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Coherent-incoherent transition and relaxation in condensed-phase tunneling systems
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The tunneling dynamics of the spin-boson problem has been computed using discretized path-integral
simulations for temperatures T and couplings, i.e., the Kondo parameter a, spanning the entire T-a
plane. The inherent problem of alternating weights has been solved using a combination of the
stationary-phase Monte Carlo method and contour-distortion techniques. A transition from coherent to
purely incoherent relaxation was observed for the spin correlation function. The time correlation func-
tions and the location of the coherent-incoherent boundary on the T-a plane are well described by the
noninteracting-blip approximation. In the deep-tunneling limit of large a, low T, and high bath frequen-

cy, the system relaxes exponentially, with its relaxation time constant following a power-law temperature
dependence, in accord with perturbation theory. At higher T and low bath frequency, the relaxation
time crosses over to a classical Arrhenius temperature dependence, reflecting the onset of activated pro-
cesses. For a narrow region within —' &a &1, numerical results suggest that the system undergoes in-

coherent relaxation, with a short-time exponential decay, followed by a long-time tail of the power-law

type. The short-time exponential relaxation time follows a peculiar power-law temperature dependence,
with the relaxation rate increasing as a function of decreasing temperature.

I. INTRODUCTION H =H o+Hg +P c,r, (1.2)

Studies of tunneling systems in condensed phases are
important for many areas of physics and chemistry. For
example, the rate of oxidation-reduction reactions at low
temperatures are dominated by electron tunneling be-
tween donor and acceptor sites [1]. Tunneling of pro-
tons, on the other hand, is responsible for the transport of
hydrogen trapped in crystal lattices [2]. Quantum tun-
neling can also be observed macroscopically, such as in
Josephson junctions at low temperatures [3] and in rf su-
perconducting quantum interference devices [4].

In the studies of quantum tunneling in double-well sys-
tems at low temperatures, it is su%cient to restrict our at-
tention to the lowest two eigenstates of the unperturbed
tunneling system. Within this truncated state space, the
tunneling system is described by the two-level system
Harniltonian

H = —Ko.0 x

where o.; (i =x,y, z) are the Pauli matrices, 2' is the tun-
nel splitting, and the basis is chosen so that the eigenstate
of o., with eigenvalue +1 corresponds to the system be-
ing localized in the left well and eigenvalue —1 in the
right well. The two-level system described by Eq. (1.1) is
highly nonlinear and its dynamics evolves purely through
quantum tunneling. In isolation, the two-level system ex-
hibits perfect quantum coherence at all temperatures,
which is reflected by the sinusoidal oscillations in the spin
correlation function C (t) =Re( o.,(0)o.,(t) ).

The effects of dissipation can be introduced by cou-
pling the two-level system to an infinite set of harmonic
oscillators through o., to describe solvation. The Hamil-
tonian of the coupled system is

where

2mJ 2
(1.3)

and m and co are the mass and frequency of the jth os-
cillator. The local field

p=g cjxj,
J

(1.4)

where c is the strength of the coupling to the jth oscilla-
tor. Complete knowledge of the effects of the environ-
ment is captured in the "spectral density"

J(co)—=—g (c /m co )5(co—co. ) .
J

(1.5)

J(co)=geo'exp( —co/co, ) . (1.6)

The so-called "Ohmic" dissipation with s =1 exhibits a
great variety of behaviors and has been studied most.
This model is not limited to systems coupled to bosonic
baths. Even coupling to fermionic environments formed
by conduction electrons at low temperatures can be de-
scribed using an Ohmic dissipation [15—18]. This partic-
ular form for J (co) ensures a well-defined classical friction

The predominant effect of dissipation is manifested as a
loss of quantum coherence in the two-level system. Equa-
tion (1.2) with Eqs. (1.3) and (1.4) is often called the spin-
boson Hamiltonian [5—14].

A class of models that have been studied extensively in
the past assumes a power-law form for the spectral densi-
ty,
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A dimensionless variable a=2')/~ is often used to
quantify the strength of the system-environment cou-
pling. For a bosonic bath, a can take on any value
greater than zero; for a fermionic bath, e can never
exceed unity [17]. The quantity a=2qlvr is the Kondo
parameter, often referred to as I(. We, however, reserve
2K for the tunnel splitting; cf. Eq. (1.1).

The effects of dissipation on tunneling has been the
subject of intense study in the past. Early theories were
based on the "golden rule, " which gives the tunneling
rate in terms of an expansion in the number of kinks
[8,19,20]. In the limit of a nearly adiabatic bath at high
temperature, a Landau-Zener treatment can be applied
giving the correction to the crossing rate due to surface
hopping [1]. At low temperatures, approximate theories
for both the weak-coupling limit [6,11,20,21] and the
strong-coupling limit [8,11] have been formulated. In ad-
dition, a variational theory based on the adiabatic refer-
ence has been studied [13]. There have also been semi-
classical approximations using bounce and instanton
methods [6,20]. In various limits, these theories provide
exact or nearly exact results.

Most recently, a functional integral approach using the
noninteracting-blip approximation has been used to study
the spin-boson model as a function of temperature T and
coupling a [5]. The noninteracting-blip approximation
gives exact results in a number of physically quite distinct
limits, and appears to bridge gaps left by many of the pre-
vious theories. The approximation has been used in an
attempt to map out the general behaviors of the spin-
boson model on the T-a plane. At low temperature and
small coupling, the system exhibits quantum coherence
with a small incoherent background. As the coupling is
increased, a transition from coherent to incoherent be-
havior is observed. At large coupling and/or high tern-
perature, the system relaxes exponentially. The greatest
uncertainty in these predictions exists in a region on the
T-a plane for intermediate coupling and low tempera-
ture, where the relaxation is assumed to be incoherent.

Recently, we presented a Brief Report on a method to
compute real-time correlation functions for the spin-
boson model in the high-coupling regime using dynami-
cal Monte Carlo path-integral methods [22]. In the
present paper, we describe an extension of our earlier
work to treat the spin-boson model throughout the entire
range of coupling strengths. The goal of our current
work is to test predictions of previous analytical theories
against dynamical Monte Carlo path-integral simula-
tions. By Monte Carlo, we have computed the spin
correlation function for a wide region on the T-a plane.
By comparing with the noninteracting-blip approxima-
tion, we show that many of the qualitative predictions of
that theory are correct. We do, however, find differences,
some of an apparently qualitative nature. Perhaps our

I

Tre
—PHQ itH/ th

—itK/

(h (0)h (t)) =
Tre

—PHe i tK/Pie —i tH /

numerical results will foster further analytical work.
From another point of view, we believe the present

work is important for technical reasons. Previous direct
path-integral simulations of real time dynamics has
suffered from the "sign problem" [22—27]. The presence
of complex-valued actions leads to nonpositive definite
"weights" that cannot be treated by conventional Monte
Carlo methods. Gur goal on this technical front is to ex-
amine possible ways to deal with the sign problem. The
method presented here may provide a general approach
to solving this problem that may be of rather broad appli-
cability. For the spin-boson problem itself, our approach
is significant as this is the first definitive numerical treat-
ment of the model.

