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Driving systems with chaotic signals
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We generalize the idea of driving a stable system to the situation when the drive signal is chaotic. This
leads to the concept of conditional Lyapunov exponents and also generalizes the usual criteria of the
linear stability theorem. We show that driving with chaotic signals can be done in a robust fashion,
rather insensitive to changes in system parameters. The calculation of the stability criteria leads natural-

ly to an estimate for the convergence of the driven system to its stable state. We focus on a homogene-
ous driving situation that leads to the construction of synchronized chaotic subsystems. %'e apply these
ideas to the Lorenz and Rossler systems, as well as to an electronic circuit and its numerical model.

I. INTRODUCTION

The idea of driving a system with a periodic signal is a
common theme in nonlinear dynamics [1—5]. It is also
the first choice for a drive or timing signal in designing
devices. The idea of using a chaotic signal to drive a non-
linear system is rather new and only a few studies of this
situation have been attempted. Even so, these early re-
sults suggest that there are different, interesting, and use-
ful things to do with a chaotic drive signal. There are
also indications that there are times when a chaotic signal
would be preferable to a periodic signal as a drive or tim-
ing signal in applications.

Recent work by Hubler [6—8] shows that aperiodic sig-
nals can be used for various purposes. Nonlinear reso-
nancelike behavior can be induced in the driven system
using aperiodic driving derived from a previous transient
response, which is then run backwards into the system.
This leads to the interesting possibility of using chaos to
stimulate particular modes or probe the parameters in a
nonlinear system.

We recently showed [9,10] that one can begin with an
autonomous chaotic system and construct a set of chaotic
systems that will have their common signals synchron-
ized. We develop those ideas further in this paper. We
introduce the general theory of driven stable subsystems
with the conditional Lyapunov exponent as the test for
stability. An estimate for the convergence rates of a
driven system to the final attractor falls out of this ap-
proach. This requires the use of the eigenvectors of the
principal matrix solutions for the variational problem.

We also show the origin of structural stability for
synchronization. We demonstrate with particular exam-
ples how one can apply these ideas to the construction of
homogeneous or heterogeneous driven systems. Along
with synchronization of chaotic systems several interest-
ing features of chaotically driven systems emerge.

We note here that the idea of synchronization of chaot-
ic subsystems has also surfaced in studies of coupled sys-
tems, as contrasted with driven systems which we report
on here. Kaneko [ll] has shown that locally coupled
maps can display spatial domains of coherence (which is
synchronization). Coupling of two phase-locked loops

can result in the synchronization of their chaotic behav-
ior, which should be exhibited by certain electrical cir-
cuits [12). Models of laser systems suggest that they can
behave chaotically, but synchronously [13,14]. Several
biologically motivated studies using Bows have also
shown this behavior. The work of Kowalski et al. [15]
shows that even Lorenz systems can be globally coupled
and synchronized. The necessary conditions have been
worked out for this situation [15]. Work by Strogatz
et al. [16] shows similar synchronization in large systems
of coupled oscillators.

II. THEORY

A. Stability of response systems

By one system driving another we mean that the two
systems are coupled so that behavior of the second is
dependent on the behavior of the first, but the first is not
infIuenced by the behavior of the second. The first sys-
tem will be called the drive and the second the response.
Actually, both systems can be combined into one corn-
pound dynamical system in which the response subsys-
tem depends on variables from the drive subsystem, but
the converse is not true. We can similarly generalize
these ideas to include any system which can be divided
into two such subsystems. We can also further divide the
drive subsystem into those variables that drive the
response subsystem and those that do not. This gives a
subdivision of the original system into three subsystems
which will make analysis easier. Next, we make some
definitions of these ideas which will enable us to analyze
certain drive-response situations that are of interest. Our
notation here is somewhat difFerent than in Ref. [9]. In
the Appendix we show that one can be more mathemati-
cally elaborate about this.

Suppose our compound dynamical system is drive
decomposable; that is, it can be divided as mentioned
above. Let the dimension of the whole system be n. We
use the m-dimensional vector v to represent the drive
variables that are used in the response, the k-dimensional
vector u to represent the drive variables that are not used
in the response, and the l-dimensional vector m to
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represent the response. Then n =m +k + l and the com-
pound system is divided as follows:

u =f (u, u) (m dimensional)
drive,

u =g (v, u) (kdimensional)

w =h ( u, w) ( l dimensional ) ] response .

