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Implication of a power-law power-spectrum for self-afFinity
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We examine numerically the self-affine scaling of time series with an imposed power-law power spec-
trum P(co) =Ceo, for different exponents 1 ~ a ~ 3, and for different sequences of phases. We use two
different criteria for testing self-affinity, a fractal dimension of the graph of the time series, and a more
sensitive test based on the scaling of moments of probability distributions. For a&2, our results suggest
that time series with a power-law spectrum are only approximately self-affine, even in the best case of
long-time series with high-dimensional, 5-function-correlated, uniformly distributed phases. Scaling
curves are most sensitive to phases with long correlation times, are weakly dependent on the shape of the
phase probability distribution, and are independent of the fracta1 dimension of the phases.

I. INTRODUCTION

bx (r) =x (t +r) —x (t) (2)

for times t and time intervals w satisfy the relation

bx(Ar) =Pox (r), (3)

where equality between random variables means that
they have identical probability distributions. The Wiener
process, a mathematical model of Brownian motion with
H =

—,', demonstrates that this definition is not an empty
one [8]. The exponent H, which lies between 0 and 1, is
called a Hurst exponent [8], Holder exponent [10], or
simply the scaling exponent in difFerent contexts. Self-
affine time series can then be classified by the parameter
H. Positive identification of self-affinity and the exponent
H in empirical time series would be a useful first step in
modeling them [11,12,3].

In several physical [1—4] and economic [5,6] examples,
random times series have been found that have an ap-
proximate power-law power spectrum of the form

P(co)=Ceo

where C is a positive constant and the exponent a is
greater than or equal to 1. These time series are quite in-
teresting, since they have no characteristic time scale and
their correlation times [7] are comparable to the duration
of the entire time series. Physical mechanisms for pro-
ducing such time series are poorly understood except in
the cases of Brownian motion (a=2) and of white noise
(a=0).

Mandelbrot has suggested that time series with a
power-law spectrum may be self one [8,9-]. This is a
particular kind of statistical self-similarity that implies
the absence of characteristic time scales by assuming
structure on all time scales. Mathematically, a time
series x (t) is self-affine if its increments

A simple corollary [13] of Eq. (3) is that a self-affine
times series x (t) must have a power-law spectrum with
exponent o.=2H + 1. This raises the important converse
question of whether the observed time series with power-
law spectra are self-affine. This question has been partial-
ly addressed in recent years by several researchers
[14—17], who have studied numerically some properties
of time series with an imposed power-law power spec-
trum and with uniformly distributed phases. According
to certain specific tests for self-affinity (discussed below in
Sec. IIC) these researchers found that time series were
approximately self-afFine for di6'erent values of the ex-
ponent a, although certain systematic errors occur.
Higuchi [17] also found that if the range of the phases did
not span the full interval [0,2~], then there were
significant deviations from self-affinity, e.g. , a length-
based fractal dimension had the wrong value. This im-
plies that a power-law spectrum is not sufficient for a time
series to be self-affine. This is not too surprising, since
the power spectrum gives knowledge of just one moment
out of an infinity of moments of the distributions in Eq.
(3).

In this paper, we examine more carefully the self-affine
properties of time series with power-law power spectra.
Our goal is to determine more quantitatively when such
time series are self-affine, so that empirical data can be
better analyzed. We address this question numerically by
investigating time series with imposed power-law spectra
for diA'erent sequences of phases, in which we vary their
probability distribution, their correlation time, and their
fractal dimension. We find that tests of self-affinity based
on fractal dimensions [1,16,17] are weakly dependent on
the dimensionality and on the probability distribution of
the phases, but deviate strongly from self-affinity if the
correlation time is long. A more careful and direct test of
self-affine scaling, based on studying average moments of
Eq. (3), reveals a further dependence on the probability
distribution (whether it is uniform or not), but not on the
fractal dimension. In particular, nonuniformly distribut-
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ed phases give poor scaling.
Our results concerning self-affinity are useful in several

ways. First, the scaling curves and relative errors given
below illustrate the quality of conclusions that may be de-
duced in an ideal case of a long-time series (of order a
million points) and a known power spectrum. Second,
our results clarify when the traditional random-phase ap-
proximation for random time series [18] is appropriate
for modeling self-affine time series. Such times series are
generally not Gaussian (although their increments may
be) and do not obey a central limit theorem. It is not ob-
vious that a statistical limit exists that is independent of
the statistical properties of the phases. Third, our calcu-
lations give an interesting result, that the fractal dimen-
sion of time series with a power-law spectrum is empiri-
cally independent of the dimensionality of the phases
used to generate those time series. We do not know of
other cases where an algebraic transformation of a se-
quence changes the fractal dimension of that sequence.

The rest of the paper is as follows. In Sec. II, we dis-
cuss details of how we generate time series with a power-
law spectrum with different phase distributions. We then
discuss different numerical tests for self-affinity and ex-
plain the two methods that we use. In Sec. III, we
present and discuss scaling curves for time series of
roughly 1000000 points, varying the exponent a in Eq.
(1) and varying the phase distributions. We also summa-
rize various systematic errors in the scaling curves. Fi-
nally, in Sec. IV, we summarize our results.