In Sec. II, we describe the discretized path integrals for
the spin-boson model and show that they are isomorphic
to a one-dimensional Ising model with both nearest-
neighbor and long-range interactions that are in general
complex valued. In Sec. III, we review the general ap-
proach to simulating real-time dynamics using the
stationary-phase Monte Carlo (SPMC) method [23—25].
In Sec. IV, we specialize the SPMC method to the spin-
boson problem and introduce the Hubbard-Stratonovich
transformation. In Sec. IV, we motivate the necessity of
generalizing the SPMC method by distorting path-
integration contours. Technical details related to this
discussion are given in Appendix A. In Sec. VI, we
brieAy describe our Monte Carlo algorithm, once again
deferring the details to Appendix B. In Sec. VII, the nu-
merical results will be presented with a detailed compar-
ison with the results of the noninteracting-blip approxi-
mation. Finally, in Sec. VIII, we summarize our observa-
tions and offer some thoughts about the future of dynami-
cal path-integra1 Monte Carlo methods.

II. DISCRETIZED PATH-INTEGRAL FORMALISM

In the spin-boson model, the relevant dynamical quan-

tity to study is the spin correlation function

(o,(0)o,(t)) =Z 'Tre ~ o,e" ~ cr, e " ~", (2.1)

where I3= I /ks T and Z =Tre ~ . Another correlation
function (h„(0)h„(t)) of the projection operator
h~ =

—,'(1+o., ) is related to the spin correlation function

by

( (o0) (ot) ) =4(h~(0)h„(t) ) —1 (2.2)
and has the same information content as the spin correla-
tion function. For our application, the formulation for
(h~(0)h~(t)) proves more convenient. But the results
can easily be translated back to (o,(0)o,(t)) using Eq.
(2.2). The real part of (o,(0)o,(t)) is subsequently re-
ferred to as C(t).

Correlation functions such as (h„(0)h„(t)) may be
represented using discretized path integrals [14,28]

(2.3a)

f dr, . drp+2g exp(Q[r&, . . . , rp+2g])hz(r)hz(r')

f dr, . drp+2g exp(A[r&, . . . , rp+2g])
(2.3b)
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in the coordinate representative Ir ) —= Icr, x; ), where 0 is
the position of the two-level system, and Q, the complex-
valued action that governs the dynamics in real time, is
given by a sum of three piecewise actions

["1 . "P+2g ] ["1 . "P+1 W
+S [rp+1» ' ' ' » rp+g+1» «)

where

yZ
STLs[o „.. . , o~+l, yfi]= —,

' ln tanh ~ g o;cr;+1 .
i=1

(2.8)

The inQuence functional

+ [ P+Q+1» ' ' ' » 1» T) (2.4)
1+[+1» ' ' » +P+2Q ) X 2»+ij j (2.9)

g exp(Q'[o „.. . , o p+2Q ] )

(2.5)

where the reduced action is given by

» 0 P+2Q l

+TLS[+1» ' » +P+2Q )+I[+1»»+P+2Q l (2.6)

Here QTLs is the sum of three piecewise actions for the
uncoupled two-level system and is given by the following
equation, which is analogous to Eq. (2.4):

+TLS[lr 1» ~
» 0 p+2g ]

for any real time ~) t, and S[r„.. . , rz+„yfi] denotes
the N-point discretized action for the imaginary-time
path integral from time 0 to yA. Notice that P points
have been used to parametrize the thermal path, and Q
points for both the forward and reverse time paths. The
indices in Eq. (2.4) are understood to be cyclic, i.e.,
rP+2Q+, =r, . It is important to note that Eq. (2.3b) is
valid for any pair of points r and r' separated by a total
time of it along the cycle. Also note that in writing Eq.
(2.3b), we assume that P and Q are large enough that the
discretized path well approximates the continuum. In
our use of this formula, we always check to see that this
assumption is correct.

The same formulation has been considered previously
by Wolynes and co-workers [12]. Its advantages are two-
fold: (i) From a single Monte Carlo trajectory, one ob-
tains the correlation function for all real-time points t
that are less than or equal to a maximum possible time ~.
Separate calculations for each diferent t are not neces-
sary. (ii) The cyclical structure of Eq. (2.3b) allows one to
account for all possible constructive and destructive in-
terferences simultaneously.

Since the bath is harmonic and its coupling to the
two-level system is linear, the bath degrees of freedom
can be integrated out exactly to yield an infIuence func-
tional. This reduces Eq. (2.3b) to a sum over spin paths
only

(h„(0)h„(t))

g exp(A'[o „.. . , o p+2Q ] )h ~ (o )h ~ (1T')

where the time discretization

PR/P, 1&i &P
iT/Q, P tl &i &P+Q

ir/Q, —P+Q+1&i &P+2Q
(2.11)

k=i
(2.12)

The reduced action defined in Eqs. (2.6), (2.8), and (2.9)
can be represented more compactly as

O ' =QTLS +g =g —,
' O.;M; 0. .

EJ

(2.13)

The system defined by the reduced action Q' in Eq.
(2.13) is isomorphic to a one-dimensional Ising model
with nonclassical couplings. The nearest-neighbor in-
teractions may be either real or imaginary. The long-
range couplings are in general complex valued. Due to
these long-range interactions, the spin-boson model can-
not in general be solved exactly. Moreover, Monte Carlo
simulations of this isornorphic Ising model are difficult
due to the presence of nonpositive definite "weights" that
alternate in sign. In the following section, we will discuss
methods to treat this alternating weights problem.

III. STATIONARY-PHASE FILTERING

This section serves as a brief review of the stationary-
phase Monte Carlo method [23—25]. We follow closely
the development of Doll and co-workers [24].

Functional integral encountered in quantum dynamics
are generally characterized by a complex-valued action.
As a result, the integrand is an oscillatory functional of
the path. In discretized form, these dynamical functional
integrals has the generic form

I= Jd "xp[x]e'&("), (3.1)

contains nonlocal complex-valued two-spin couplings

cosh[A'co(b, ,
—6,. )/2]

y;1
=—b;hj dao J(co)

0 sinh %co/2

(2.10)

=STLs [~1» . » ~P+1»P~]

+STLS[PP+1»» + P+g+1', l r]

S+TLS[PP +Q»+.1. .
» +11 »]T (2.7)

where p[x] is a positive definite function and P[x] is real.
The most significant contribution to the integral in Eq.

(3.1) comes from regions of configuration space where the
phase P[x] is nearly stationary. Everywhere else, the
rapid phase oscillations lead to destructive interference.
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[x ] f d Ny P [y ]
P [ —

y ]
p[x]

y&&p y (3.3)

and P[y] is an arbitrary normalizable probability. For
the present application, the probability function
P[y]=exp( —

QJ y~ l2e ) suggested by Doll and co-
workers is most convenient. The widths [e-] are chosen
accord ing to 6J Eoh, where 6 . is the characteristic
width of p[x] in the variable xj [24].

In general, the exact analytical form of D[x] is un-
known. Therefore it is necessary to approximate it by its
first-order approximant

A successful scheme to compute the integral must there-
fore concentrate sampling near these stationary-phase re-
gions. This is the idea behind the SPMC method.

A filtering function is used to isolate stationary-phase
regions. Instead of computing Eq. (3.1) directly, one
computes

I= f d~x D[x]p[x]e'~("}, (3.2)

with the filtering function
r

IV. HUBBARD-STRATONOVICH TRANSFORMATION

To recast the summations in Eq. (2.5) as integrals, we
perform a Hubbard-Stratonovich transformation [29].
The first step is to construct a new action

Q"—=g —,
' o.; ( M + A );)cr (4.1)

X d s exp —
—,
' s,- M+ 3,"'s.