An example of this type of decomposition is a
sinusoidally driven system, such as a pendulum. The di-
mension of the composite system is n=4. The sinusoidal
drive comes from a two-dimensional system, so
m+k=2. The pendulum is the response system with
1=2 driven by one component of the drive, so m = 1 (and,
therefore, k = 1). The equations of motion would be

drive,

w) =A ) =w2
response .

wz =h& = —yw2 —sin(w, )+u

(2)

The central question now becomes: When is the
response system a "stable" subsystem? That is, when is
its trajectory w (t) immune to perturbations? This would
guarantee that for a fixed set of drive initial conditions we
would know that wherever w (t) starts, it will always con-
verge to the same trajectory and at each point in time al-

ways be at the same predictable place on that trajectory.
We are ignoring the possibility of other basins of attrac-
tion for now.

This question immediately leads to a variational equa-
tion of motion. We have a trajectory w (t) (whose stabili-

ty we want to determine) with initial condition w(0).
Consider a trajectory started at a nearby point w'(0) at
t=O. The drive signal is the same for both response
systems. Under what conditions does b, w (t)
=

l
w'(t) —w(t) l

~0? In terms of the vector fields,

b w =h (u, w') —h(u, w)

tor. In other words, they tell if small displacements of
the trajectory are along stable or unstable directions. If
we are looking for a stable subsystem, then we would
want all the exponents to be negative so that all small
perturbations will exponentially decay to zero. This cal-
culation can be done by integrating Eq. (4) along with the
system (v, u, w). But there is a more general approach
that does not depend on the initial choice of a displace-
ment.

Use a matrix Z in place of w in Eq. (4) such that Z(0) is
equal to the identity matrix. Thus

bZ=D h(u, w)Z .

The solutions Z(t) is often referred to as the transfer
function [17] or the principal matrix solution [18]. Z(t)
will determine whether perturbations will grow or shrink
in any particular directions. One can think of Z(t) as
representing the evolution of a coordinate system which
begins by being Cartesian, but becomes stretched,
compressed, and distorted in time in the various direc-
tions (not necessarily orthogonal) corresponding to the
Lyapunov exponents. The matrix Z(t) as t ~ ~ can be
used to determine the Lyapunov exponents [2,19] for the
w subsystem for the particular drive trajectory (v, u)(t).
If all the Lyapunov exponents are negative, w(t) is an
asymptotically stable trajectory. These exponents depend
on v (t) and are only a measure of the w subsystem stabili-
ty. In general, they are not simply a subset of the
Lyapunov exponents of the composite system (v, u, w). In
an earlier paper [9] we referred to them as sub-Lyapunov
exponents, but because of their dependence on u (t), it has
been suggested [20] that they be called conditional
LyapunoU exponents. We do so in this paper.

The negativity of the conditional Lyapunov exponents
for the w system is obviously a necessary condition for
the stability of the response. The fundamental linear-
stability theorem shows that it is also a sufhcient condi-
tion for many dynamical systems [17].

Theorem: The null solution of the nonlinear nonsta-
tionary system

x = A (t)x+o(x, t),
=D h( uw)b, w+o(w, u),

where D f is the Jacobian of the response vector field

with respect to the response variables and o (w)
represents the higher-order terms. In the limit of small
Aw we get the equation

bw=D h(u, w)w . (4)

Normally, when w(t) is constant (fixed point) or w(t)
represents a periodic orbit we could determine the eigen-
values of D„for the Floquet multipliers of Eq. (4) and
thereby determine the stability of w(t) [2,17]. However,
we want to drive w with chaotic U signals and these
simpler approaches will not work.

A solution to this can be found by calculating certain
Lyapunov exponents. These quantities are the exponents
that describe the expansion or shrinkage of small dis-
placements along the trajectory averaged over the attrac-

with o (0, t) =0 for all t, is uniformly asymptotically stable
if

(i)»m~~ ~~-oil«x t) II ~llx II
=0

respect to t; (ii) A (t) is bounded for all t; and (iii) the null
solution of the linear system, x = A (t)x, is uniformly
asymptotically stable. Criteria (i) and (ii) hold for most
systems in which parameter values are the same (see
below) and (iii) is guaranteed when the conditional
Lyapunov exponents are all negative.

This theorem guarantees that there will be a nonempty
set of initial conditions w'(0) for which the trajectory
w'(t) will converge to w(t) This generaliz. es the usual
tests for stability (eigenvalues of Jacobians and Floquet
multipliers) to Lyapunov exponents which will work for
any drive v (t).

