
PHYSICAL REVIEW A VOLUME 44, NUMBER 4 15 AUGUST 1991

Zero-temperature directed polymers in a random potential
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Extensive simulations of a model of directed polymers in a random potential are described. The
standard deviation AE(t) of the lowest energy E of walks of t steps varies as t, but there is a
large spread in the values quoted in the literature for u in d=2+1 and 3+1. In our model we are
able to vary a parameter —the bending energy of the polymer —that affects the apparent value of u,
but, if allowance is made for corrections to scaling, then we find that u is universal with the value
0.248 + 0.004 in d=2+1 and ur = 0.20 + 0.01 in d=3+1. The probability distribution P(E, t) is found
to scale as t ~ oo, P(E, t)dE ~ P(a)da, where a = (E —(E))/AE. The scaling function P(a) is
investigated and found to be universal, i.e., independent of such details as choice of distribution of
the random potential, etc. , and in fact identical to within our numerical accuracy to the equivalent
distribution of heights in a model of ballistic aggregation.

I. INTRODUCTION

The problem of directed polymers in random potentials
has been receiving much attention recently [1]. Besides
being one of the simplest problems involving disorder, it
is related to many other physical phenomena: the growth
of an interface in the Eden model [2], ballistic aggregation
[3—5], domain walls in the two-dimensional random bond
Ising model [6], and a randomly stirred fluid [7] obeying
Burgers's equation [8]. Despite the apparent simplicity of
these directed walks, they are not understood except in
two dimensions, where the exponents which characterize
the walk can be calculated analytically [7, 8]. Above two
dimensions, there are only numerical studies of the expo-
nents [1,5, 9—ll]. Because the walks are directed (which
means there is a special direction, the longitudinal direc-
tion, parallel to which no reverse step can be taken), it is

possible to study walks of considerable length. Despite
this, there is a wide variation among the values quoted
for the exponents by various authors (for a review see
Ref. [13]). It was this variation which prompted us to
undertake yet another numerical study of directed walks
in random potentials.

Our model contains an adjustable parameter p, which
is related to the bending energy of the polymer. We
have studied the exponents for various values of p and

for two different types of distribution of the random po-
tential. The apparent exponents seemed to vary continu-
ously with p and also depend on the choice of distribution
function for the random potential. The range of variation
of the exponents is similar to the spread in the quoted
values of the exponents in the literature. However, we
shall show that this apparent variation of the exponents
is not a real effect but is a consequence of there exist-
ing large corrections to scaling. The true exponents are
expected to be independent of p and the potential.

A transfer-matrix technique [6, 12] has been employed
to study our model of directed walks on hypercubic lat-
tices of dimension d=2, 3, and 4. Let x(t) denote the
position of the directed walk after t steps. Because of the
analogy of the directed walk problem with ballistic aggre-
gation problems, we shall usually refer to t as "time." x is
a (d —1)-dimensional vector, transverse to the longitudi-
nal direction of the directed walk. The walk is restricted
by ~x(t) —x(t+ 1)~=0 or 1, but there is a biasing or bend-
ing factor p against walks such that ~x(t) —x(t+ l)~ = 1.
There is a random site energy p(x, t) assigned to visiting
the site x. We shall only study directed walks at zero
temperature in this paper, for which we only need to
calculate the minimum energy path E(x, t), which can
be done recursively. For example, in d=2 (which we

shall write usually as d=1+1 to indicate that there is
one transverse and one longitudinal direction)

E(z, t) = min[E(z, t —1) + p(z, t —1), E(z+ 1, t —1) + p(z+ 1, t —1) + y, E(z —1, t —1) + p(z —l, t —1) + p],
(1)

where min takes the minimum value, In the transverse di-
rection the lattice has periodic boundary conditions and
is of length I . Using Eq. (1), the energy E(x, t) and the
origin of the walk, xp —xp(x, t), are recorded for each
[x(t), t].