E,J

(4.2)

Making this substitution into Eq. (2.5), and summing
over the spin configurations explicitly, one obtains an ex-
pression for (hz (0)h& (t) ) in a continuum representation

from Q' of Eq. (2.13), where A is an arbitrary diagonal
matrix with elements a„.. . , aP+2&. Note that replac-
ing Q' in Eq. (2.5) by Q" does not alter the validity of Eq.
(2.5). We introduce Q" so that we can make use of the
well-known Gaussian integral identity

f d s exp —
—,
' g s; (M + A )," 's, +g o. s.

l,J J

=exp —,
' g o;(M+ A); o

D [x]=D [x]—=exp , a

ax,
(3.4) ( h „(0)h„(t))

which is positive definite. A significant feature of D is
that it emphasizes only those regions where the phase
function P is nearly stationary. The integration of Eq.
(3.1) can then proceed by normal Monte Carlo sampling
of

P+2Q
ds&W[s&, . . . , sp+pg]hz(s)h (s')

k=i
P+2Q
II dsk ~l si sp+2Q ]
k=1

I=f d x D [x]p[x]e'~(")(1+bD/D ), (3.5) where
(4.3)

where AD= D D, usi—ng—D [x]p[x] as the weight. As
has been pointed out by Doll and co-workers [24], the
role of the filter D is to "synthesize" the appropriate
phase interference such that the regions of highly rapid
phase oscillations contribute a negligible amount to the
integral.

Care needs to be exercised when evaluating the correc-
tion factor 1+AD /D . Since D is approximate, the
correction factor may become very large and highly oscil-
latory away from the stationary-phase regions, where D
is small. In this case, an indiscriminate sampling of the
correction factor will lead to serious phase oscillation
problems. A logical solution to this problem has been
discussed by Doll and co-workers [24]. They suggest that
for regions where D is small, the correction factor is
unimportant due to the rapid phase oscillations there.
Consequently, they proposed imposing a cuto6' value D,
such that they only evaluate the correction factor for
configurations with D ~ D, . Doll and co-workers have
shown in a number of cases that quite accurate results
can be obtained even with D, = 1 (i.e., no correction).

As we wi11 discuss shortly, this happy circumstance is
not found in the spin-boson model unless the SPMC
method is generalized. Before venturing into this issue, it
is first necessary to reformulate the spin-boson system as
a continuous model.

W[s„. . . , sp+~g]:—exp —
—,
' ps;[M+ A],J 'sj

and

+g ln(2 coshsJ )

J
(4.4)

S

h„(s)—:
2 coshs

(4.5)

—ao(M+aoI) '= aoI+M —ao 'M —+ (4.6)

shows that the new continuous spin model has the same
characteristics as the discrete model, provided that ao is

This transformation is valid as long as Re(M + A) is pos-
itive definite. The matrix A has therefore been intro-
duced into Eq. (4.1) to ensure that this condition is
satisfied. In our application, we have chosen to let
A =aoI, where I is the identity matrix (i.e.,
a, =a&= —=ao) such that Ho+min Re(A, ))0,
where A, are the eigenvalues of M.

Equation (4.3), with Eq. (4.4) and (4.5), is an exact
transformation of the discrete Ising model with couplings
—,'(M+aoI);~ to a continuous "spin" model with new

couplings —
—,'(M +aoI),t '. The Taylor expansion
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large enough. The transformation of this type is known
as a Hubbard-Stratonovich transformation [29]. Now,
we may consider treating Eq. (4.3) with the SPMC
method described in Sec. III.

V. CONTOUR DISTORTION

I'"'= f dz, . . . f dz.g'"'(z„. . . , z„),
n

(5.2)

where C„.. . , C„denote contours along the real axis

As has been discussed in Sec. III. the major role of the
SPMC method is to seek out stationary paths in real
space, and concentrate sampling around them. In order
to understand the utility and limitation of the SPMC
method, it is necessary to analyze the nature of these sta-
tionary paths. We will show in this section that a
straightforward application of SPMC is inadequate for
our current problem, and it has to be supplemented by
contour distortion techniques.

According to Hamilton s least action principle, the sta-
tionary paths of the action would correspond to the clas-
sical paths. In a system dominated by tunneling, such as
in the spin-boson model, such classical paths do not exist,
at least not in real space and/or real time [30,31]. Conse-
quently, if stationary paths do exist, they must not be
confined to real space and/or real time.

At this point, our discussion may be made more con-
crete by turning to the discretized form of the action.
After discretization of the action, space-time paths are
parametrized by a point in multidimensional space (and
specifically in our case, this space has dimension P +2Q).
The stationary paths are now mapped onto stationary
points in this multidimensional space, and for this discre-
tized action, we may reach a conclusion similar to the
one we made in the preceding paragraph: If stationary
points in this multidimensional space do exist, they must
be complex valued.

The appropriate way to handle complex-valued station-
ary point is familiar in semiclassical approximations
[31,32]. The integration contour is distorted to pass
through the stationary point, and then the steepest-
descent method is applied. The theory behind such ap-
proaches is an elementary subject in the study of complex
variables. For any integral of a function of a single com-
plex variable, the steepest-descent trajectory emanating
from a stationary point is uniquely defined. For example,
the integral

I=f dzg(z), (5.1)
C

whose original contour C lies entirely on the real axis,
can be performed by passing a distorted contour C' along
the steepest-descent direction through a stationary point
zo in the complex plane, provided that g(z) is analytic.
C' is uniquely given for zo. For every point z E C', the
phase of the integrand g(z) is constant. The sign prob-
lem is then completely eliminated by choosing the in-
tegration contour to be C'.

For multidimensional integrals like the one required by
Eq. (4.3), the situation is quite different. Consider, for ex-
ample the multidimensional integration

and g'"' is an analytic function of n complex variables in
the region that we are interested in. Any one of the con-
tours of integration C, may be distorted to a new
complex-valued contour C, which itself must not be a
function of [z j:.Vi). In this way, we can distort the
contours one after another to ensure that they intersect at
any given stationary point in the n-dimensional complex
space. However, since [ CJ' } must be chosen independent-
ly from each other, there exists no unique set I CJ'I for
which every point [z&, . . . , z„]H [C'J satisfies the
steepest-descent condition Bg'"'(z„. . . , z„)/Bz =0, for
all j simultaneously. Therefore one concludes that in
more than one dimension, the sign problem can never be
eliminated completely irrespective of the choice of the in-
tegration contours.

Another important question concerning the usefulness
of contour distortion in many dimensions is related to the
multiplicity of stationary points. If there exist a number
of different stationary points in the multidimensional
complex space, one should in principle seek a set of dis-
torted contours [C'I that contains as many stationary
points as possible. In general, this is a difficult task be-
cause of the following two problems. (i) The first problem
is a technical one: not all stationary points can be found
explicitly. To circumvent this, Doll and co-workers sug-
gested using simulated annealing techniques to find the
approximate locations of stationary points [33]. In other
instances, the approximate locations of stationary points
can be found by numerical root finding methods. For the
current problem, we have taken the second approach. (ii)
Even after all stationary points have been found, a more
serious conceptual problem remains: there exists no gen-
eral algorithm to parametrize I

C'. [ such that it contains
all or most of the stationary points. Therefore, in a prac-
tical application of contour distortion methods, one aims
at finding a compromise between the following two fac-
tors: (a) to maximize the number of distinct stationary
points connected by the distorted contours; (b) to keep
the distortion simple to facilitate easy parametrization.

