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Stable corrugated state of the two-dimensional electron gas
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A corrugated and stable ground state is found for the two-dimensional electron gas in both the normal
paramagnetic and the fully polarized phases. The self-consistent Hartree-Fock method is used with a
modulated set of trial wave functions within the deformable jellium model. The results for high metallic
densities reproduce the usual noncorrugated ferromagnetic electron-gas behavior. A transition to a
paramagnetic corrugated state for values of r, =6.5 is predicted. At lower densities r, =30, a second
transition to a corrugated ferromagnetic phase is suggested.

The electron gas is a cornerstone of the many-body
quantum theory applications to solid-state physics [1].
Much effort has been devoted recently to the study of this
system in the two-dimensional (2D) case. A wide range
of important applications have led these studies. Among
these one can mention the study of metal-oxide-
serniconductor structures, heterostructures and superlat-
tices [2], and the transport properties of semiconductors
[3]. Also, in the presence of a magnetic field a two-
dimensional system develops new interesting properties
such as the fractional statistics and the quantum Hall
effect [4,5]. Most notably, the electronic motion in the
new high-temperature superconducting materials occurs
mostly in planes [6,7].

In this work, the deformable jellium (DJ) within the
united framework provided by the Hartree-Fock method
as done by Roothann [8] is applied to the 2D electron
gas. Our aim is to evaluate the ground-state properties,
especially the transition point to the corrugated state and
to search for the existence of a (meta)stable state in the
low-density region. In previous calculations a transition
to a corrugated state in the 2D or 3D systems has been
obtained; see, for example, Refs. [9—13]. However, the
stability of the new corrugated state against density vari-
ations was not established before.

A recurrent problem in the study of the low-density
transition to the Wigner crystal is the instability of the
electron gas with respect to density variations. The usual
way out of this problem is to postulate that the back-
ground compensates this instability. This solution is
especially difficult to justify in the DJ model because the
static part of the background energy is already incor-
porated into the model. One might always argue that

some unknown dynamical effect could solve the problem,
but this approach only postpones the conceptual
difficulty. It would be logically much better if the elec-
tron system in the corrugated phase would exhibit a
stable behavior. In the past, some indication of such a
stable HF ground state has been reported by us for the
3D electron gas [14]. However, this was considered only
a preliminary result because the convergence of the cal-
culation was not good enough at low densities.

The standard ab initio studies of the electron gas as-
sume a simplified model for the background. A usual as-
sumption is the so-called (uniform) jellium model, in
which the neutralizing positive background is taken to be
a uniform static charge distribution [15]. Recently
several techniques have been used to solve this model for
the 2D case; these include the variational correlated-
basis-function approach, the ladder approximation, and
the effective-potential expansion method [16—18].
Perhaps the most ambitious calculations in the uniform
jellium (UJ) are those that use the variational Monte Car-
lo and the Green's-function Monte Carlo (GFMC)
methods [13]. However, these numerical solutions are in
practice restricted to a few hundred particles [11,12].

A different hypothesis for the behavior of the back-
ground is the DJ [9,10]. Here the basic assumption is
that the background is statically deformed in order to get
local charge neutrality, simulating in this way some of its
expected properties.

The DJ together with the much maligned Hartree-
Fock (HF) method has been exploited by us in the study
of the 3D electron gas. Our approach has been to obtain
self-consistency with a set of modulating functions that
contain as a possible solution the trivial plane wave [19].
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This has turned in a very powerful technique that has the
built-in capability of describing both the metallic and the
low-density regions in a unified nonperturbative fashion.
At metallic densities, r, =4, the plane-wave function is
the self-consistently obtained ground state. Thus, in this
region the DJ coincides with the UJ. At intermediate
densities the corrugated solution has been obtained for
the 3D electron gas [14]. At very low densities this solu-
tion approaches the Wigner crystal [20].

The deformable and the usual UJ models can be con-
sidered as two diQ'erent extreme static behaviors of an ac-
tual background for which the charge density is neither
locally neutral nor uniform. In both models the dynami-
cal behavior of the background is as a first step neglected.
The difFerence between the UJ and DJ amounts to a
correlation [21] when the plane-wave solution is not the
HF ground state of the DJ. In this sense, the DJ admits
HF solutions that include a large correlation with respect
to the HF solutions of the UJ. The origin of the correla-
tion is perhaps more clearly seen if one abandons the stat-
ic approximation for the background. In such a descrip-
tion the correlation arises from the electron-background
interaction. Within this dynamic treatment the two mod-
els would differ by a class of (correlated) diagrams that in-
cludes those that relate the UJ and DJ background
configurations. This di6'erence is analogous to the one
occurring with the spontaneous symmetry-breaking
mechanism of field theory.

In general, the corrugated phase of the DJ predicts a
lower ground state than the UJ. This result has again a
close parallel with the spontaneous symmetry-breaking
mechanism, where the "true" ground state is the less-
symmetric one. One can also understand the improve-
ment brought by the DJ in terms of a simple electrostatic
analog, in which the condition of local neutrality is the
most favorable energetically. Because, once in the corru-
gated region, the DJ model resembles the lattice localiza-
tion, it could be a better starting point for more accurate
calculations.