Note that many of the above ideas can be carried over
to maps without much trouble. For example, Eq. (2) con-
verts to
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v;~1=f (v;, u; )

u;+i —g(v;, u; )

w, +, =h(v, , w, ),
and the criteria for stability of the w subsystem are the
signs of the conditional Lyapunov multipliers calculated
from the eigenvalues of the product

J=QD h(v;, w).
i=1

This makes maps good candidates by which to study
chaotic driving, although flows usually model physical
systems better (for example, the circuit considered later
in this paper).

B. Rates of convergence

The above approach to the response stability can be ex-
tended to estimate the rate of convergence of a nearby
response trajectory to the true trajectory. The estimate is
essentially for small differences (b,w), but, in practice, ap-
pears to work well in many systems for differences on the
order of the attractor size. This probably will depend
strongly on the shape of the basin of attraction for the
response system as well as for the general Aow of the sys-
tem from the starting point to the true trajectory. Both
of these could cause the system to "wind around" in
phase space before getting near the true trajectory. Thus
we urge caution in using the convergence rates for large
~b, w~ values.

To estimate actual convergence rates we want to get an
estimate of the average convergence rates and their asso-
ciated directions. This translates into finding the (condi-
tional) Lyapunov exponents and their eigenvectors. We
calculate these from the principal matrix solution Z(t)
for large t from the variational system, Eq. (5), along a
trajectory which has converged to the attractor. The
Lyapunov exponents are given by

for large t, where v, are the eigenvalues of Z(t), each as-
sociated with an eigenvector g, .

Numerically, care must be taken in calculating A, , and

g; since, as t increases, the differences between the ex-
panding and contacting directions increase exponentially.
Eckmann and Ruelle [19] suggest some stable algorithms
for the calculation of A, , but not of g, We use the Eck-

mann and Ruelle QR decomposition technique to calcu-
late the exponents. We get the g, directly from the diago-
nalization of Z(t), taking t as large as possible. As a
check on this diagonalization we compare the eigenvalues
found with those determined by the Eckmann and Ruelle
technique. If the two agree well, we assume that the
eigenvectors are also in good agreement with the actual
eigenvectors one would obtain for large t values. We note
that there now also exists a stable method for the calcula-
tion of the eigenvectors which could be used in place of
our simple scheme [21].

For small hw(0) we approximate the convergence as

b, w (t) =e "'hw(0),

where A is generated by transforming the diagonal ma-
trix with A, s on the diagonal back to the original coordi-
nate system. In other words, we approximate Z(t) with
the exponentiation of a constant matrix constructed from
the Lyapunov exponents and the similarity transform
generated by the eigenvectors g;. Below we show that
this can lead to a good approximation to the conver-
gence, including effects associated with nonorthogonal
eigenvectors.

III. HOMOGENEOUS DRIVING

In this paper we focus solely on the special case in
which k =l and f =h. We call this case homogeneous
driving because the response is the same as in that part of
the drive that is not providing a drive signal. This leads
to the concept of synchronization of chaotic subsystems.
The more general case where fWh we call heterogeneous
driving &simpl. e example of the latter is a linear oscilla-
tor system driving a nonlinear pendulum. We will report
ongoing research on this topic elsewhere [22].

Construction of a homogeneous driving system is easily
visualized as starting with a system and dividing it into
two subsystems ( v, u ). Then duplicate the subsystem
which will not be used for driving (u) and call this dupli-
cate the response (w). How to divide the drive system is
determined by calculating the conditional Lyapunov ex-
ponents and choosing u as a stable subsystem. In this
case the stability theorem in Sec. II guarantees that there
is an open set of initial conditions containing u(0) and
w(0) for which w(t) will converge to u (t) and the two
subsystems will remain synchronized. We demonstrate
this for three dynamical systems and for a circuit. We
also show at the end of this section that the synchroniza-
tion is structurally stable to small parameter variations.

TABLE I. Conditional Lyapunov exponents for various drive-response configurations for homogene-
ous driving systems constructed from the Lorenz system. We show the cases when there is one drive
signal (q= 1 and k = l =2).

System

Lorenz
o =16, b=4, r=45.92

Drive Response

(y, ~)
(x,z)
(x,y)

Lyapunov exponents

( —2. 5, —2.5)
(-3.95, -16.0)
(+7.89 X 10, —17.0)
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A. Lorenz system

We start with an example from the well-known Lorenz
system:

x =o (y —x),
y = —xz+rx —y,
z=xy —bz .