We have employed two k&nds of random site potential.
One was a random potential drawn uniformly from the
interval (0,1) and also a Gaussian random potential with
the same variance (li12) as the uniform random poten-
tial.
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The advantage of our model is that all the exponents
z, and ~ [see Eq. (2)] that are usually studied for

directed walks can be obtained simultaneously. Thus
the root-mean-square transverse displacement Az(t) =
([x—xo(x, t)] ) ) is expected to vary with t as tr~' when
tr~' && I, . The angular brackets () mean, here and be-
low, the average over the L" values of the vector X.
We have furthermore averaged over many diA'erent real-
izations of the site energies. Each set of site energies is
referred to as a run. The average energy (E(t)) and its
standard deviation, AE(t), have also been evaluated. On
a hypercubic lattice of linear dimension I, it is expected
t, hat, [4]

+@(~)=((@ (@)) ) ~ r(~l~*) I l,x
'

g && I,*

(2)

The exponents w, y, and z are connected by the scaling
relations zu = y and y + z=2 [5, 14, 15] and numerical
simulations [5, 9—11] are consistent with these relations.
Thus, in any dimensian, there is anly one independent
exponent that has to be determined.

In dimension two, the exponents are known [7] to be
~ = 1/3 and 1/z = 2/3 from the solution of the Burgers
equation, and these values have been confirmed by exten-
sive numerical work [16]. In higher dimensions there is as
yet no general agreement as to the value of the exponents
[17—19]. There are two conjectures as to how the energy
fluctuation exponent ~ may depend on dimension, viz. ,
~ = 1/(d+ 1) [10] and ~ = 1/(2d —1) [9], based on the
numerical simulation of growth models. Recent simula-
tion results on directed polymers [11],ballistic aggrega-
tion [20, 21], and the hypercubic stacking model [22], are
in between these values, while the direct integration of
the Kardar, Parisi, and Zhang (KPZ) equation [23] [see
Eq. (6) below] shows ~ = 0.12 [24, 25] to 0.25 [26] for
d=2+1. This is the spread in the reported values for u
which prompted this paper.

In Sec. II, we give our results for the exponents ~,
z, and y, in dimension d=2, 3, and 4. We show that
the exponent cu apparently depends on y, but that this
variation can be explained away as a cansequence of large
corrections to scaling. Our final results are very close to
those reported earlier by one of us, viz. , cu —1j(d+1) [10].
Note that these exponents are the strong-coupling (or
T=O) values for the exponents. In dimensions d ) 2+ 1
there is a phase transition at a finite temperature T„
between a low-temperature phase for which (x(t) )~

and a high-temperature (weak-coupling) phase for
which (x(t) )z t where ()g is the thermal average
[27]. All our results pertain to the low-temperature or
s trong-coupling phase.

From our numerical studies, we can also calculate the
full distribution functian af the minimum energies E of
the directed walks. For each value of x(t), there is a
corresponding energy E(x, t). Its distribution P(E, t) is
found to scale, i.e. , for fixed a = (E —(E))/EE,

In Sec. III, P(a) is determined numerically for d=].+].,
2+1, and 3+1.

We have already mentioned that the directed polymer
in a random potential has strong connections with a vari-
ety of other problems. These connections are most easily
seen from the continuum version of the directed polymer
problem [1],

OZ(x, t) 1= —T Z(x, t) + p( x, t)Z( x, t), (4)

where Z(x, t) is the partition function of the directed
polymer and p(x, t) is a Gaussian random variable such
that

(p(x, t)p(x', t')) = 2Dh" '(x —x )6(t —t') . (5)

With the variable change h(x, t) = ln Z(x, t), tliis be-
comes the KPZ equation [23] for ballistic growth,

Bh(x t) 1 2 1= —T2h + —(9'h)' + p(x, t) . (6)

One thus expects that in the strong-coupling regime
the height h at time t of the growing surface will be equiv-
alent to the energy E ( In Z) in the directed walk. It is

found that Ah—:((h(z, t) —(h)) ) ~ t and the ex-
ponent u in d=l+1 is the same as for the directed walk
in a random potential. This is an example of univer-
sality, commonly observed in critical phenomena, where
quite difI'erent physical systems have the same critical
exponents. Another feature of universality is that prob-
ability distributions, appropriately scaled, should also be
universal. We shall show in Sec. III that the scaling func-
tion P(a) for our model of a directed walk is numerically
identical to the analogous function describing the height
distribution in a model [10] studied in ballistic aggrega-
tion.

The plan of the paper is as follows. In Sec. II, we
present the results of the transfer-matrix studies of our
model and give values of the exponents u, z, and y. The
apparent dependence of the exponents on the bending
energy p is removed by adding corrections to the scaling
limit. Studies of energy distributions are given in Sec. III.
A brief discussion of some outstanding points is given in
Sec. IV.

