFusion coe%cients D& AD&

For unequal diffusion coefficients DAWDB we cannot
proceed as in Eq. (4), since from Eqs. (3) one now obtains

and

c A (x, t) =q(x, t)6(q(x, t) )

cB(x,t) = q(x, t)6( —q(x, —t) ),

(13)
where

D& if q)0
D q =

D ifq&0. (20)

where 6(x)=0 for x negative and 6(x)= 1 for x positive.
In the following we use c;(x, t) as an approximation to
c, (x, t), where i is .A or B Note that . one always has
c;(x, t) & c, (x, t) for both i = A and i =B, i.e., our approx-
imation underestimates the true particle concentrations.
As an example, our approximation gives for the average
concentration of A particles

cA(t)=(q(x, t)6[q(x, t)])= f q P(q, t)dq . (14)
0

For the probability density P(q, t) given by Eq. (12), one
can evaluate Eq. (14) readily, obtaining

Note that care has to be exercised with Eq. (19) in the
case when q =0. Furthermore, even in this form Eq. (19)
cannot be treated readily analytically. We circumvent
these problems by reverting to a numerical procedure and
consider the discrete analog of Eq. (19); for a linear chain
(with periodic boundary conditions) one has

a
q;=q;+,D(q;+, ) 2q;D(q;)+q; iD(—q; i),at

(21)

where (if q; is positive) q, is taken to be the probability
for finding an 2 particle on site i; if q; is negative, —

q,. is
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the corresponding probability for the B particles.
Equation (21) has the form of a master equation; the

change in the concentration of particles at site i is due to
particle transfers between neighboring sites, the transi-
tion rates from one site to the other depending on the
particle type (i.e., q )0 or q (0).

We solved Eq. (21) numerically for initial conditions
corresponding to the Monte Carlo simulations, i.e, q; =1
with probability c„(0) and q,

= —1 with probability
c~(0). Again we considered the three cases: (i) D„=D,
D~=0; (ii) D~ =0, DJ3=D; and (iii) D„=D~=D. For
the discretization of Eq. (21) in time we chose time inter-
vals such that Dht= —,', as it is convenient for solving
diffusion equations.

First we want to illustrate the difference between the
Monte Carlo process described in Sec. II and the
diffusion approximation described by Eq. (21). Whereas
in the Monte Carlo simulation the particles keep their
discrete nature, i.e., q; = 1 if site i is occupied by an A

or B particle and q; =0 if site i is empty, in the diffusion
approximation q; can take any value between —1 and 1,
depending on the probability of finding an A or a 8 parti-
cle on site i.

Starting with the same initial distribution of particles
on a linear chain of 1280 sites, we display in Fig. 2 the
particle distribution q; at times corresponding to
Dt = 128, the distributions resulting from the Monte Car-
lo process on the one hand and from the numerical solu-
tion of Eq. (21) on the other hand. Depending on which
of the particle species is mobile (only A or only B or A

and B), the particle distributions are different. In each
case the first picture in Fig. 2 indicates the particle distri-
bution resulting from the Monte Carlo process, whereas
the second picture displays the solution of Eq. (21). Each
site i of the lattice is represented by a vertical line whose
length corresponds to the value of q;.

In the cases where only one particle species ( A or B) is

mobile, the positions of the mobile particles are smeared
out due to diffusion, which results in a rather smooth be-
havior of q in the regions where no immobile particles
have survived. The positions of the immobile particles,
however, remain unchanged, but their survival probabili-
ty decreases according to the Aux of mobile particles.

Qualitatively, in the regions where the solution of Eq.
(21) predicts a positive (negative) value for q, one actually
finds clusters of A (B) particles also in the Monte Carlo
simulations. In some cases, however, one also finds an A
(B) particle in a region, where q is negative (positive).
This is due to the fact that q is not the real probability for
finding a particle, but it is an approximation for the
difference between the probabilities for finding an A or a
B particle. Thus, the summation of all positive values of
q; in the case of the diffusion approximation [Eq. (21)]
does not coincide with the exact number of A particles
present in the Monte Carlo process. As already stated
above, this procedure always underestimates the real con-
centration of A particles.