(10)

We choose the parameters o., r, and b to be in the chaotic
regime: o. =16, b=4, and r=45.92. We construct homo-
geneous driving systems by letting the response system
(w) be a duplicate of a pair of the vector fields for x, y, or
z, i.e., k =l=2. Table I shows a calculation of the condi-
tional Lyapunov exponents for the various subsystems.
The system shows two stable subsystems (x,z) driven by

FIG. 1. Time series of the z component of the x-driven (y, z)
Lorenz subsystems showing the convergence of the response
z(t) to the drive z(t).

y' = —xz'+ rx —y'
z' =xy' —bz' response .

The system (x,y) is unstable, although the instability i".

slight as measured by the size of the positive Lyapunov
exponent relative to the negative exponents. The time
scale for the instability to manifest itself is orders of mag-
nitude less than for the stable components to converge.

Figure 1 shows the time series and Fig. 2 shows the
trajectories of the (y, z) subsystem for the drive and
response. The Lorenz is a highly damped system and this
shows up in the rapid convergence of the response to the
drive. Figure 3 shows the log of the absolute value of the
coordinate differences between the drive and response
and a plot of the same quantities calculated from the esti-
mate of the convergence as in Sec. II B. The convergence
is generally exponential and both coordinates converge at
nearly the same rate. The convergence estimate agrees
with this. The convergence estimate, as we expect, does
not show the detailed variations in the convergence that
the actual convergence shows.

Figure 4 shows a similar situation for the (x,z) subsys-
tem. The agreement here between the actual convergence
rates and the estimated convergence shown in Fig. 5 is
also very good. The maximum that appears in the Az
curve for both the real convergence and the estimated

Lorenz (yz) Drive Lorenz (yz) Response

st

end

FIG. 2. Trajectories of the x-driven (y, z) Lorentz subsystems from the drive and the response.
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only the component along p2. The dots in Fig. 6 show
the evolution of Aw. When projected back into the
Cartesian coordinates of the dynamical system, this leads
to an increasing z component early on in the evolution of
4w.

B. Rossler system

The Rossler system shows that stability can change
dramatically with parameters, even though the behavior
of the basic system (chaotic in this case) does not appear
to go through any bifurcations at the same points. The
Rossler system is given by

1
10

1PO
D
6)

110

O
10

10

0.0 2.0

Time
4.0

FICx. 3. Absolute values of the differences between the y and
z components of the drive and response (y, z) Lorenz subsystem
calculated (a) during numerical integration of the system and (b)
from Eq. (9).

convergence is real. This results from the simultaneous
existence of two things. One is the nonorthogonality of
the eigenvectors and the other is the existence of two very
different (in magnitude) conditional Lyapunov exponents.
Figure 6 shows this schematically. If the exponent along
the vector p& is more negative than that along pz, then
the component of the difference Aw along p& will de-
crease rapidly. In a short time this will essentially leave

x = —(y +z),
y =x +ay,
z=b+z(x —c) .

Because the (x,y) subsystem is linear it is easy to show
that for all positive a parameter values this subsystem is
unstable for a z Rossler drive (X, =A,2=a/2). Likewise,
for x driving (y, z) there will always be one positive condi-
tional Lyapunov exponent equal to a and so this subsys-
tem is unstable. The situation for y driving (x,z) is not
obvious. We study the typical case a =b =0.2 and c
spans part of the range 3.0—11.0. The c parameter is the
same in both drive and response throughout.

Figures 7 and 8 show the time series and the trajec-
tories of the drive system and the response plus the drive
variable (y) system for c=4.7 (the Rossler behavior is ac-
tually period 5 here). Although the response initially
converges to the x-y plane, the trajectories never do con-
verge fully. Figures 7 and 9 show that they are actually
diverging after the initial apparent convergence. The es-
timated convergence misses the initial dip in the Ax
difference and the oscillations in the Az component
caused by the hopping of the Rossler trajectory to a point
near the center of the unstable focus, but it does pick up
the overall divergences properly.

Figure 10 shows the value of the largest conditional
Lyapunov exponent for the response (x,z) subsystem.