II. THE SCALINC EXPONENTS

f 0.332 6 0.003, d = 1+ 1
~ = & 0.248+ 0.004, d = 2+ 1

0.20+0.01, d = 3+1 .
(7)

The root-mean-square deviation AE(t) of the energies
has been studied to determine u, the exponent governing
the rate of growth of the energy fIuctuation. AE grows
with time and it is expected that AE —t for 1 ((
t « I'. The in(AE) lnt curves are shown in Fig. 1
for the largest systems used (1=40000 for d=l+1, 1000
for d=2+1, and 100 for d=3+1) for a Gaussian random
p otential, the ben ding energy y=0.5, and aver aged over
100 runs. From a least-squares fit to the data we get

P(E, t)dE = P(a)da for 1((t ((L (3) Notice that these values are consistent with the ~
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bly led to the spread in the values quoted for cu in the
literature. (We are supposing that difFerent models are
equivalent to ours but with a particular value for p and
choice of distribution function of site energy. ) However,
on closer inspection the problem goes away. Suppose that
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FIG. 1. Energy fluctuation AE as a function of length t
for the largest systems with Gaussian p(x, t) and p = 0.5.

0. 50

0. 25--

1/(d + 1) conjecture. (N. B. in all the figures the statisti-
cal uncertainties are smaller than the symbols indicating
t, he points. )

In Fig. 2 we have shown ln EE(t) vs lnt plots for
the uniform distribution of site energies as well as the
Gaussian distribution for various values of p in dimen-
sion d=2+1. Notice that, except for the case of the uni-
form distribution with y = 0, the curves are remarkably
straight, but with quite diferent slopes, i.e., values of

These values of u vary from 0.2 to 0.25. One would

naturally expect that as t —+ oo all the slopes would
become equal, but there are few obvious signs of this ac-
tually happening in Fig. 2. It is this apparent constant
value of the slope for each value of p which has proba-

where A and B are constants which would be expected
to depend on y and the type of random potential. In
other words, we are postulating that the leading correc-
tion to the asymptotic term (At2 ) is a constant B. We
know of no a priori reason for supposing that the largest
correction to scaling takes this form for directed polymer
problems, but it seems to fit the data well. A similar

correction has also been found to work well in describing
the intrinsic width of the surface in the Eden model [9].
In Fig. 3 we have plotted the running slope 2~,~, de-
fined by 0 1 n(A E) 2/Dl nt against t 2, which if Eq. (8)
is valid, should approach the true exponent u linearly
as t ~ oo. For a wide range of y, Fig. 3 indicates that
Eq. (8) describes the data reasonably well, and that there
is a single universal value of cu 0.25. Furthermore, Fig.
3 suggests that there exists a value of p for which the
leading correction to scaling, i.e. , B, vanishes. For this
value of 7 (- 1 for a uniform distribution of site ener-
gies), the asymptotic behavior sets in for relatively short
walks.

An alternative way to calculate cu is to study the quan-
tity

At t (( I', G(x, t) increases like IxI2x and saturates
when IxI Az(t). To obtain cu, G(L/2, t) was calculated,
which scales as t2~. Since points separated by L/2 and
small t are not correlated, this method yields potentially
accurate values for ~. For d=2+1 and p=0.5, we found

0.247 for a Gaussian random potential.
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FIG. 2. Energy fluctuation AE as a function of length

t for uniform p, (x, t) with p=0, 0.25, and 0.5, and Gaussian
p(x, t) with p = 0 and 0.5 in d=2+1. Curves are from top
to bottom: Gaussian p, (x, t) with y = 0.5(u = 0.25), uniform

p(x, t) with p = 0.5(cu = 0.24), Gaussian p, (x, t) with p =
0(~ = 0.25), uniform p(x, t) with p = 0.25(u = 0.23), and
uniform p(x, t) with p = 0(u = 0.2). The bottom one shows
slightly increasing slopes for large t.
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FIG. 3. The effective exponent 2w, g as a function of t
for uniform p, (x, t) with different p in d=2+1. Curves are
from top to bottom: p = 3, 1, 0.5, 0.25, and 0.
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Although according to the scaling relations there is
only one independent exponent, we have determined y
independently in d=2+1 in order to check the scaling
relations. The exponent y is determined by KE(t, L)
Lx for f, )) L'. For these large values of t, AE(t, L) is not
self-averaging and has to be averaged over many diA'erent

configurations (runs). From AE(t )) L', L) with L=10,
20, 40, 60, 80, 100, and 120 as in Fig. 4 we get

y=040+0.02, d=2+1.
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We did not attempt to determine g directly in higher
dimensions because of the attendant cost in computing
time.