For the spin-boson problem, we have neither of the two
general problems mentioned above, and we have taken a
simple approach for determining the appropriate distor-
tions. In our calculations, we distort the integration con-
tour C in each of the n variables by simply rotating it
into the complex plane through a constant angle 0 .. The
rotation angles I 8 ] are determined so that the n distort-
ed contours [

C'
j intersect at a stationary point in the n

dimensional complex space. Details of how the station-
ary points are located and why our simple method works
are left to Appendix A.

Similar contour rotations have been considered before
[26], but the reasoning and applications are significantly
different. The usefulness of these contour distortions will
be demonstrated in Sec. VII where SPMC calculations in
some exactly solvable limits are compared with analytical
results.

VI. GENERALIZED STATIONARY-PHASE
MONTE CARLO ALGORITHM

The computational problem is defined by Eqs.
(4.3)—(4.5). Our approach consists of first distorting the
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(h„(0)h~(t)) = k=1
P+2Q

f Q ds„W[s]
k=1

, (6.1)

where s= Is„.. . , s~+z&] and

W[s] —= exp —
—,
' g s;(1+i tan8;)(M+ 3)," '

X(1+itan8 )s.

+g in[2 cosh( 1+i tan8 )s. ]
J

(6.2)

where 0 is the rotation angle for the jth variable, and

exp[ —(1+i tan81 )sj ]
h„(si) =

2 cosh(1+i tan8i )si

=expI —(1+i tan8 )s

—ln[2cosh(1+i tan8. )s ]] . (6.3)

For the integral in the denominator of Eq. (6.1), we
define the "weight function"

pd [s]=—exp(Re W[s] ) (6.4)

and the "phase function"

Pd[s]:—ImW[s] . (6.5)

Following the development in Sec. III, the first-order ap-
proximate filtering function is

D„[s]—:exp
Bs

(6.6)

so the integral is given approximately by
P+2Q [S] p

[ ]
' D'[ l.

k=1
(6.7)

Performing a similar breakup of the integrand in the
numerator of Eq. (6.1) yields a difFerent weight function
p„and phase function P„, therefore resulting also in a
different filtering function D„. This is cumbersome. We
prefer to use the same weight function and filtering func-
tion for both the numerator and the denominator:

(h„(0)h„(t))

f + ds p [s]D [s]
k i Pd [s]Dd [s]

P+2Q
p '4'd[ ]f + dst, pd[s]Dd[s]e

k=1

(6.8)

integration contours by simple rotations into the complex
plane to increase the eKciency of the sampling, as de-
scribed in Sec. V, and subsequently, using the SPMC
method introduced in Sec. III to perform the multidi-
mensional contour integrals.

After contour rotations, Eq. (4.3) becomes

P+2Q

f g ds„W[s]h„(s)h„(s')

so pd[s]Dd [s] can be used as the sampling function for a
Monte Carlo integration. The error in Eq. (6.8) can be
estimated by computing the correction factor
(1+AD /D ), as in Eq. (3.S).

At this point, the Monte Carlo sampling should
proceed in a straightforward manner. Using the standard
Metropolis algorithm [34], we have attempted to perform
the sampling in Eq. (6.8). Unfortunately, this simple
sampling scheme when applied to the present problem
displayed extremely slow equilibration rate, much like a
system close to its critical point. Such a problem is not
entirely surprising because the spin-boson Hamiltonian
has a bistable structure, analogous to P field theory. The
isomorphic Ising model does, of course, have long-ranged
interactions. But this is not the primary source of the
slowing down in our calculations. It is the result of the
filtering functions D, which introduces highly nonlocal
interactions between distant sites along the ring. Its
physical origin is that regions of configuration space
where the action is nearly stationary are well separated
from each other. In order to make transits among these
stationary regions, massive global rearrangements of the
system configuration have to be effected.

To circumvent the slow equilibration problem, we have
incorporated several special types of Monte Carlo moves
into our program. We will briefiy describe here each
kind of Monte Carlo move we have employed.

(1) Simple Metropolis: Single particle moves of max-
imum step size hsM in random directions are made and
accepted or rejected using the Metropolis criterion.
is less than the separation between the two stable wells,
so simple Metropolis equilibrates the system within each
well, but rarely results in transits between the two wells.
(2) Kink Metropolis: To supplement the simple Metropo-
lis steps, kink-forming Metropolis moves were performed
by refiecting (or "flipping") each particle across the ori-
gin, one at a time. This allows transits from one well to
the other (hence the name "kink forming").

(3) Kink-pair-forming Metropolis: Under high cou-
pling to a reasonably fast-responding bath, inhuence
functional bonds produce strong correlations between
pairs of particles from the forward and reverse time
paths. Hence kinks form predominantly in pairs. The
kink-pair-forming Metropolis move is designed to
enhance such correlated motions.

(4) Swendsen-Wang: This type of motion is conceptu-
ally similar to the embedded dynamics of P theory dis-
cussed by Brower and Tamayo [35], based on the
Swendsen-Wang method [36—38]. This method identifies
the boundaries between strongly correlated blocks which
are not necessarily contiguous. The correlated blocks are
Aipped independently. This algorithm is extremely
effective in producing long-range correlated kinks. Fur-
ther discussion of this method as applied to the current
problem is given in Appendix B.

In each pass, steps (1) and (2) are attempted for every
particle once on the average, step (3) is attempted for
every possible pair once on the average, and step (4) is
performed once for the entire system. Typical results
presented in this paper were obtained using three to ten
million Monte Carlo passes. Parts of the calculations
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TABLE I. Summary of simulation results for C (t) in various regions on the T-a plane.

a ~0.064
a ~0.064
a ~0. 13
a ~0.32
a ~0.51

T/K =10
T/K =7.5

T/K =5
T/K =2.5
T/K =0.625

E/co, =0.4
K/t0, =0.4
E/co, =0.4
K/co, =0.4
K/co, =0.4

Damped coherent oscillations

a + 2.55 T/K =0.625 K/co, =1.6 Coherent oscillations
similar to adiabatic limit

a= 1.27 0.5~ T/K ~1.2 K!co,=0.1 Exponential relaxation
with time constant a=T
following short-time transient

a=2.55 0.625 ~ T/K ~ 2.5 K/m, =0.4 Exponential relaxation
with time constant ~=e

0.625~ T/K + 15 E/m, =0.4 Short time exponential decay
with time constant ~= T
followed by long-time tail

were performed on the Cray X-MP at Berkeley, at the
speed of approximately 1 CPU h per million passes. The
rest of the calculations were performed on an IBM
RISC/6000 Model 320, at about one-fifth the speed of the
Cray X-MP.