Lorenz (xz) Drive Lorenz (xz) Response

start

end~

start

FIG. 4. Trajectories of the y-driven (x,z) Lorentz subsystems from the drive and the response.
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FIG. 11. The attractor for the hysteresis circuit as calculated
from the model, Eq. (14). 0.2

CD

0.1

CU

X
CI

and the x~ voltage drives the (x„x2) subsystem.
The parameters chosen to model I23] the behavior of

the circuit are a =6.67, 13=7.87, y =0.2, c=2.2,
52 =0.001., 63 =0.001, a =0.3, co = 10, S= 1.667, and
D=O.O. The attractor for this system model is shown in
Fig. 11 in terms of x „x2,and x3. The unstable foci be-
havior combined with the hysteresis is easily seen. We
visualize the actual attractor from the operating circuit
on an oscilloscope (see Fig. 12) by measuring a combina-
tion of circuit voltages which mimic the two-dimensional
(2D) projection of the 3D attractor. The model dupli-
cates the topology of the actual circuit behavior rather
well.

Equations (16) make a rather straightforward model
using x~ to drive a (x„x2)subsystem. The (x„x2)sub-
system is linear and, in this case, the Lyapunov exponents
can be calculated from the Jacobian of the (x„x2)sub-
system. These are —16.587 and —0.603 ms '. The
eigenvectors are (

—0.855, —0.518) and ( —0.07, —1.21),
respectively. A measurement of the x2 voltage during

I

0.2 0.4 0.6 0.8
time (ms)

1 1.2

FIG. 13. Convergence of the x& voltage from the response to
its counterpart in the drive circuit as a function of time: (a) as
measured in the actual circuit and (b) from theory, Eq. (9) ap-
plied to the trajectory from Eq. (14).

the convergence to synchronization of the (x &,x2 ) sub-
system would generally show a rapid convergence corre-
sponding to the most negative exponent (

—16.587) and
then a slower convergence corresponding to the less neg-
ative exponent —0.603). Figure 13 shows the conver-
gence as measured from the difference in x2 voltages in
the drive and response circuits and as calculated from the
convergence estimation formula. The model is adjusted
on the time scale to mimic the circuit's attractor, so ex-
cept for this time-scaling factor the two agree on the
form of the convergence to synchronization.

D. The effect of parameter differences

'k;;::4, Q i p, fall, %, j h

FIG. 12. The attractor for the hysteresis circuit as seen on
the oscilloscope.

=h (v, w, p') —h (v, u, p')+h (v, u, p') —h (v, u, p)
=D h b w o+( wv) h+( v, u, p' )

—h ( v, u, p ), (17)

where D„h and o(v, w) are as before. Note that the

A natural question to ask is what is the effect on stabil-
ity and synchronization when the response (w) has pa-
rameters slightly different from its counterpart (u) in the
drive system? In other words, how would the conver-
gence w(t)~u(t) be afFected? This is a question that
would come up in any practical applications of chaotic
drlvlng.

In this case we can begin as above and examine the
equation of motion for b, w (t) = w (t) —u (t). Letting p
stand for the parameters in the h vector field and recal-
ling that w and u have the same vector fields,

bw =h (v, w, p') —h (v, u, p)
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above theorem for uniform asymptotic stability does not
apply. Because of the extra terms h (v, u, p') and
h (v, u, p), criteria (i) of the theorem is not satisfied.

We can get an estimate of Au by assuming that
b, w(0) ((1. That is, the systems have nearly identical in-
itial conditions and we can ignore o(v, w) for times less
than some t, . Then we can approximate

bw=D h bw+h(v, u, p') —h(v, u, p) . (18)

(20)

In fact, —cz should be the largest negative conditional
Lyapunov exponent. If B (t) is bounded by a constant h

&

(as it will be for most cases), then we have

~4w~ (c&e ' + (1—e
C2

(21)

If our assumption about o (v, w) holds for long enough
times, then

/aw/ &
C2

(22)

So, if the differences in parameters are not large (which
determines b& ), b.w will remain small. This will hold only
if o(v, w) is "small enough" which will generally require
b, w to remain small (which is to be shown). Hence, Eq.
(22) is not the result of a theorem, but a heuristic argu-
ment that for small enough parameter differences the ac-
tual response trajectory will remain near its drive coun-
terpart. This means that the systems will remain nearly
synchronized. We find this to be the case in our numeri-
cal studies and in actual circuits for as long a time as we
let the systems evolve [9,10]. This in fact shows that even
in heterogeneous driving situations a change in parame-
ters of the response will not greatly affect its behavior.