To determine the exponent 1/z, we calculate Az(/).
In d=l+1, we get 1/z = 0.664 + 0.003 in good agree-
ment with the exact result 2/3. Our results in higher
dimensions are given in Fig. 5 with

0.62 + 0.01, d = 2+ 1
0.59 + 0.01, d = 3+ 1 .
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FIG. 5. Transverse fluctuation Dx as a function of length
t with Gaussian p, (x, t) and p = 0.5 (100 runs). In d=l+1,
0.5 is added to the ln Ax to avoid overlap with d=2+1.

Since the log-log plot in Fig. 5 curves slightly upward as
t increases in d=3+1, the above value might be a lower
bound for 1/z. If we apply the same correction to scal-
ing as exemplified in Eq. (8) to the above data (with 1/z
instead of u), we get 1/z = 0.622 6 0.006 in d=2+1 and
1/z = 0.595+0.007 in d=3+1. This 1/z exponent is rela-
tively insensitive to the choice of random site distribution
function and the bending energy p. In d=2+1, the inde-
pendently measured exponents g = 0.40, ~ = 0.25, and
1/z = 0.62 agree well with y = zu and y + z = 2.

As a final check for the values of the exponents, we
generated a random potential following the same distri-
bution as P(a) (given in Sec. III below). With variance
1/12 and y = 0.5, it yields cu 0.252 and 1/z 0.627
in d=2+1, showing eAectively the same values as found

before and indicating that the random potentials of dif-
ferent shape [Gaussian, uniform and P(a) distributions]
give the same exponents.

(E(/)) is obviously proportional to the polymer length
t as t ~ oo, but what is the correction to this leading
term? In the nonlinear growth model, such as the Eden
model, ballistic growth, and the restricted-solid-on-solid
growth model, it has been shown that the height aver-
age (h) is proportional to t with a correction of 0(t )
by a scaling argument [28]. With the assumed relation
between (E(t)) and (h(t)), one expects that
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for t « L' where Ci and C2 are constants. To test this
relation, we have calculated V(t) in d=2+1. Figure 6
shows a good agreement with the Eq. (12) with u = 0.25.
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FIG. 4. Energy fluctuation in the saturated region as a
function of system size I with uniform p(x, t) and p = 0.5 in
d=2+1. The broken line is a guide line for y = 0.4. The num-
ber of independent runs are 10000, 5000, 3000, 1500, 1200,
1000, and 800 for I.=10, 20, 40, 60, 80, 100, and 120, respec-
tively.
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FIG. 6. &(t) = d(E(t))/dt as a, function of t for uniform

p(x, t) with p = 0.5 in d=2+1. The line is the best fit V(t) =
(t i

—0.315 13 and Cz ——0.104 35).
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III. DISTRIBUTION FUNCTIONS
FOR THE ENERGY

We have calculated the probability distribution
P(a, t)da at time t so that the scaled energy a = (E-
(E))/AE is between a and a + da. Figure 7 shows a
very good data collapse for ten diA'erent times imply-
ing that P(a, t) rapidly tends to a scaling limit P(a) in-
dependent of t. The curves P(a) are asymmetric, i.e.,

P(a) g P(—a). This asymmetry appears to increase
slowly with dimension. The presence of asymmetry is
not surprising given that in the mapping to ballistic ag-
gregation [see Eq. (6)], h ln Z E, but the nonlinear
term in Eq. (6) breaks the symmetry between positive
and negative values of h.

Since P(a, t) seems to be independent of time for t «
I.', as shown by Fig. 7, the expectation value of higher
moments (m & 2) should have the following form:

Likewise, the nth cumulant should scale as C„(f) t"
(n & 2). In d=l+1, we calculate the cumulants and
moments up to fourth order. It is convenient to study
the normalized nth cumulant

(14)

which should be t independent for large t. Figure 8 shows
C3 and Fig. 9 shows C4(t) for d=l+1. One would expect
that the t ~ oo limit of Cs(t) and C4(t) would be univer-
sal, i.e., the same for all values of the bending energy y
and choice of site energy distribution function. However,
this universality is not very obvious from Fig. 8, where
C3 (t ) for the uniform distribution of random site ener-
gies approaches the asymptotic value much more slowly
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-0. 30 ~-
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FIG. 8. The normalized third cumulant C3 as a function
of length t for uniform (U) p, (x, t) with 7=0, 0.2, 1, and 2;
and Gaussian (G) p, (x, t) with 7 = 0.5 in d=l+1.