VII. RESULTS AND DISCUSSIDN

This section presents the numerical results. In cases
where exact solutions of the spin-boson problem are
known, we compare our results with the exact or asymp-
totic solutions to demonstrate the quality of our compu-
tations. Then we discuss numerical results for parts of
the parameter space where such solutions are not known.
From these data, the coherent-incoherent boundary will
be located and compared to the prediction of the
noninteracting-blip approximation. The temperature
dependence of the incoherent relaxation rate will be
determined for high dissipations. Finally, we will present
results for a region in the parameter space that is inacces-
sible to previous approximate analytical theories. Our

major conclusions concerning the behavior of C(r) for
various regions on the T-a plane are summarized in
Table I.

A. Comparison with exact results

In the limit of zero coupling to the bath, the dynamics
of the isolated two-level system is easily solved. Perfect
quantum coherence is maintained indefinitely, which is
manifested in the cosine oscillations of the spin correla-
tion function.

Figure 1(a) shows numerical results for the isolated
two-level system with T/K=(PK) '=2. 5 after contour
rotations. We use units for temperature T where
Bo1tzmann's constant is 1. The solid line represents the
exact result. Vertical bars indicate error estimates of one
standard deviation. In this case, discretizations of P =2
and Q =16 were used. Convergence was verified by
recomputing the correlation functions using finer discret-
izations of P =4 and Q =32, which yielded similar re-
sults. A SPMC width of @0=0.3 was chosen and the re-

1.0 3.0

2.0

0.0
0

00

It
It

It ~F
It

—1.0

—2.0

0.0 0.5 1.0 0.0 0.5
K

i.0

FIG. 1. Numerical results for C (t) at T/K =2.5 with coupling a =0 computed using the SPMC method (a) after rotations and (b)
with no rotations. Vertical bars indicate error estimates of one standard deviation. Solid curves are exact results.
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suits were obtained without correcting for Do. Figure
1(a) shows that the uncorrected results are quite accurate.
Correcting for Do improved the results by about 5%%uo on
the average, but required substantially more computa-
tions. It is worth noticing that although the isolated
two-level system is the most trivial case from an analyti-
cal standpoint, it presents the most nontrivial computa-
tional problem. As discussed in Appendix A, the isolated
two-level system possesses an extremely large number of
important stationary points. As a result, a very thorough
equilibration is necessary to ensure that all the relevant
configurations are sampled. This is in part facilitated by
the Swendsen-Wang method. However, the efficiency of
the sampling was still found to be rather slow. The data
shown in Fig. 1(a) were generated from 8 million Monte
Carlo passes, after 2 million equilibration passes, using a
total of approximately 10 CPU h on the Cray X-MP.

The corresponding results using the same number of
passes but with no contour rotations are shown in Fig.
l(b). Note that data obtained without contour rotations
have much larger statistical error (the denominator actu-
ally has the incorrect sign [39].) As discussed in Sec. V,
SPMC alone without contour distortions restricts in-

tegration paths to be classical and real valued. Tunneling
in the spin-boson model is of course nonclassical, and
therefore necessitates the inclusion of complex-valued
paths.

The spin-boson problem is also exactly solvable in the
adiabatic limit (co, ~O). In this case, the influence func-
tional bonds in Eq. (2.9) produces infinitely long-range
coupling s and the isomorphic Ising model exhibits
mean-field behavior [13],which can be analyzed as an ele-
mentary exercise [40]. The dynamics in this case exhibits
coherence indefinitely [12—14]. Representative results in
the adiabatic limit are presented in Fig. 2 for T/If=2. 5

at different couplings. The numerical results compare
favorably with analytical solutions.

1.0
gii

(a) q = ooz

0.0

—1.0
I

0.0 0.5 1.0

1.0

0.0

—1.0
I

lates around zero and displays remnants of coherent dy-
namics. At some critical coupling a„coherence is com-
pletely quenched, and the system relaxes in a purely in-
coherent fashion. This critical coupling a, shifts to
larger values for lower temperatures.

The results of our calculations are summarized in Fig.
7, which reveals the location the coherent-incoherent
transition boundary on the T-n plane. Open diamonds

B. Coherent-incoherent transition
0.0 0.5

K

1.0

At the zero-coupling limit, the isolated two-level sys-

tem undergoes perfectly coherent dynamics. In the other
limit of high coupling, the relaxation proceeds in-

coherently, in an exponential fashion [5]. For intermedi-
ate values of a, a transition from coherent to totally in-

coherent dynamics occurs, and the phase boundary for
this transition has been predicted by the noninteracting-
blip approximation [5]. According to that theory and
what we find as well, the location of this coherent-
incoherent transition is a strong function of temperature.
The critical coupling a, at which this transitions takes
place shifts to higher values for lower temperatures.

To locate the coherent-incoherent boundary, we have
computed spin correlation functions for many different
points on the T-a plane. Representative numerical re-
sults for K/co, =0.4 and a wide variety of temperatures
are shown in Figs. 3—6. We use units for frequency co,

where A is 1. The results in these figures demonstrate
that for large a, relaxation proceeds incoherently and the
value of C(t) approaches zero monotonically. On the
other hand, for small cz, the correlation function oscil-

1.0

0.0

—1.0
I

0.0 0.5 1.0

FIG. 2. Comparison of numerical data for C(t) with exact

analytical results for adiabatic limit co, —+0 at T/K=2. 5 for

three different couplings. Solid curves indicate exact results.

Vertical bars denote error estimates.
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I

1.0 (a) cx = 0.06I I

denote spin correlation functions that exhibit purely in-
coherent relaxation and solid circles denote correlation
functions with coherence. The solid line indicates the
transition boundary predicted by the noninteracting-blip
approximation [5,10]. Our simulations and the
noninteracting-blip approximation show a remarkable
agreement, indicating that this approximate analytical
theory yields very accurate prediction about the location
of the coherent-incoherent transition, except at very low

temperature. The question of low temperature will be ad-
dressed shortly.

The good agreement between simulations and the
noninteracting-blip approximation is perhaps surprising.
The noninteracting-blip approximation is strictly valid

only when E «co, . In our calculations, we have chosen
a K/co, =0.4, for which the noninteracting-blip approxi-
mation may no longer be applicable. Indeed, when we

performed the calculations again at K/co, = 1.6, the data,
shown in Fig. 8, show that the spin-boson system now

displays behaviors similar to the adiabatic limit. Figure

I
1.0 (a) a = O. laI

0.0

0.0 ™-

—1.0

0.0 0.5 1.0 —1.0
I

I

1.0
0.0 0.5

K

1.0

I
1.0
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0.0 e-y ~ e-e~ + ep

—1.0
I

0.0 0.5
K

}.0 —1.0
I

1.0
I I I

(c) n = 0. 13—

'o

0.0

I

1.0

0.5
Kt 7T

1.0

I I(c) n = 0.32—

0 0

0.0

—1.0
I

0.0 0.5
K

1.0 —1.0
I

0.0 0.5 1.0
FIG. 3. Representative numerical results of C ( t) for

T/56=10 and E/co, =0.4 at three diferent values of a. (a)
shows weak coherence and (c) shows purely incoherent relaxa-
tion. Vertical bars denote error estimates. Dashed lines are
guides to the eye.

Kt n

FICx. 4. Same as Fig. 3, for T/K=5 and E/co, =0.4.
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8(c) demonstrates that coherence remains even at an ex-
tremely large coupling of a=2. 55. The location of the
coherent-incoherent boundary as predicted by the
noninteracting-blip approximation is apparently a weak
function of co, [10], as long as co, is not too small com-
pared to K.