IV. CONCLUSIONS

The concepts of drive decomposition and homogeneous
and heterogeneous driving generalize many standard
cases of driven systems. These generalizations are
straightforward and constructive in nature. They pro-
vide a scheme for building up driven systems, especially
homogeneously driven systems. The concept of condi-
tional Lyapunov exponents also generalizes the usual sta-
bility condition for driven systems. It provides a test for
the response system that guarantees predictability (when
the exponents are negative) of certain events and dynami-
cal behavior (e.g. , synchronization) even when the overall
motion is chaotic. As the model of the circuit shows,
transformations (diffeomorphisms) can be used to create
new versions of the drive-response system which can pos-

Using the principal matrix solution Z(t), the solution to
Eq. (9) is

bw(t)=Z(t)bw(0)+ J Z(t r)B(—r)dr, (19)
0

where B(t)=h (v, u, p, ') —h (v, u, p, ). We can now show
that b, w (t) may be bounded. In general, there exist posi-
tive constants [18] c

&
and cz such that

sibly be tailored to specific needs.
Because of the existence of chaotic signals in physio-

logical systems [24—27], it is tempting to speculate about
the relationship to stable chaotic driving and/or synch-
ronization. For one thing, our results show that the ex-
istence of such signals does not automatically mean that
all subsystems will behave in chaotic or random fashion.
Synchronization itself is structurally stable in chaotic
driving [9] and using chaotic signals may be preferable to
periodic signals in certain cases where increased robust-
ness is advantageous. Certainly, we now know that neur-
al response to stimuli need not be dynamically simple
(periodic, for example) for the same predictable, albeit
chaotic state to be reached, provided that the driven neu-
rons form a stable response. In order for nervous
response to be useful it may only be necessary that the
same pattern emerge for similar stimuli, but not that the
pattern be in any way regular.

At any rate, the use of chaotic signals to drive systems
is in its infancy, unlike periodic drives, and leaves many
open questions. In this paper we have focused mostly on
stability, but many topologically related issues need to be
explored.

Since derivatives of vector fields (Jacobians) do not
transform in a simple (covariant) way under diffeo-
morphisms [28,29], one would not expect the type and
number of stable subsystems to be topological invariants.
The question remains as to what, if any, are the topologi-
cal invariants of these systems and concepts? It would
seem that there should be a relation to stable, center, and
unstable manifolds [1,2,30] of a system, but other than a
possible local relationship, nothing is obvious.

From the example of the Rossler system, a chaotic sys-
tem need not have a stable subsystem at all. There ap-
pears to be in this case, a weak relation to the behavior of
the full Rossler system (either chaotic or periodic), but a
rigorous link (if it exists) has not yet been made. The
converse question is also interesting: Does a chaotic sys-
tem necessarily have to have at least one unstable subsys-
tern? Perhaps, but the example of the Lorenz system in
which only the (x,y) subsystem is marginally unstable
suggests that this might not be the case.

Higher-dimensional chaotic systems with more than
one positive Lyapunov exponent call into question wheth-
er it is still possible in this case to construct synchronous
(stable) subsystems of dimension n —1 (i.e., with only one
drive variable).

Despite these unanswered questions, we feel that the
idea of driving stable subsystems with chaotic signals
opens up the possibility of using chaos; that is, purpose-
fully designing drive systems to act chaotically, then us-
ing the properties unique to chaos to obtain novel and
useful behavior.
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APPENDIX

x, —Q, (x„.. . , x )

xq =Qq(x &
). . . , Xq )

drive subsystem,

A more mathematically elaborate method can be used
to show the division of a system into drive and response
subsystems. Although it is more intricate than that used
in Sec. II, it does show that there is a rigorous decompo-
sition method for any dynamical system.

Let x =X(x) be an n-dimensional dynamical system.
The vector field is the mapping X:R"~R". We call the
vector field drive decomposable if it can be divided into
drive and response subsystems. That is, there is a dimen-
sion q ( n and corresponding functions Q:R t —+R t

(for the drive system) and P:R"~R" q (for the re-
sponse system), so that with suitable reordering of
X indices, Q = (X&, . . . , Xe )(x &, . . . , x

&
) and P

=(X +„.. . , X„)(x„.. . , x„).That is, the drive (Q)
does not depend on all n variables. This is the mathemat-
ical form of the statement in the above paragraph. The
decomposed equations of motion become

x +,—P,(x„.. . , x„)
x„=P„(x„.. . , x„)

response subsystem .