II. METHODS

A. Generating the time series

In this section, we discuss how to generate time series
with power-law power spectra and with different phase
distributions. Following an approach used by many au-
thors [14,19,15—17], we use discrete Fourier transforms
to construct time series at evenly spaced points in time
with a specified power spectrum. Other nonspectral algo-
rithms have been discussed elsewhere [9,19] but these ei-
ther have extra numerical parameters, complicating their
analysis, or do not allow an easy variation of phases. It
would be interesting at a later date, however, to repro-
duce some of our results with these other algorithms.

In our simulations, we calculate M values of a periodic
time series x (t) at equally spaced intervals of time
t; =i At, spanning a total period of time T =Mht. For a
fixed constant C and exponent e, the power spectrum Eq.
(1) is imposed through the following equation [16]:

M/2
x, =x ( t, ) = g QP( cok )dcocos( cok t,. +Pk )

k=1

for 1 ~ i ~ M, (4)

where the frequencies cuk=kAco are multiples of the
smallest discrete frequency Ace =2~/T. The M /2
phases, Pk H [0,2'], are the only source of fluctuations.
Different realizations of the phases give different realiza-
tions of the time series.

Using Eq. (4), we typically generate a matrix of 1V = 10

realizations, x,~, for 1~p~N and 1~i ~M, and then
study various statistical properties of this matrix. The M
sums in Eq. (4) are evaluated using a fast Fourier trans-
form to avoid the expensive 0 (M ) operation count of
direct evaluation. In this paper, all time series have
length M=2' =131072, so the effective total length of
the time series (including realizations) is typically about
1000000. This is larger than nearly all time series used
in physical and economic applications, although not long
enough to study certain statistical limits. Convergence
studies for longer series are difficult, since few computers
have more than a few megawords of memory.

Although the power spectrum Eq. (1) has two parame-
ters, one would expect that only the exponent a, and not
the overall magnitude C, should be important in tests of
self-affinity. An overall scaling of the power spectrum
simply multiplies the corresponding time series by a con-
stant, which should not affect its statistical properties.
Surprisingly, the numerical studies of Fox [15],especially
Fig. 7 of his paper, shows that this deduction is empiri-
cally incorrect. We do not understand this result, al-
though we would guess that it is a consequence of the
finite precision of computer arithmetic. In what follows,
we fix C =1 for all the time series, and vary a over the
range [1,3].

B. The phase distributions

In this section, we discuss the different choices of phase
distributions that are used in Eq. (4) to generate difFerent
kinds of time series with power-law spectra. In most
references to date, researchers have used a random-phase
approximation that was motivated by the classical
Fourier analysis of random signals [18]. This approxima-
tion corresponds to using a high-dimensional, uniformly
distributed, 5-function-correlated sequence of phases in
the interval [0,2m]. This choice is suspicious in view of
the now widespread knowledge that randomness in the
form of low-dimensional chaos can arise from determinis-
tic nonlinear equations with few degrees of freedom [20].
In particular, since fractal dimensions are often used to
characterize self-affine time series, one should be con-
cerned that the fractal dimension of the phases used in
Eq. (4) may play a role.

To explore the effect of different phase distributions
that might arise through nonlinear dynamics, we studied
six different methods of generating sequences of phases,
varying the probability distribution, the correlation time,
and the fractal dimension. We did not examine further
the result of Higuchi [17], who showed that a restricted
range of the phases produced non-self-affine time series;
all our distributions span the interval [0,2m. ].

Our first choice of phases was a sequence that should
approximate the random-phase approximation. We used
the C-programmed function rant of Press et al. [21] to
generate high-dimensional, uniformly distributed, ap-
proximately 5-function-correlated numbers xk in the in-
terval (0,1), We independently tested the dimensionality
of output from ran) using the Grassberger-Procaccia algo-
rithm for the correlation dimension [22,23]. This test
failed to show any finite-dimensional scaling of the out-
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put from ran1 for time series with 2' points, and for
embedding dimensions up to 12. This is consistent with
the assumption of a high-dimensional sequence, but the
actual fractal dimension of rani is not known. The phases
used in Eq. (4) were then defined by

pk =2nxk .

Using these phases, we were able to reproduce selected
results of Higuchi [17] and of Osborne and Provenzale
[16] to a relative accuracy of a few percent.

A second choice was a sequence of low-dimensional
and nonuniformly distributed numbers. We defined the
phases P/, to be 2vry/„where the one-dimensional se-
quence y/, C (0, 1) was generated by iterating the logistic
map

(6)

This chaotic sequence yk is known analytically [24] to
have the probability distribution 1/[m&y (1—y)], which
is highly nonuniform and favors values near y =0 and
near y =1. Different realizations of phases were deter-
mined by choosing different initial states yo&(0, 1) and
by iterating Eq. (6) M/2 times. We used the rant function
to choose the different initial values y0.

A third choice of phases was a low-dimensional but
uniformly distributed sequence of numbers. Starting
from a random initial condition yo & (0, 2m ), we iterated
the logistic map Eq. (6) to produce a sequence yk. We
then transformed this sequence as follows:

y/, =4 arcsin(~y/, ) .

These phases can be shown to be uniformly distributed in
the interval (0,2') and to have dimension D = 1.

For our fourth choice, we explored whether a continu-
ous distribution of phases was significant. We chose the
phases randomly from a discrete set of I( equally separat-
ed values in the interval [0,2m]. Since several prelimi-
nary tests for self-affinity were observed to be only weakly
dependent on the integer E for E )2, we set K = 3 and
chose phases randomly from the three values

P/, H I0,2'/3, 4~/3J,

Sixth, and finally, we studied whether rapidly decaying
correlations in the phases were important, since all the
above sequences of phases are approximately 5-function
correlated. We generated nonperio die phases with
infinitely long-lived correlations using the quasiperiodic
sequence

Pk =so+~[sin(k)+sin(&k )] (mod2vr),

which densely fills out the interval [0,2m ]. Different reali-
zations were determined by choosing different random
shifts so E (0,2~).