Consider the system of X electrons, interacting via a
Coulomb potential V(rj)=e /rj, where rj. =~r; rj~, —
immersed in a positive background in an area A. If the
thermodynamic limit is considered, then N~ ac, 3~ ~
with o =N/ Aconstant. Sch. ematically, the HF Hamil-
tonian equation of this system has the terms
H = T, + Vbb+ Vb, + VD+ V,„; where the subindices e
and b refer to electron and background, respectively, and
VD and V,„are the direct and exchange terms of the
electron-electron interaction. V is the Coulomb interac-
tion and T, is the electronic kinetic energy. Atomic units
are used throughout this work.

The condition that defines the DJ is [22]
( VD )+( Vbb ) + ( Vb, ) =0, i.e., the terms of the back-
ground energy are identically canceled with the direct lo-
cal term of the particle-particle interaction. The conse-
quences of this hypothesis and the conditions under
which it is satisfied have been discussed in a previous
work [23].

The trial state functions in the Fock space are taken to
be the usual PW's multiplied by modulating functions.
The minimal modulating frequency qo is obtained via the

orthonormality condition of the orbitals [19]. The pro-
posed orbitals are of the form

i k-r JV'

y (r) = — g C„„cos(qon„x )cos(qon y ),
n, n =0

X

where 3 is the area in which the periodic boundary con-
ditions are imposed. The coefficients C„„are assumedx' y

to be independent of k. These coefficients are self-
consistently determined by the HF equations with the
orthonormality condition included. The first term in this
expansion n =n =0 is the PW solution. For the upper
limits in the sums we select A' =A' =JV; in that way,
when the solution is di6'erent from the PW, the system
has a periodic density centered on a square lattice. The
number of terms for this lattice increases like (IV+1) .
Other lattices can be obtained by the usual modification
of the Brillouin-zone geometry. Although in the 2D sys-
tem one expects that the hexagonal lattice will be the
most favorable energetically, we will show that even for
the square lattice the DJ gives a better energy than any
UJ calculation performed so far.

The energies for the normal paramagnetic state and for
the fully polarized one are evaluated in order to deter-
mine the magnetic nature of the ground state. In the
paramagnetic case, each orbital within the Fermi sphere
of radius kF has double occupancy, while in the ferro-
magnetic case the orbitals within a sphere of radius &2kF
are singly occupied. The ground-state energy per particle
with the orbitals of Eq. (1) requires the evaluation of
terms of the form

(2)

for the expectation value of the one-particle kinetic ener-

gy, and

2/ 32 g g g g C„*C„*C„C„I(n„n4)
Il l n2 113 I14

XF(n„n2, n3, n~)

for the nonlocal exchange term of the two-body Coulomb
potential. In these equations r, is the density parameter
in Bohr radius and X is the number of particles. n is a
two-dimensional vector n =n„i+n„j. The function
I(n„n4) that stems from the integrals of the Coulomb
potential has been numerically evaluated. Notice that
the function l(n„n4) depends on two indices as it should
be for the exchange part of a two-particle operator. Fi-
nally F(n„nz, n3, n4) is a sum of 64 terms that are prod-
ucts of Kronecker 5 functions in the components of the
four n s. The coefficients C„were self-consistently deter-
mined with an approximation of 10 with respect to the
previous iteration. The value of the upper limit in the
sums was changed from A"= 1 up to 16, in order to obtain
results for the ground-state energy independent of JV. We
get convergence for the energy results in a wide interval
of 3 & r, & 50, with a function up to 289 terms. The eval-
uation of the ground-state energy for ten points with the
A= 16 expansion required about 350 VAX-780
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equivalent hours.
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FIG. 3. Ground-state energy per particle, in rydbergs, of the
2D electron gas in terms of the parameter r, . The solid line cor-
responds to the ferromagnetic phase and the dashed line to the
paramagnetic one.

density region up to r, =28 for the paramagnetic phase.
Figure 2(b) shows that a good convergence is obtained at
densities up to r, =50 for the ferromagnetic energy. One
would have to go to greater values of JV if more accuracy
in the energy were required at lower densities.

In conclusion, the DJ model confirms that the usual
uniform PW solution in a ferromagnetic configuration is
the HF ground state of the 2D electron gas with densities
from r, =2 up to r, =6.5. At this point the system is pre-
dicted to have a transition to paramagnetic corrugated
state; see Fig. 3 In this phase towards lower densities a
positive pressure region is obtained. At r, =30, the fixed
JV=16 curves of the electron gas show a magnetic transi-
tion to a ferromagnetic corrugated configuration. If a
more precise calculation maintains this behavior, two
metastable states would exist in this model, one paramag-

netic at r, =25 and the second at r, =38, in the ferromag-
netic configuration.

Just as the existence of the usual uniform HF state at
metallic densities gives a good starting point for the
many-body techniques that have been applied to the
electron-gas system [15], the presence of these new stable
states could be of great relevance, both from a conceptual
and from a practical point of view. In principle, they
provide a firm starting point from which more sophisti-
cated calculations could be performed.

An important question not addressed in this work is
what would be the effect of the non-spin-electron correla-
tions on the ground state of the DJ. A partial answer can
be obtained at least for static correlations by introducing
a screened Coulomb interaction. In the past we have
computed the effect of this type of interaction on the en-
ergy spectrum and on the ground-state energy of the 3D
electron gas [19,25]. The only effect that one expects
from this type of correlation is to move the transition
point of the corrugated state to a lower density and, as
the range of the interaction is diminished, to move the
energy of the system up. Therefore the qualitative behav-
ior of the possible metastable states would not be expect-
ed to change. The quantitative differences will depend on
the strength of the screening, which could be expected to
be small.
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