In many cases the response is driven by some subset of
the drive system's variables. We make the following
definitions to further refine the above drive decomposi-
tion and put the drive-response system in a final form ap-
propriate for many cases to be presented later. Again,
with suitable reorderings, let the response system depend
only on drive variables (x„.. . , x ) for some m ~ q. Let
v =(x„.. . , x ). Let u equal the remaining drive vari-
ables which are equal to (x + &, . . . , x +k ), where
k =q

—m. The response variables are equal to
tv =(xm+k+„.. . , x~+k+t), where l =n —q. Along
with these variables we define the vector fields (subsets of
X's components) f:Re~R, g:R v~R ", and
h:R + —+R ', so that the dynamical system becomes Eq.
(1) in Sec. II. In other words, we have written h in place
of P (explicitly showing only v and tv arguments) and
defined f =(Q„.. . , Q ) and g+(Q +„,Q +k).

[1]J. M. T. Thompson and H. B. Stewart, Nonlinear Dynam
ics and Chaos (Wiley, New York, 1986).

[2] J. Guckenheimer and P. Holmes, Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields
(Springer-Verlag, New York, 1983).

[3] R. H. Abraham and C. D. Shaw, Dynamics The-
Geometry ofBehavior (Aerial, CA, 1989), Pts. 1 —4.

[4) C. Hayashi, Nonlinear Oscillations in Physical Systems
(Princeton University Press, Princeton, 1964)~

[5] F. Moon, Chaotic Vibrations (Wiley, New York, 1987).
[6] A. Hiibler and E. Liischer, Naturwissenschaften 76, 67

(1989).
[7] G. Reiser, A. Hiibler, and E. Liischer, Z. Naturforsch.

42a, 803 (1987).
[8) B. B. Plapp and A. W. Hiibler, Phys. Rev. Lett. 65, 2302

(1990).
[9] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821

(1990).
[10]L. M. Pecora and T. L. Carroll, IEEE Trans. Circuits Syst.

38, 453 (1991).
[11]K. Kaneko, in Formation, Dynamics and Statistics of Pat

terns, edited by K. Kawasaki, M. Suzuki, and A. Onuki,
(World Scientific, Singapore, 1990).

[12] M. de Sousa Vieria, A. J. Lichtenberg, and M. A. Lieber-
man (unpublished).

[13]J.-L. Chem and J. K. McIver, Phys. Lett. 151, 150 (1990).
[14] H. G. Winful and L. Rahman, Phys. Rev. A 38, 4935

(1988).
[15]J. M. Kowalski, G. L. Albert, and G. W. Gross, Phys.

Rev. A 42, 6260 (1990).
[16] P. C. Matthews and S. H. Strogatz, Phys. Rev. Lett. 65,

1701(1990).
[17]J. L. Willems, Stability Theory of Dynamical Systems (Wi-

ley, New York, 1970).
[18]T. A. Burton, Stability and Periodic Solutions of Ordinary

and Functional Differential Equations (Academic, New
York, 1985).

[19]J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617
(1985).

[20] Elise E. Cawley (private communications).
[21] H. D. I. Abarbanel, R. Brown, and M. B. Kennel, Mod.

Phys. Lett. B (to be published).
[22] L. M. Pecora and T. L. Carroll (unpublished).
[23] These parameters reflect the general values of the circuit

components, but some, like co have been adjusted to have
the resulting dynamics more faithfully model the circuit.

[24] A. Carfinkel, Am. J. Physiol. 245, R455 (1983).
[25] L. Glass, A. Goldberger, M. Courtemanche, and A.

Shrier, Proc. R. Soc. London, Ser. A 413, 9 (1987).
[26] C. Skarda and W. J. Freeman, Behav. Brain Sci. 10, 161

(1987), and the commentaries following the article.
[27] P. Rapp, in Chaos, edited by A. V. Holden (Princeton Uni-

versity Press, NJ, 1986).
[28] Y. Choquet-Bruhat, C. de Witt-Morette, and M. Dillard-

Bleick, Analysis Manifolds and Physics (North-Holland,
Amsterdam, 1989).

[29] M. Spivak, A Comprehensive Introduction to Differential
Geometry (Publish or Perish, Wilmington, DE, 1979),
Vols. 1 —III.

[30] J. Carr, Applications of Centre Manifold Theory (Springer-
Verlag, Berlin, 1981).