Figure 1 gives a feeling for how these different phase
distributions affect the time dynamics of Eqs. (1) and (4)
for the exponent a =2. Figure 1(a) is the case corre-
sponding to the random-phase approximation used by
most researchers. Figure 1(b) is a time series whose
phases are based on the logistic map, Eq. (6). The plot is
qualitatively different in that local Auctuations are sub-
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$=2vr(1 —&1—x ), (10)

where x is a uniformly distributed random variate in
(0,1).

that decreases linearly from a finite value at /=0 to zero
at /=2~. This choice complements Eqs. (6) and (7) by
testing the effects of a continuous, high-dimensional but
nonuniform sequence of phases. Random variates obey-
ing this distribution are given by the formula

FICx. 1. Time series with a power-law spectrum, Eq. (1), for
time step At =1, exponent a=2, and for different phase distri-
butions. The first 500 points are shown from much longer time
series of length M =131072. (a) Uniformly distributed, high-
dimensional phases from Eq. (5). (b) Nonuniformly, distributed,
low-dimensional phases obtained by iterating the logistic map,
Eq. (6). Essentially identical results are obtained for phases gen-
erated by Eq. (7). (c) Phases chosen randomly and uniformly
from a discrete set of K =3 phases, Eq. (8). (d) Phases chosen
from a high-dimensional, linearly decreasing probability distri-
bution, Eq. (10). (e) Phases chosen from the quasiperiodic se-
quence, Eq. (11).



IMPLICATION OF A POWER-LAW POWER-SPECTRUM FOR. . . 2327

stantially smaller than those observed for uniformly dis-
tributed phases. Low-dimensional but uniformly distri-
buted phases based on Eq. (7) give a plot that looks the
same as Fig. 1(b) and is not shown. Plots of time series
based on a discrete phase distribution, Fig. 1(c), and on
an asymmetric linear distribution, Fig. 1(d), are qualita-
tively similar to Fig. 1(a). Quasiperiodic phases give the
time series in Fig. 1(e), a smooth evolution interrupted ir-
regularly by cusps. This time series is quite different
from all time series generated with approximately 5-
function-correlated phases.

This comparison of time series already suggests two
useful qualitative observations. First, time series based
on Eq. (4) are sensitive to the choice of phases, as already
pointed out by Higuchi in a different context [17].
Second, the duration of temporal correlations seems to
produce the strongest changes in the time series; the con-
tinuity of the probability distribution or the shape of the
probability distributions is less important. These obser-
vations are confirmed in the more quantitative analysis
given in Sec. III below.

It is also instructive to compare these I /co time series
with some familiar and closely related stochastic time
series. Figure 2(a) is a realization of the Wiener process
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(Brownian motion), which can be approximated at con-
stant time intervals At by iterating the difference equation

x;+,=x;+&htg, (12)

The numbers g; are drawn from a normal distribution.
In the limit b, t ~0, the Wiener process is known analyti-
cally to be self-affine [10] with a I/to power spectrum,
whereas no corresponding analytical results are yet
known for Eq. (4). The qualitative similarity of Fig. 2(a)
with Figs. 1(a), 1(c), and 1(d) suggests that Eq. (4) does
approximate a self-affine series for a=2 and for certain
phase distributions. In contrast, time series based on
Gaussian white noise, Fig. 2(b), or on the Ornstein-
Uhlenbeck process Fig. 2(c), do not have a power-law
power spectrum, and look qualitatively different. The
Ornstein-Uhlenbeck process x (t) satisfies the stochastic
differential equation [25]

dx
dt

1 x+g(t),
C

(13)

where r, )0 is a constant characteristic time and g (t) is
5-function-correlated Gaussian white noise of strength g,
whose correlation function is given by

C. Diagnostics for self-affinity

(14)

Correlations decay exponentially with the characteristic
time r. One can also show that x (t) has a power spec-
trum P(co) o- 1/(1+r co ), which asymptotically ap-
proaches a power law only for large frequencies
m ))1/w, .

2--

- 2--

-3

- 6--

(c)--

In this section we discuss methods for testing self-
affinity in time series. Since the definition, Eq. (3), in-
volves equality of probability distributions, there is an
infinity of testable conditions. This implies that one can-
not establish self-affinity rigorously with a finite amount
of data; one can only indicate that a time series is self-
affine to some approximation for a certain class of tests.
Our results are based on two criteria, a length-based frac-
tal dimension [17],D, and an analysis of moments of Eq.
(3) [see Eq. (17) below].

There are now many different methods for identifying
self-affinity in time series. We brieAy review them to give
a sense of where our two tests fit in. We have already
mentioned one, that the power spectrum is a power law,
with the exponent e satisfying

100 200
Time

300 400 500 a=2H+1, (15)

FIG. 2. First 500 points of realizations of three stochastic
time series. (a) The self-affine Wiener process, approximated by

iterating Eq. (12). The continuous path limit is self-affine and

has a power-law spectrum with +=2. (b) Gaussian noise of
mean 0 and variance 1, obtained from the function gasdev [21].
(c) Realization of the Ornstein-Uhlenbeck process Eq. (13), with

damping r=1, time step b,t= 1, and noise strength g=1. The
realization was calculated by numerical integration [37] using

the initial condition x0 =0.

where H is the scaling exponent in Eq. (3). This test is an
empty one in what follows, since we are constructing the
time series to have this property. We also do not discuss
long-lived correlations between increments [9]. Although
these correlations are a dramatic prediction for self-affine
time series, we report results elsewhere that show that
numerical tests of long-lived correlations have large Auc-
tuations around their expected value, and are less useful
for quantitative work.