IV. DISCUSSION AND CONCLUSIONS

Figure 3 displays a comparison between the results for
c„(t) obtained via direct Monte Carlo simulations of the
reaction and via the solution of Eq. (21). The parameters
are the same as in Fig. 1. As expected, the curves result-
ing from the diffusion approximation approach the actual
concentration of A particles found in Monte Carlo simu-
lations from below, as the diffusion approximation un-
derestimates the concentration of particles. The relative
error, however, is smaller than 25% in all cases con-
sidered. The approximation works very well in the cases
of equal concentrations (c~ =c~) and in the case when
only the minority species (A) is mobile. We note that in
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FICx. 2. Particle distributions along the line at times corre-
sponding to Dt =128. Three cases are considered: mobile
species A, B, and AB. In each case the upper picture gives the
Monte Carlo results, where the lines drawn upwards (down-
wards) denote the A (B) particles, respectively. The lower pic-
ture in each case represents the numerical solution for q, where
probabilities for mobile species are smeared out. The initial dis-
tribution of particles is identical in all cases.

—4
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FIG. 3. The solid lines give the results of the Monte Carlo
simulations and correspond to the data of Fig. 1; here the
dashed lines indicate the solutions of Eq. (21) (see main text for
details).
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the case where 3 and B are mobile, the concentration de-
cay resulting from the numerical solution of Eq. (21)
coincides with the analytical result given in Eq. (15).

In summary, we have shown that Monte Carlo simula-
tions of the diffusion-controlled reaction A +B~O in
one dimension tend to indicate that in the case of unequal
concentrations (c„(c~)of A and B particles, there are
two different universality classes insofar as the decay of
concentration of A particles is concerned. The cases in
which only the majority species or both species are
mobile show the same temporal behavior, the only
difference being a factor of two in the time scale. The
case in which only the minority species (A) is mobile,
however, results in a quite different temporal behavior.
These findings parallel the results for the trapping and
the target problem.

An approximate treatment of the 3 +B~O reaction,
which is based on the diffusion equation, displays qualita-
tively the same behavior as the Monte Carlo simulations,
the relative error being less than 25%. In the case in
which both particle species are mobile the approximation
allows us to derive an approximate analytical solution for
the average concentration cz (t) of the A particles.

APPENDIX

L
=(CA CB ) (A 1)

where we used the relations cz =Nz /L and cz =X&/L.
On the other hand, for i =j it follows that

Nw +%a
g(, )=&q &= —CA +CB (A2)

Let us consider a random distribution of point particles
on a line segment consisting of cells. We take Xz and Xz
to be the total number of A and B particles, with
N~ &&L and N~ &&L. Under these circumstances each
cell is occupied at most by one particle. Consider now
the discrete correlation function & q, q. & corresponding to
g(x,y)=&q(x)q(y)& of the main text. One has now

q,. =1 if the ith cell is occupied by an A particle, q; = —1

if the ith cell is occupied by a B particle, and q =0 else-
where. For randomly distributed A and B particles one
has evidently for i'
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Reverting to the continuum description it follows that

g (x,y) = (c~ + cia )6(x —y) +(c„—cs ) (A3)

Thus g (x,y) depends only on the diff'erence x —y:
g(x,y)=g(x —y). Fourier transforming Eq. (A3) leads
to Eq. (10) of the main text.

*Permanent address: P. N. Lebedev Physical Institute of
the Academy of Sciences of the U.S.S.R., Leninsky Pros-
pect 53, Moscow 117924, U.S.S.R.

[1]B.Ya. Balagurov and V. Cr. Vaks, Zh. Eksp. Teor. Fiz. 65,
1939 (1973) [Sov. Phys. —JETP 38, 968 (1974)].

[2] M. D. Donsker and S. R. S. Varadhan, Commun. Pure
Appl. Math. 28, 525 (1975).