than for the case of a Gaussian distribution. This is
perhaps due to the fact that the asymptotic distribution
of energies P(E, t) is closer to a Gaussian than a uni-
form distribution. Again there is a certain value of y at
which C3 arrives at the asymptotic value more quickly.
In fact, a measurement of C3 represents a sensitive test
of whether data are in the scaling regime. We estimate
that Cs ——0.29 + 0.02 in d=l+1 for uniform p(z, t)
with p & 1 and for Gaussian p(z, t). Since the asymme-
try of P(a) grows with d, —Cs becomes larger in higher
dimensions.

We note that the standard replica calculation [29]
seems to imply that C4 = 0 for d=1+1. Figure 9 shows
that this is plainly not the case. The limitations of the
replica method [29] are well known [30] and stem from
the inappropriate interchange of the limit t ~ oo and the
replica index n ~ 0.
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FIG. 7. The probability distribution P(a, t) of minimum
energy E as a function of a = (E —(E))/DE with Gaussian
p(x, t) and 7 = 0.5 in d=l+1 and d=3+1. We collect many
millions of E(x, t) at ten different times (t=30,60, . .., and 300
in d=l+1) and they collapse to one curve very well. There is
a trend for the asymmetry of P(a) to grow with dimension.
The data for d=2+1 lie between the two curves shown, but
have been omitted to avoid overcrowding.
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FIG. 9. The normalized fourth cumulant C4 as a function
of length t for uniform p, (x, t) with p = 1 in d=l+l.
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Zhang has suggested [31], using a replica argument
that when a is large and negative P(a) e 'j j with
( = 1/(1 —u). We have tried to fit the data with

e ~- I~l—
P()=

for 1 ( ~a~ ( 5 where c and c+ are constant. We found
that ( = 1.6+ 0.2 and g+

—2.4 6 0.2 in d=1+I, (
1.5+0.2 and (+ —2.6j0.2 in d=2+I, and ( = 1.45+0.2
and (+ ——2.7+ 0.2 in d=3+1. Thus the numerical values
of ( are close to Zhang's prediction but a little larger.

We believe that the function P(a) is a universal func-

FIG. 10. The probability distribution P(a, t) of height h

as a function of a = (li —(li))/Dh in a restricted-solid-on-
solid growth model for d=l+1 (t=300, 1,=40 000 and 20 runs;
circle) and the probability distribution Pi(a, t) of Ei as a
function of a = (Ei —(Ei))/AEi in our model (t=200 and
400000 runs; triangle). The continuous line is for the P(a) of
I'ig. 7 for d=l+l.

tion. YVe have studied the distribution of heights in the
restricted solid-on-solid model [10] in d= 1+1. Defining
a = (6 —(h))/Ah, one sees from Fig. 10 that the scaling
form of the height distribution P(a) is identical to within
numerical accuracy to P(a) of Fig. 7 in our model of di-
rected polymers. Even though the height is a discrete
variable, the value of the normalized third cumulant in
the model is around —0.29, which is the same as that of
the directed polymers. This result strongly implies the
universality of the function P(a).

We have also calculated the minimum energy Ei(x =
0, ~u ——0) for polymers with no final transverse dis-
placement. The distribution function Pi(a) is shown for
d=l+I in Fig. 10, where a = (Ei —(Ei))/AEi. To within
the limits of our numerical accuracy the scaling form of
Pi seems to be identical to that of P(a). We are unable
to give any argument as to why the scaling form of these
distributions should be the same.

IV. DISCUSSION

In Secs. II and III, we showed that, if allowance is
made for corrections to scaling, then the exponents ~, y,
z and the normalized cumulants are universal, depend-
ing only on the dimension d. However, while few would
doubt the universality of the exponents, the fact that we
could provide only numerical arguments indicates what
is the major problem in the whole area of strong-coupling
disordered systems, namely the lack of a renormalization-
group treatment for such systems. There have recently
been attempts to remedy this situation [32], but it is
clear that there still remains a long way to go. Moreover,
a renormalization-group procedure for strong-coupling
fixed points would have application to a number of im-
portant fields, e.g. , spin-glass, random-field systems, as
well as to problems connected with ballistic aggregation
and directed polymers.
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