Several related tests arise from the nonstationarity of
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self-affine time series. Thus the variance of increments
[9] V(r) scales as r; the roughness of the time series [3]
w (r) scales as r; and the rescaled range [9] R /S scales
as (r/2) . The variable r has two different meanings in
these tests. In the first case, it represents a time interval
separating two points in time. In the second and third
cases, ~( T represents the length of a time interval [O, r]
contained in the entire observation time [0, T] over which
various averages are performed.

Other related tests arise from fractal aspects of self-
affine time series. The path of a self-affine time series in
N-dimensional Euclidean space is fractal [10],with Haus-
dorff dimension D =min(1/H, N). This fact was used by
Osborne and Provenzale [16] in their study of correlation
dimensions of time series with power-law spectra. The
graph of a self-affine time series has a fractal dimension
[8, 26],

D =2—H= 5 —a
2

(16)

with the obvious restriction 1 ~ D & 2, since a two-
dimensional plot lies in the plane. This test was used by
Burlaga and Klein [1] and by Higuchi [17]. Finally, the
zero set of a self-affine time series is fractal with Haus-
dorff dimension [27] D =1 H. To o—ur knowledge, this
test has not yet been applied to data.

Two final tests deal with the definition Eq. (3) more
directly. This equation predicts that the probability dis-
tributions of scaled time increments r hx(r) should be
identical for all time intervals ~, i.e., empirical histograms
of increments for different ~ should all collapse onto a
single curve [3]. One drawback of this diagnostic is that
it is somewhat difficult to quantify the disagreement be-
tween different probability distributions. Also, the curve
is insensitive to possible characteristic time scales.

These difficulties can be partially remedied by studying
moments of Eq. (3), which is an additional test that we
propose. Equation (3) implies the following relation:

S(X,p) = ( ~ax(X&) ~ii) '~i'=Z"( ~ax(r) ~~) i&i3, (17)

i.e. , the quantity S(A,,P) is proportional to the quantity
for arbitrary positive numbers P. (Angular brackets

again represent averages over time and over realizations. )

The case P= 1 was studied by Osborne and Provenzale
[16]. Given Eq. (17), one can test for self-affinity by plot-
ting log(S) versus log(A, ) for many values of P. The linear
parts of the plots (if they exist) should all have the same
slope H. Unlike the test for agreement of scaled probabil-
ity distributions, Eq. (17) is sensitive to the time scales ap-
pearing in the problem, as we show in the next section.

We note that there has not yet been a careful quantita-
tive or statistical analysis of the best way to establish
self-affinity for a finite amount of data, nor has there been
a systematic comparison of these different methods. A
recent exception was an experimental study of particle
transport by capillary waves [3], in which the collapse of
probability distributions to a single curve, the roughness
of time series, the variance of time series, and long-lived
correlations of increments were studied side by side.
However, these empirical results are difficult to interpret
in the absence of control tests on known self-affine data of

similar length.
For the results presented in the next section, we re-

stricted ourselves to two tests of self-affinity. First, we
used the averages of moments, Eq. (17), which we found
to be one of the more sensitive and insightful tests.
Second, we used a length-based dimension D suggested by
Higuchi [14,17] to estimate the fractal dimension of the
graph of the time series. Higuchi's algorithm estimates D
by calculating an average total length in the one-norm
(L (r) ) of all points on the graph that are separated in
time by the interval ~. This average length should then
scale as L (r) ~ ~ for self-affine curves. We chose this
method over others because it was easy to compute, and
because we could compare our calculations more readily
with Higuchi s earlier results. We do not claim that ei-
ther of the two methods is optimal either statistically or
computationally.

A serious difficulty in applying these two methods
(and, in fact, in applying most of the above methods) is
the need to identify scaling regimes on log-log plots and
to determine corresponding scaling exponents. This is
most commonly done by plotting the logarithm of some
quantity (e.g., for the dimension D, we plot the quantity
log[(L(r))] versus the logarithm of some independent
variable [here log(r)]. Theoretically, one should obtain a
straight line for all values ~. Empirically, one rarely sees
this behavior, as emphasized by Fox [15]. There is con-
siderable ambiguity in identifying when and where a scal-
ing law holds.

To identify more clearly where scaling regimes occur,
we plot the local slope of the log-log plot versus the loga-
rithm of the independent variable. This local slope
should be a horizontal straight line where a power-law re-
lation holds, and is visually superior to log-log plots in
evaluating the range of a scaling regime. We illustrate
this for estimating D in Fig. 3. The log-log plots in part
(a) look reasonably linear to the eye, but the local-slope
plots in part (b) show systematic errors; the local slope is
not constant, but monotonically changes over most of the
range in time. Only the data for a =2 give a good scaling
regime, with an average value equal to the expected
theoretical value of D =1.5.