[3] A. A. Ovchinnikov and Ya. B. Zeldovich, Chem. Phys. 28,
215 (1978).

[4] D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642
(1983).

[5] D. C. Torney and H. M. McConnell, J. Phys. Chem. 87,
1941 (1983).

[6] K. Kang and S. Redner, Phys. Rev. Lett. 52, 955 (1984);
Phys. Rev. A 32, 435 (1985).

[7] J. K. Anlauf, Phys. Rev. Lett. 52, 1845 (1984).
[8] G. Zumofen, A. Blumen, and J. Klafter, J. Chem. Phys.

82, 3198 (1985).
[9] A. Blumen, J. Klafter, and G. Zumofen, in Optical Spec-

troscopy of Glasses, edited by I. Zschokke (Reidel, Dor-
drecht, 1986), pp. 199—265 ~

[10]I. M. Sokolov, Pis'ma Zh. Eksp. Teor. Fiz. 44, 53 (1986)
[JETP Lett. 44, 67 (1986)].

[11]A. A. Lushnikov, Phys. Lett. A 120, 135 (1987).
[12] S. F. Burlatskii, A. A. Ovchinnikov, and K. A. Pronin,

Zh. Eksp. Teor. Fiz. 92, 625 (1987) [Sov. Phys. —JETP
65, 353 (1987)].

[13]A. G. Vitukhnovskii, B. L. Pyttel, and I. M. Sokolov,
Phys. Lett. A 128, 161 (1988).

[14]K. Lindenberg, B. J. West, and R. Kopelman, Phys. Rev.
Lett. 60, 1777 (1988).

[15]M. Bramson and J. L. Lebowitz, Phys. Rev. Lett. 61, 2397
(1988).

[16]V. Kuzovkov and E. Kotomin, Rep. Prog. Phys. 51, 1479
(1988).

[17]A. Szabo, R. Zwanzig, and N. Agmon, Phys. Rev. Lett. 61
2496 (1988)~

[18]J. L. Spouge, Phys. Rev. Lett. 60, 871 (1988); J. Phys. A
2i, 4183 (1988).

[19]C. R. Doering and D. Ben-Avraham, Phys. Rev. A 38
3035 (1988);Phys. Rev. Lett. 62, 2563 (1989).

[20] Cx. H. Weiss, R. Kopelman, and S. Havlin, Phys. Rev. A
39, 466 (1989).

[21] D. Ben-Avraham and Cs. H. Weiss, Phys. Rev. A 39, 6436
(1989).

[22] E. Clement, L. M. Sander, and R. Kopelman, Phys. Rev.
A 39, 6455 (1989);39, 6466 (1989);39, 6472 (1989).

[23] B. J. West, R. Kopelman, and K. Lindenberg, J. Stat.
Phys. 54, 1429 (1989).

[24] Cr. S. Oshanin, S. F. Burlatskii, and A. A. Ovchinnikov,
Phys. Lett. A 5, 245 (1989).

[25] P. Argyrakis and R. Kopelman, Phys. Rev. A 41, 2114
(1990);41, 2121 (1990).

[26] H. Taitelbaum, R. Kopelman, Cy. H. Weiss, and S. Havlin,



DIFFUSION-CONTROLLED REACTION A+B~0 IN ONE. . . 2393

Phys. Rev. A 41, 3116 (1990).
[27] K. Lindenberg, B. J. West, and R. Kopelman, Phys. Rev.

A 42, 890 (1990).
[28] W. -S. Sheu, K. Lindenberg, and R. Kopelman, Phys. Rev.

A 42, 2279 (1990).
[29] I. M. Sokolov and A. Blumen, Phys. Rev. A 43, 2714

(1991).

[30] H. Schnorer, I. M. Sokolov, and A. Blumen, Phys. Rev. A
42, 7075 (1990).

[31]G. Zumofen, J. Klafter, and A. Blumen, J. Stat. Phys. (to
be published) ~

[32] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1972).