A last point concerning the legitimacy of the compar-
ison between results from simulations and the
noninteracting-blip approximation needs to be addressed,
although it is not central to the results reported here.
The noninter acting-blip approximation was originally
developed to calculate the expectation value of o. at time

t, with the initial condition that o (0)=+1. This expec-
tation value is often called P (t) in the literature. Because
o, is a nonlinear operator, P(t)XC(t). However, this
difference is expected to be small for the cases we have
considered where T/K=0(1). An extension of the
noninteracting-blip approximation to compute C (t)
directly has recently been formulated [41]. These work-
ers show that deviations between P(t) and C(t) are most
pronounced at very long times, which we have not fo-
cused on in this work. See below, however.

The fact that we have considered the noninteracting-
blip approximation for P (t) rather than C (t) changes the

0.0 0.0

—1.0
l

0.0 0.5 1.0 0.0 0.5 1.0

(o) a = 0.51—I

0.0 0.0

0.0 0.5
K

1.0 0.0 0.5
Kt n

1.0

I I

(c) a = 064— l(c) a =127—

0.0 0.0

0.0 0.5 1.0 0.0 0.5 1.0

FICz. 5. Same as Fig. 3, for T/K=2. 5 and K/co, =0.4. FICx. 6. Same as Fig. 3, for T/K =0.625 and K/co, =0.4.



2362 C. H. MAK AND DAVID CHANDLER

10 -

7.5

discussed above, the quantitative comparison between
simulations results (using K /co, =0.4) and the
noninteracting-blip approximation (assuming K/co, =0)
is not expected to be very favorable, as is seen in Figs. 9
and 10. However, the noninteracting-blip approximation
is remarkably accurate in reproducing the gross features
of the correlation functions. This is primarily the reason

1.0 (a) a = 0.64

2.5 —~

~ ~00 0.0

0.5 1.5

FIG. 7. Phase boundary for coherent-incoherent transition
on the T-a plane. Open diamonds indicate purely incoherent
relaxation. Solid circles indicate coherent behavior. Solid line
is the coherent-incoherent boundary predicted by the
noninteracting-blip approximation [5]. Note that for low tem-
peratures, the actual phase boundary extends beyond a =0.5.

0.0 0.5 1.0

picture only slightly. As shown in Fig. 7, the
noninteracting-blip approximation concludes that the dy-
namics of the spin-boson model is purely incoherent
above a=0.5, for any temperature. However, the nu-
merical results suggest that this is not true for
T/K =0.625. The coherent-incoherent boundary ap-
pears to extend beyond +=0.5 as the temperature contin-
ues to be lowered. Our simulation results corroborate
with a previous study investigating the qualitative
difference between C(t) and P(t) for a=0. 5 in the low
temperature limit [41]. It was found that for long times,
C(t) approaches zero from below, indicating the phase
boundary extents beyond e =0.5 at low temperatures.

This is an appropriate place to comment briefIy on the
difference between C(t) and P(t) The simula. tion results
we have presented up to this point are for C(t). But we
have also computed P(t) over the entire T aplane, by-
constraining the spins on the thermal path to have the
same sign in the simulations. In Figs. 9 and 10, we com-
pare results for P(t) to C(t) at two different temperatures
for various values of a. Our results show that P(t) and
C(t) are qualitatively similar at all of the temperatures
we have studied (T/K ~0.625). The small, though ob-
servable, quantitative differences between P(t) and C(t)
are more apparent at lower temperatures, in agreement
with predictions from previous analytical theory [41].

Also of interest here is a quantitative comparison be-
tween the results of the simulations and of the
noninteracting-blip approximation. The solid lines in
Figs. 9 and 10 are results from the noninteracting-blip ap-
proximation. In both sets of figures, we have chosen
three different values of a—one inside the coherent re-
gion, one near the coherent-incoherent phase boundary,
and the last one in the incoherent region. For the reasons

++ii~i

0.0

0.0 0.5 1.0

I I(c) a = 2.55—

0.0

0.0 0.5 1.0

FIG. 8. Same as Fig. 6, also for T/I( =0.625, but
E/m, =1.6. The coherence persists up to a&)0.5, the critical
coupling predicted by the noninteracting-blip approximation.
This behavior is similar to the adiabatic limit, in which the
noninteracting-blip approximation is not applicable. Dashed
line are guides to the eye.
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why the noninteracting-blip approximation is able to pre-
dict the location of the phase boundary with such a high
precision (see Fig. 7), even for cases where co, is not
rigorously large compared to E.

C. Incoherent relaxation rates

Under high coupling, the spin correlation function re-
laxes exponentially. The temperature dependence of this
exponential decay time constant can be extracted from
the numerical data. Figure 11 shows typical relaxation
behaviors at three different temperatures for +=1.27
with K/co, =0.1. After a short initial transient, relaxa-
tion at all temperatures proceed exponentially in the form
C(t)=exp( tl—v). The relaxation times are given in
Table II, and as expected, they increase with the inverse
temperature P. Figure 12 illustrates the variation of the

1.0 . 32 '

0.0 0.5 1.0 0.0

(o) a =025—I

—1.0
.I

0.0 0.5 1.0

0.0 spat+ ~T

—1.0
I

0.0 0.5 1.0
0.0

1.0
I64—

—1.0
I

0.0

0.0 0.5
Kt/7r

1.0

0.0 0.5 1.0 0.0

FICx. 9. Comparison of simulation results for P(t) (dia-
monds) and C ( t) (circles), and predictions of the
noninteracting-blip approximation (solid lines). T/K=2. 5 and
K/co, =0.4. P(t) and C(t) show qualitatively similar behav-
iors. The noninteracting-blip approximation reproduces the
gross features of P (t) and C(t) well: (a) inside the coherent re-
gion; (b) near the coherent-incoherent phase boundary, and (c)
in the incoherent region.

0.0 0.5
Kt n

1.0

FIG. 10. Same as Fig. 9, for T/K =0.625 and K/co, =0.4.
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FIG.11. Relaxation of the spin correlation function in the
deep-tunneling regime, for a = 1.27 and E /co, =0. 1 at three
different temperatures. Following a short initial transient, they
all exhibit exponential relaxation.

relaxation time r with inverse temperature P, on a log-log
plot. At the low-temperature end, the relaxation time is
observed to follow a power-law behavior ~= T', with
v= —1.6.

In this so-called "deep-tunneling" regime, the relaxa-
tion rate can be calculated using the golden rule of time-
dependent perturbation theory [5,15,16]. The predom-
inant relaxation mechanism here is tunneling of the bath.
In this regime, the golden rule and the noninteracting-
blip approximation predict a non-Arrhenius temperature
dependence for ~, with a power-law form &=T and ex-
ponent v=1 —2a. For a=1.27, this yields a value for
v= —1.54. This prediction from perturbation theory is
in excellent agreement with the numerical results, as
shown in Fig. 12.