These and other plots reported below were made by
evaluating the various statistics for about 40 values of ~
that were geometrically spaced between the smallest and
largest time intervals; this gives equally spaced points on
the log-log plots. Local slopes were obtained by simple
finite differences of nearest pairs of points. We found this
to be a fairly good estimator of the local slope, e.g. ,
smoothing the plot with moving averages or with least-
squares fitting a spline did not give substantially better or
worse results.

We conclude this section with a technical comment
concerning the use of correlation dimensions [28] to
study the dimension of paths of self-affine time series.
Osborne and Provenzale [16] attracted considerable in-
terest when they observed that a stochastic time series,
generated using Eqs. (1) and (4) and the random-phase
approximation Eq. (5), could have a J7nite correlation di-
mension. Unlike the capacity, Hausdorff, and other
geometric dimensions [10], the correlation dimension is
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based on invariant measures of bounded finite-
dimensional deterministic fiows [29]. For such fiows, the
correlation dimension gives a useful measure of their
complexity as the approximate minimum number of in-
dependent modes needed to generate the observed time
series.

Unfortunately, correlation dimensions cannot be mean-
ingfully calculated for time series with power-law spectra.
Such time series are nonstationary (e.g., variances in-
crease with time) and produce unbounded paths in phase
space, so that orbits recur (if at all) only finitely many
times. This implies that invariant measures do not exist
and that the formal mathematical limit for the correla-
tion dimension [22]

does not exist. Here C(N, e) is the average number of
pairs of X points in phase space that are closer than e in
some norm. The points in phase space are obtained by
embedding the time series directly with time delays [22]
or by using realizations as different coordinates [16].

For nonstationary time series, the correlation dimen-
sion determines the scaling only of points in phase space
that are close in time, rather than between recurring
points that are far apart in time. The scaling information
is now similar to the Hausdorff dimension or length-
based dimensions, and cannot be interpreted as an esti-
mate of dynamical complexity. Given this fact, there is
little motivation to use a correlation dimension for non-
stationary time series with long correlation times, since it
is much more expensive to compute [23] (O[M log(M)]
instead of O(M) operations for graph-based dimensions)
and much less accurate for scaling exponents H «1, the
case of high-dimensional paths. It might be more fruitful
to calculate the correlation dimension of increments in-
stead, since these are often more stationary than the orig-
inal time series.

This point has been made especially clearly by Theiler
[30], who has recommended that correlation dimension
algorithms discard pairs of points that are closer in time
than about the correlation time. For approximately self-
affine time series, whose correlation times are comparable
to the length of the entire series, most points are discard-
ed and the calculation cannot be completed. Further
difficulties in estimating correlation dimensions of non-
stationary time series have been discussed by Theiler else-
where [31]. There he analytically determines the various
scaling regimes of the correlation dimension for time
series with Gaussian increments as a function of the
length of the time series and as a function of low- and
high-frequency cutoffs to a power-law power spectrum.
He finds that all finite-dimensional scaling regimes are ar-
tifacts arising from the finite length of the time series.

III. RESULTS AND DISCUSSION

1.2--
M ~~— ~g~ A. Length-based dimension

1.0
0

log, (T)

FICx. 3. Illustration of the advantages of plotting the local
slope (b) of a scaling relation, compared to a direct log-log plot
(a). The results are for the length-based dimension D proposed
by Higuchi [14]. Time series of length M =131072 were calcu-
lated with power-law spectra for exponents a=1.25, 2.0, and
2.75 using the random-phase approximation Eq. (5). Part (a)
shows the log-log plot of the average length in the one norm,
(Ll~)), of the graph of the time series for points separated in
time by ~. This gives three approximately straight lines. Part
(b) shows the corresponding local slopes as estimated by finite
differences between neighboring points. The three horizontal
lines indicate the exact answers —D=1.875, 1.5, and 1.125,
respectively —predicted by Eq. (16). The average values of the
local slope over the central two-thirds give the empirical values
D =1.85, 1.50, and 1.16, respectively, which have errors of or-
der a few percent.

We begin by discussing the results of analyzing the
length-based dimension D for time series with power-law
spectra, and with different phase distributions. Figure 4
summarizes the scaling curves for the case +=2, which
turns out to be fairly representative of other curves ob-
tained for different values of o., with 1 & o; & 3. Figure
4(a) was obtained by using the random-phase approxima-
tion Eq. (5). There is fairly accurate scaling over most of
the time range, with significant deviations only occurring
at very short times (r ( 10) and at very long times
(r )3500). Deviations at the longest times r are expected
in all cases because the averages used to obtain the aver-
age length ( L (r ) ) become noisier and noisier, with fewer
and fewer terms included as ~ approaches half the length
of the time series.

Figure 4(b) is the case of uniformly distributed low-
dimensional (D =1) phases. The scaling curve is essen-
tially identical to the high-dimensional case, suggesting
that length-based dimensions are not sensitive to the
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dimensionality of the phase distribution. Figure 4(c) is a
control test, obtained by analyzing an approximation to
the Wiener process, Eq. (12). This curve indicates accu-
rate scaling down to the smallest time scales, which is
substantially different from curves (a) and (b). At the
longest time scales, the same curve shows somewhat
larger Iluctuations compared to (a) and (b), but we are not
sure if this is a significant effect. Figure 4(d) was obtained
from Eq. (4) for quasiperiodic phases, Eq. (11). There is
now a clear absence of scaling; the local slope smoothly
increases about 1.1 to about 1.7 over the entire time inter-
val. The average value of the local slope is substantially
smaller than the expected theoretical value of D =1.5 for
a=2. From this and other curves corresponding to other
values of a (not shown), we deduce that long-lived corre-
lations in the phases do not lead to self-a%ne scaling,
even when a power-law power spectrum is imposed.

Because of the short- and long-time-scale errors sug-
gested by Fig. 4, we estimate numerical values of the di-
mension D' by averaging the local slope only over the
middle range 0.3X5 ~log, o(~) ~0.7X5. This typically
gives values that diff'er by about 10'l/o from values ob-
tained by using the entire range of data.

We summarize the results of many calculations similar

2.0

1.8—

1.6—

1.4—

1.2—

1,0

to Fig. 4 in Fig. 5. This plot gives the relative error
(O' D—)/D between the numerically estimated dimen-
sion D' and the analytical dimension that is predicted for
truly self-affin time series, given by Eq. (16). The rela-
tive error is plotted as a function of the exponent o. for
each of the phase distributions discussed in Sec. II B. For
phases that are approximately 6-function correlated, the
relative errors are nearly identical, as indicated by the top
five curves in the plot. This suggests that length-based
fractal dimensions are insensitive to the probability distri-
bution (continuous, discrete, uniform, or nonuniform) or
its fractal dimension (1 or ~ ). As already pointed out in
our discussion of Fig. 4(d), one obtains poor scaling for
phases with long correlation times. Nevertheless, we
have plotted the relative error for this case, estimating
the dimension D' by an average over all time intervals ~.
The relative error is now quite large (the curve labeled by
circles in Fig. 5) and is suggestive of what may be ob-
served for other non-self-aSne time series.

We have repeated many of these calculations using the
correlation dimension [22] of paths of realizations in

sufficiently high™dimensional phase spaces. The relative
error between the empirical correlation dimension v' and
the predicted correlation dimension v=min(l/H, X) is
qualitatively similar to Fig. 5, although with much larger
error bars. In particular, the correlation dimension is
also weakly dependent on all details of the phases except
for their correlation time. This is consistent with our dis-
cussion at the end of Sec. II C, where we pointed out that
the correlation dimension efFectively reduces to a
geometric dimension for dynamics that lack a bounded
invariant measure.
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FIG. 4. Local slopes of scaling plots for the length-based di-
mension [17] obtained from time series of length M =131072
points and time steps ht = 1. (a) Power-law spectrum with o.=2
and high-dimensional uniformly distributed phases, Eq. (5). (b)
Power-law spectrum with o.=2 and low-dimensional uniformly
distributed phases, Eq. (7); an identical curve is obtained for the
nonuniformly distributed phases, Eq. (6). (c) Realization of the
Wiener process. (d) Power-law spectrum with a=2 and quasi-
periodic phases, Eq. (11).

FIG. 5. Plot of relative errors in the dimension D vs the
power-law exponent a, for the six choices of phase distributions
of Sec. IIB. All data were based on time series of length
M = 131072 and were generated with Eq. (4). For approximate-
ly 6-function-correlated phases (the top five curves), the relative
error is of order 10% and is approximately symmetric around
a=2. Time series generated with quasiperiodic phases gave
poor scaling results, with large systematic errors (the lowest
curve).
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B. Moments of probability distributions

We now turn to a discussion of results of analyzing mo-
ments, Eq. (17), for time series with power-law power
spectra, and with different phase distributions. We first
study thoroughly the scaling curves for 1/co spectra in2

Figs. 6 and 7, since Wiener noise provides an important
and independent control test. Later figures then show il-
lustrative results for other values of a in Fig. 8, and show
how the relative error in the scaling exponent H varies
with the exponent a, Fig. 9.

In these figures, scaling regimes and exponents are
identified by plotting the local slopes of log[S(r, P)]
versus log(~) [see Eq. (17)] for the first five integer mo-
ments, P=1 through /3=5. For self-affine time series,
these slopes should be independent of both P and of ~,
giving the same value H, the scaling exponent in Eq. (3).
Further, this average value H should be related to the ex-
ponent a of the power-law power spectrum through Eq.
(15), i.e., H =(a —1)/2.

As a useful control test, we first studied numerical
Wiener noise, Eq. (12), which should approximate a true

1.0

self-affine series with H= —,'. We see in Fig. 6(a) that the
five different moments collapse onto the correct constant
value H =—' for moderate times (r & 100), but start to os-

2

ciliate and separate for longer times, of order half the
length of the entire time series. This behavior is quite
similar to the corresponding dimension-based local-slope
curve in Fig. 4(c). The numerical algorithm Eq. (12) evi-

dently does not capture the longer time-scale structure of
Wiener noise correctly.

Figure 6(b) gives the corresponding local-slope curves
for time series with a prescribed I/co spectrum in the2

random-phase approximation, Eq. (5). The self-affine
scaling is not as satisfactory at small time scales when
compared to Wiener noise, but is substantially improved
at the longer time scales. For the case 0.=2, we conclude
that Eq. (4) with phases Eq. (5) produces a good approxi-
mation to a self-afFine curve. This, unfortunately, does
not remain the case for other values of a, especially for
values near e = 1 or a =3, as shown later in Fig. 8.