Figure 12 also shows that at higher temperatures, the
power-law breaks down. This is because tunneling is
overtaken by classical activated processes. For a slow
bath with a small co„activated processes are especially
prevalent. To illustrate this, we have performed another
set of calculations using a slower bath (X/co, =0.4) and
higher coupling (a=2.55). The relaxation times are
shown in Fig. 13. For a temperature range similar to the

FIG. 12. Relaxation time constant in the deep-tunneling re-
gime as a function of inverse temperature from Table II.
K/co, =0.1. The numerical result suggest that the temperature
dependence of ~ is given by a power law ~- T, with v= —1.6
indicated by the straight line. Notice that the high-temperature
data do not follow this power-law behavior.

previous set of results, the relaxation times in this case
show purely Arrhenius temperature dependence with
r=exp( e/T) —Indeed. , in the adiabatic limit of an
infinitely slow bath where co, —+0, we expect Arrhenius
temperature dependence on the basis of standard analyti-
cal theory [7,14,42].

Finally, we investigate the relaxation behavior of the
spin-boson system at intermediate coupling ( —,

' &a& 1)
and low temperatures. This is the region in the T-a
plane where the noninteracting-blip approximation is not
expected to give accurate results. Consequently, the be-

TABLE II. Time constant r for short-time exponential decay
of C(t) in the deep-tunneling regime. a = 1.27, K/cu, =0.1.

2.5
1.7
1.2
1.0
0.83
0.71
0.62
0.50

0.94
1.10
1.40
1.97
2.70
3.93
4.42
6.28

10

FIG. 13. Relaxation time constant in the semiclassical re-
gime with +=2.55 and K/co, =0.4 follows Arrhenius behavior.
Activated processes are overtaking tunneling.
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havior of the spin-boson problem in this part of the pa-
rameter space is least understood. This is also the region
in which the spin-boson model is most relevant to the
Kondo problem [5]. The relaxation in this region has
been assumed to be incoherent by previous approximate
analytical theories.

We have computed the spin correlation function at
+=0.64 for a number of different temperatures. Some
representative results are shown in Fig. 14. After a short
transient, the spin correlation function exhibits exponen-
tial relaxation. For lower temperatures, however, this ex-
ponential relaxation is followed by a long-time tail of the
power-law type C(t)=t Un.fortunately, the quality of
the numerical results at long time and low temperatures
does not permit an accurate determination of this ex-
ponent. Despite this, the short-time exponential relaxa-
tion can be well characterized by a relaxation time z.
The relaxation times are given in Table III and plotted in
Fig. 15 as a function of P on a log-log plot. Again, r fol-
lows a power-law-type temperature dependence with
~= T . But in this region, ~ displays an inverse tempera-
ture dependence, showing a positive but weak exponent
6=0.4. This indicates that the short-time exponential re-
laxation is faster for lower temperatures, a fact which we
believe has not yet been predicted based on previous
analytical theories.

VIII. CONCLUSIONS

We have presented in detail a general approach to
simulate quantum dynamics based on discretized path-
integral techniques. Our method combines stationary-
phase Monte Carlo sampling and contour distortions to
achieve high sampling e%ciency. Contour distortions in

TABLE III. Time constant ~ for short-time exponential de-
cay of C(t) in the region 2

&a&1. +=0.64, K!cu, =0.4.

0.625
1.25
1.87
2.50
3.75
5.00
7.50

10.0
15.0

0.220
0.273
0.340
0.373
0.464
0.510
0.560
0.654
0.865

the form of simple rotations have been chosen for con-
venience in the present study. To make frequent transits
among widely separated stationary regions, a number of
special Monte Carlo moves have to be incorporated.
From the numerical results, we confirmed that using this
simple approach, dynamics of tunneling systems in con-
densed phase can be simulated to long times.

When this method is applied to study the coherent-
incoherent transition of the spin-boson model, we found
that the coherent-incoherent boundary on the T-n plane
is well predicted by the noninteracting-blip approxima-
tion. However, the critical coupling e, at which cross-
over to incoherence occurs is a strong function of the
bath cutoff frequency co, and the temperature T.

The relaxation of the spin correlation function at high
coupling and low temperature is exponential in time.
The temperature dependence of the relaxation time con-
stant ~ assumes a power-law form due to tunneling of the

0.5 1.5

0

0.0 0.5
Kt

1.0

FIG. 14. Relaxation of the spin correlation function in the
intermediate-coupling, low-temperature region, for a =0.64 and
K/co, =0.4 at four different temperatures. The initial decay is
exponential, followed by a slowly decaying incoherent back-
ground of the power-law type.

FIG. 15. Temperature dependence of the short-time relaxa-
tion time constant in the intermediate-coupling, low-
temperature region (from Table III). K/co, =0.4. The numeri-
cal results revealed an inuerse power-law temperature depen-
dence ~- T, with the relaxation rate increasing with decreasing
temperature, having a weak exponent 5=0.4, indicated by the
straight line.
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bath. This general behavior is well understood by the
golden rule. At higher temperature and slower bath
cutoff frequency co„ the power-law behavior is overtaken
by an Arrhenius-type temperature dependence, rejecting
the onset of classical activated processes.

In the intermediate coupling region —,
' &n(1, the re-

laxation of the spin correlation functions exhibits a
short-time exponential behavior, followed by a long-time
tail of the power-law type. The short-time exponential
relaxation time constant shows a peculiar inverse temper-
ature dependence, with the relaxation rate increasing to-
wards lower temperatures. The relaxation time follows a
power-law temperature dependence, with a weak ex-
ponent.

We believe that the general method that we have
presented may provide a practical approach to solving
the "sign problem" in many other contexts besides the
spin-boson model. Whether our optimism is well found-
ed must await further research on other quantum prob-
lems. Nevertheless, the success of the method we have
described in this paper is evident in the great variety of
behaviors so accurately described in the numerical simu-
lations.
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APPENDIX A: LOCATING STATIONARY POINTS

The contour rotations described in Sec. V transforms
original integration contours along the real axes by dis-
torting them so that the new contours extend into the
complex plane, intersecting at a stationary point. In this
appendix, we will show explicitly how numerical iteration
methods can be used to locate these stationary points and
why contour distortions in the form of simple rotations
are sufficient.

A stationary point denoted by the n-component vector
s of Eq. (4.4) is given by the stationarity condition

—g(M+aoI), 's +tanh(s;)=0,
J

(A 1)

where (M +aoI) is an n Xn complex-valued matrix, and
s is in general complex. (More than one such stationary
point may exist. ) First, we assume that Re(s,. ) ))Im(s, )

for all i so that tanh(s, ) =+1. This may be used as the in-

itial guess in an iterative process

(M+ I)—( (k+() b(k)ao (A2)

with b' '—= (o.„o.2, . . . , o.„)where cr, is either +1 or —1.
for each i. The iteration proceeds by taking

g(k+1) t h (k+1)
I

Obviously, the first iteration yields

s;"')=g cr (M+aoI);. .
J

(A4)

Accordingly, our assumption that Re(s;) ))Im(s; ) is val-
id as long as the value of ao is large enough.

The iterative process defined by Eqs. (A2) and (A3)
converges to a different stationary point from every dis-
tinct initial guess b' '. All stationary points can thus be
generated by varying the numbers of +1 and —1 in b' '

and then permuting the order of their appearance. It can
easily be shown that the maximum number of distinct
stationary points is

9, =tan '(Ims;/Res;) . (A5)

The symmetry of Eq. (Al) implies that if s is a stationary
point, so is —s. Therefore the simple rotated contours
described by Eq. (A5) automatically intersect a pair of
stationary points.