Figure 6(c) corresponds to low-dimensional nonuni-
formly distributed phases, obtained by iterating the logis-
tic map, Eq. (6). Unlike the corresponding dimension
plot Fig. 4(b), we now see strong evidence of non-self-
affine scaling. The local slopes for higher moments are

0.8—

0.6—

0.4—

0,2—

0.0

1.0
0.8—

0.6 —~
0.4—

0.2—

0.0

(a)

1.0

0.8—

0.2—

0.0

aJaJ.0

1.0
0.8—

0.6—
0.4—

0.2—

0.0

'~

i ~

Ii

J) 1 I J ~ iJ! J: I

(b)

0.8—

0.4—

0.2—

I
r
J

~ ~

(c)
1.0

0,8—

0.6—
0.4—

0.2—

0.0

A~
~

~ ~
~i ~ ~riJ

J

~a
~ rr .J'

(c)

0.0

lag1() ( 7')
1.0

0.8—

Am aJ ~

, ar ~'a+i~~FIG. 6. Plots of the local slope of scaling curves obtained

from Eq. (17) for the first five integer moments P= 1 —5. For
self-affine time series, these slopes should all have the same con-
stant value H. In each panel, the solid curve is p= 1 and the

straight horizontal line is the theoretical value 0=
2

for a==2.
These curves were calculated for time series with power-law

power spectra with exponent n =2, of length 131072, for
different phase distributions. The averages in Eq. (17) were car-
ried out over time and over ten realizations. (a) Wiener process,
Eq. (12). (b) High-dimensional, uniformly distributed phases,

Eq. {5). (c) Low-dimensional (D = 1), nonuniformly distributed

phases, Eq. (6).
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FIG. 7. Continuation of Fig. 6, showing the local slopes of
Eq. (17) for time series with o.=2 and di6'erent phase distribu-
tions. (a) Discrete uniform phase distribution, Eq. (8). {b)
Linearly distributed high-dimensional phases, Eq. (9). (c) Quasi-
periodic phases, Eq. (11). (d) Uniformly distributed low-

dimensional (D =1)phases, Eq. (7).
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Ornstein-Uhlenbeck process, Eq. (13), for which there is a
characteristic time scale in the correlation function. The
power spectrum of this process is asymptotically a
power-law (I/co ) for large frequencies co))1/r, . High-
frequency power-law behavior in power spectra is, in fact,
a general property of noisy Aows and of some experimen-
tal data [32,33]. Such behavior cannot occur for chaotic
solutions of finite-dimensional smooth bounded Aows. In
this case, power spectra decay exponentially for
sufficiently high frequencies [34]. Crossover regimes for
deterministic equations have been observed from power-
law to exponential decay [35], which complicates the
identification of stochastic systems with asymptotic
power laws in the spectrum.

The question then arises whether the high-frequency
part of the Ornstein-Uhlenbeck process is approximately
self-affine when this power-law regime is attained. Figure
10 shows the local slopes for dimension and self-affine
scaling tests for the Ornstein-Uhlenbeck process in (a)
and (b), respectively. Both curves indicate a crossover re-
gime, from approximately self-affine scaling with D =1.5
and H =

—,
' at small time scales, to non-self-affine scaling

for larger times. The values D =2 and H =0 are typical
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FIG. 11. Local slope of scaling curves for P= 1 —5, obtained
from Eq. (17) for the Ornstein-Uhlenbeck process. The same
parameters are used as given in Fig. 10, except a much smaller
time step of At = 10 ' was used.
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of high-dimensional white noise, which is what would be
expected for times long compared to the correlation time
~ =1.

C

Figure 11 explores more carefully the high-frequency
(short-time scale) part of the Ornstein-Uhlenbeck process.
The curves are rather similar to those already calculated
for the Wiener process in Fig. 6(a) except for the shift in
time scale. This suggests that the high-frequency part of
the time series is accurately self-affine for those frequen-
cies for which the power spectrum is approximately a
power law. We conjecture that this conclusion holds
more generally, since the smooth part of the Row is
effectively constant on such short time scales.

0.6 IV. CONCLUSIONS

e y y y ~ ~ ~

0

0.3—

0.2—

0.1—

0.0

-0. 1 1

-2

log«(T)

s ~ ~ O
~ ~ e

FICs. 10. Local slope of scaling curves for Higuchi dimen-
sion, part (a), and P= 1 moment of Eq. (17), part (b), for ten
131072-point realizations of the Ornstein-Uhlenbeck process,
Eq. (13). The time series were calculated by numerical integra-
tion [37] with step size ht=0. 004, damping r= 1, and noise
strength g= l. The local slopes have been smoothed with a
three-point moving average to remove high-frequency ripple.

In this paper, we have analyzed numerically the self-
affine properties of time series with an imposed power-
law power spectrum. Extending the results of earlier in-
vestigators [14—17], we have studied the consequences of
different choices of phases by varying their correlation
times, their probability distributions, and their fractal di-
mensions. Using two criteria for self-affinity, a length-
based fractal dimension of the graph [14,17] and a new
test proposed by us [Eq. (17)], we found that time series
are accurately self-affine for the special case e =2, provid-
ed the phases are approximately 5-function correlated.
For values a%2, time series were much less accurately
self-affine, e.g. , there were systematic deviations in the lo-
cal slope from the expected straight line, and the average
local slope did not agree with the theoretical values.

We conclude that a power-law spectrum is generally
not sufficient to give self-affine scaling. While not impor-
tant for graphics applications [19], this observation has
useful implications for the analysis of empirical physics
or economics data, for which power-law spectra are often
observed. Our results show quantitatively the quality of



2334 N. P. GREIS AND H. S. GREENSIDE

scaling curves for diFerent values of o., and are summa-
rized in Figs. 5 and 9.

A second important result in this paper was the intro-
duction of a method for studying self-affinity in time
series, based on the moments of probability distributions
Eq. (17). We have shown that this test is more subtle
than other tests discussed in Sec. IIC, especially tests
based on the fractal dimension of the graph. Fractal di-
mensions give similar results for all phases that are 6-
function correlated, while the test based on moments dis-
tinguishes between phases that have uniform and nonuni-
form probability distributions. Results in Sec. III C show
that our method is also sensitive to time scales in the
problem, and so complements the test of studying the col-
lapse of diFerent probability distributions to a single
curve [3]. It would be interesting at this point to apply
this test to various data [6,3,4] and to compare the results
with earlier studies.

Several important theoretical problems remain. One is
to explain the slow (logarithmic?) convergence of time
series with power-law power spectra towards self-affine
behavior [17] for a&2 as the length of the time series is

increased. Does a statistical limit exist that is indepen-
dent of the properties of the phase distribution? A
second problem is to find more accurate algorithms for
self-affine time series than those generated by Eq. (4) in
the random-phase approximation. It will probably be
fruitful to return to Mandelbrot's more direct approxima-
tion of fractional Brownian motion [36,9] and to analyze
the resulting time series using the methods proposed
herein. A final problem is to find physical mechanisms
that generate the approximately self-affine time series ob-
served in Quid transport [3] and in granular Row [4].

ACKNO%'LED GMENTS

%'e would like to thank William Baxter, Robert Behr-
inger, James Theiler, and Robert Wolpert for useful dis-
cussions. This work was supported by a summer research
grant of the Business Foundation of North Carolina, by
National Science Foundation (NSF) Grants No. ASC-
8820327, and No. DMS-8804592, and by an allotment of
CRAY CPU time at the North Carolina Supercomputing
Center.

Electronic address: ugreis@ unc. bitnet.
~Electronic address: hsg N cs.duke. edu.

[1]L. F. Burlaga and L. W. Klein, J. Geophys. Res. 91, 347
(1986).

[2] A. R. Osborne and A. D. Kirwan, Physica D 23, 75 {1986).
[3] R. Ramshankar, D. Berlin, and J. P. Gollub, Phys. Fluids

A 2, 1955 (1990).
[4] G. William Baxter, Ph. D. thesis, Duke University,

Department of Physics, 1990.
[5] C. W. J. Granger, Econometrica 34, 150 (1966).
[6] Wentian Li, Int. J. Bifurcation Chaos (to be published).
[7] H. Tennekes and J. L. Lumley, 3 First Course in Tur

bulence (MIT, Cambridge, 1972).
[8] B. B. Mandelbrot, The Fractai Geometry of Nature (Free-

man, New York, 1983).
[9] Jens Feder, Fractals (Plenum, New York, 1988).

[10]S. James Taylor, Math. Proc. Cambridge Philos. Soc. 100,
383 (1986).

[11]J. B. Carlin and A. P. Dempster, J. Am. Stat. Association
84, 6 (1989).

[12] Philip Mirowski, South. Econ. J. 57, 289 (1990).
[13]S. Panchev, Random Functions and Turbulence (Per-

gamon, Oxford, 1971).
[14]T. Higuchi, Physica D 31, 277 (1988).
[15]Christopher G. Fox, Pure Appl. Geophys. 131,211 (1989).
[16]A. R. Osborne and A. Provenzale, Physica D 35, 357

(1989).
[17]T. Higuchi, Physica D 46, 254 (1990).
[18]S. O. Rice, in Noise and Stochastic Processes, edited by

Nelson Wax (Dover, New York, 1954), pp. 133—294.
[19] The Science of Fractal Images, edited by Heinz-Otto Peit-

gen and Dietmar Saupe (Springer-Verlag, New York,
1988).

[20] Pierre Berge, Yves Pomeau, and Christian Vidal, Order
within Chaos (Wiley, New York, 1984).

[21]W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes in C (Cambridge University,
New York, 1988).

[22] P. Grassberger and I. Procaccia, Physics D 9, 189 (1983).
[23] James Theiler, Phys. Rev. A 36, 4456 (1987).
[24] A. J. Lichtenberg and M. A. Lieberman, Regular and Sto

chastic Motion, Vol. 38 of Applied Mathematical Sciences
(Springer-Verlag, New York, 1983).

[25] N. Wax, apoise and Stochastic Processes (Dover, New York,
1954).

[26] B.B.Mandelbrot, Phys. Scripta 32, 257 (1985).
[27] Richard F. Voss, Physica D 3S, 362 (1989).
[28] P. Grassberger, Phys. Lett. 107A, 101 (1985).
[29] J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617

(1985).
[30] James Theiler, Phys. Rev. A 34, 2427 (1986).
[31]James Theiler, Phys. Lett. A 155, 480 {1991).
[32] H. S. Greenside, G. Ahlers, P. C. Hohenberg, and R. W.

Walden, Physica D 5, 322 (1982).
[33]D. Sigeti and W. Horsthemke, Phys. Rev. A 35, 2276

(1987).
[34] Uriel Frisch and Rudolf Morf, Phys. Rev. A 23, 2673

(1981).
[35] Paul Manneville, Phys. Lett. A 84, 129 (1981).
[36] B.B.Mandelbrot, Water Resour. Res. 7, 543 (1971).
[37] H. S. Greenside and E. Helfand, Bell Syst. Tech. J. 60,

1927 (1981).