To give an example of the locations of the stationary
points and the corresponding rotations defined by Eq.
(A5), consider the case of the isolated two level system at
P=2 and r=16, with P =2 discretizations on the
thermal path and Q =16 discretizations on each of the
real-time paths. One of the stationary points is obtained
by using an initial guess b' ' with all n =P +2Q elements
equal to +1. Figures 16(b) and 16(c), respectively, depict
the real and imaginary parts of the elements of the n vec-
tor s around the ring. The corresponding rotation angles

I 9; J are shown as the open diamonds on Fig. 17. Again,
because of symmetry, this set of rotated contours inter-
sect not only one, but two distinct stationary points.

A different stationary point can be obtained from an
initial guess b( ) with two kinks, as shown in Fig. 18(a).
Again, the real and imaginary parts, respectively, of the
resulting stationary point are depicted in Figs. 18(b) and
18(c). Note that now the real part of s also has two
kinks, rejecting the choice of the initial guess. The cor-
responding rotation angles are shown as the closed circles
in Fig. 17. Except for the two pairs of elements enclosing
the two kinks, the rotation angles are exactly the same as
the ones defined for our first stationary point, which has
no kinks. Based on this observation, we may conclude
that the distorted contours defined for the first stationary
point with no kinks will pass near all the stationary
points with two kinks, expect at a small number of loca-
tions.

0 k!(n —k)!

After all stationary points have been located, the next
step is to choose the appropriate contour distortions in
such a way that the new contours will pass through all
the stationary points. To parametrize one single set of
distortions that accomplishes this is obviously prohibi-
tive. The next best is to select contour distortions that
pass through or near as many stationary points as possi-
ble, while keeping the form of distortions simple. In Sec.
V, we suggest rotating the integration contours into the
complex plane for each i such that the rotation angle
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FIG. 16. Example of a stationary point obtained using the
iterative procedure described in Appendix A, starting with an
initial guess b' ' with no kink, for P =2 and Q =16. The real
and imaginary parts of the n vector s are plotted vs the index i

along the ring. The thermal path begins at i =1 and ends at
i =3. The forward time path begins at i =3 and ends at i =19.
The reverse time path begins at i = 19 and ends at i = 1, where
cyclic boundary condition applies.

I I I

101t11aootllt41

p ~ ~ ~ ~

Proceeding with the same analysis with stationary
points of four kinks, six kinks, and so on, we observe that
the rotations defined for the kinkless stationary point will
pass near all other stationary points, as long as the num-
ber of kinks is not too large. Therefore, using the con-
tour rotations defined by Eq. (A5) for the kinkless station-
ary point alone, we have accomplished the goal of choos-
ing simple distortions that make a close approach with all
other stationary points having a not too large number of
kinks.

For the isolated two-level system which is uncoupled to

FIG. 18. Same as Fig. 16, for an initial guess 1' ' with two
kinks.

the bath, we expect kink formation to be prevalent.
Therefore the simple rotation scheme described above is
likely not optimal. Indeed, our numerical results showed
that the isolated two-level system, which possesses per-
fect quantum coherence, is the most difficult case to treat.
As coupling to the bath increases, kink formation is
suppressed, due to the inhuence functional bonds. There-
fore, our simple rotation scheme will become better for
higher couplings. The numerical data also agree with
this anticipated result.

APPENDIX B: EMBEDDED DYNAMICS
WITH SWENDSON-WANG METHOD

In this appendix, the technical aspects of the
Swendson-Wang method for the sampling of Eq. (6.8) will
be discussed. The central idea is to embed discrete vari-
ables [cr„.. . , o p+pg ] which are responsible for the
critical-like behavior, into the continuous fields
[s& . . . Sp+2g ] . In a moment, we will discover that
these embedded discrete variables behaves like spins, and
they reQect whether the particle is in the left or the right
well.

First, we replace the continuous variables by the fol-
lowing:

s, =o, [s)i, (B1)

14110000114101'

I I I

5 10 15 PO P5 30

FIG. 17. The rotation angles corresponding to the stationary
points in Fig. 16 (diamonds) and Fig. 18 (circles). Note that the
two sets of rotation angles coincide at all but four points.

pd[s]Dd[s] exp g o;J, o =P[cr], —(B2)

where JJ=JJ.[~s, ~, . . . , ~sp+2&~] is a function of the

where o~ =sgn(s, ). Now consider freezing [ ~sj ~ ] at their
current values. It can easily be shown from Eqs.
(6.4)—(6.6) that the weight function pd [s]Dd [s] in this re-
duced space takes on a bilinear exponential form in the
[ o j variables
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frozen continuous fields. P[cr ] is seen to be the distribu-
tion function for a one-dimensional Ising model with ran-
dom (both ferromagnetic and antiferromagnetic) cou-
plings.

A generalized Swendsen-Wang method has been for-
mulated for Potts models [36—38]. Here we follow the de-
velopment by Edwards and Sokal [38] and specializes to
the Ising model. The probability distribution for an Ising
model with random couplings J; is

P[o,n]=g [w,,5„O+[W,,(o;,oj)—w,, ]5„}
l,J

and

(B6)

bond between spins o; and o (i.e., having n; =.1) is zero
if Wj(o, , o j)=w; (i.e., the spins o; and o are aligned
unfavorably) and 1 —w;j/W; (o;,crj ) otherwise. From
Eqs. (B3) and (B5), one can easily show that

P[tr]=Z 'exp ger, J,,o,
P[o ~n]=

(i,j):n,"=1
[ Wj(cr;, o j ) —w;j ], (B7)

=Q W; (o, , cr ), (B3)

W; (o, , o. )= .
w 5 +(1—5 )

t r J J

otherwise (antiferromagnetic),

where w;j =exp( —
2~Jj ~ ) ~ 0. Now define a conditional

probability for a set of auxiliary "bond" variables [n; j, .

P[n~o ]=+ ' 5„O
ij ij i~ J'

(B5)

such that given [cr j, the probability of laying down a

where 0~ W,. (o;, cr ) ~ 1 for every pair (i,j). We have
specialized to the case

5 +wj(1 —5 )
l J t J

if J," ~ 0 ( ferromagnetic )

(B4)

where the product is taken over those pairs (ij ) having
n; =1, so that after tracing out the I n j variables in Eq.
(B7), Eq. (B3) for P[o] remains valid. Equation (B7)
shows that for any given bond configuration [n j, the
only spin con6gurations with nonzero probability are
those having bonded spins aligned favorably. Moreover,
if a pair of spins o.; and o. that are bonded with n, =1
are Aipped together, the probability remains unchanged.

The prescribed embedded spins S wend sen-Wang
method begins by first embedding the spin variables [cr j
into the continuous fields Is j whose magnitudes are now
frozen. Then the equilibration proceeds by alternately
addressing [n j and [o j. First given the configuration
[o.j, bonds [n j are laid down between pairs of spins ac-
cording to Eq. (BS). Then given the bond configuration

[ n j, each block of bonded spins can be fiipped simultane-
ously with 50% probability without changing the proba-
bility Eq. (B7). Unconnected spin blocks are fiipped in-
dependently from each other. After this the original con-
tinuous fields [s j are restored, using the new spin vari-
ables. This completes one cycle of the Swendsen-Wang
sweep.
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