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We present an extension of a simple configuration-interaction procedure to the photoionization of
two-electron atoms. By using a finite basis set constructed from B splines, this nonvariational approach
does not rely on any optimum procedure, which is often required in other more elaborate configuration-
interaction calculations. The quantitative accuracy of this procedure is tested by examining the photo-
ionization cross sections at photon energies immediately above the first ionization threshold, as well as
near the doubly excited 2s2p 'P resonance structure. The S- and P-wave phase shifts for the electron-
hydrogen scattering calculated with this procedure are also presented. The excellent agreement between
the present calculation and other existing theoretical and experimental results, in addition to the exten-
sive recent applications of this procedure to the bound excited states of divalent atoms, has further
demonstrated the effectiveness of this simple configuration-interaction procedure.

I. INTRODUCTION

A complete and detailed characterization of the
asymptotically oscillating continuum wave functions is
not necessarily required in the determination of transition
amplitudes for transitions from a bound state confined in
a finite volume to a continuum extending to infinity. The
transition matrix can often be evaluated accurately if the
short-range interaction can be represented adequately by
an effective continuum wave function, which is a linear
combination of a discretized finite basis confined in a
finite volume and normalized with proper boundary con-
dition consistent with its asymptotic behavior at a large
distance. An earlier attempt by Heller, Reinhardt, and
Yamani [1] has shown that the matrix constructed in an
L? integrable basis can represent effectively an operator
with a continuous spectrum. Subsequent applications of
the J-matrix method [2,3] have also led to successful
theoretical results for the electron-hydrogen scattering
and photoejection of one and two electrons from H™.
The positions and widths of the open-channel doubly ex-
cited autoionization states embedded in the continuum
(i.e., Feshbach resonances) can also be estimated by a ro-
tated complex-coordinate method using a straightforward
configuration-interaction (CI) procedure with a simple L2
finite basis [4]. The theoretical positions and widths of
the Feshbach resonances of two-electron atoms evaluated
with a more elaborate Hylleraas functions in a complex-
coordinate calculation [5,6] are often considered as reli-
able as any of the most accurate theoretical calculation
[7-9] involving direct determination of the scattering
phase shifts.

More recently, Moccia and Spizzo [10,11] have also
successfully developed an L? calculational procedure to
represent the continuum spectrum by employing a set of
elaborate one-electron orbitals including a modified
Slater-type orbital (STO) with an explicit cos(kr) depen-
dence. By extending the calculation to a fairly large

4

sphere of radius R, Moccia and Spizzo are able to link
directly the calculated wave function at a distance r
smaller than R to the true continuum wave function.
The resonance structure in the continuum is then deter-
mined by the energy variation of the calculated scattering
phase shifts and the normalization constants moving
across a doubly excited resonant state. An attempt has
also been made by Martin and co-workers [12,13] to
determine the phase shifts of continuum functions by us-
ing the usual STO basis in a smaller sphere with the help
of an elaborate fitting procedure. By modifying an earlier
multiconfiguration Hartree-Fock (MCHF) approach for
the continuum [14] with an L? spline-based procedure,
Froese Fischer and Idrees [15] have extended successfully
the MCHF approach to the study of resonance structure
for the photoionization of He.

The purpose of this paper is to demonstrate that a sim-
ple nonvariational CI procedure, which has been applied
extensively with success to the bound excited states of di-
valent atoms in a frozen-core Hartree-Fock (FCHF) ap-
proximation [16-18], can also be extended to the contin-
uum above the ionization threshold. The effectiveness of
this approach to represent the two-electron Coulomb in-
teraction between positive-energy orbitals is shown in our
recent application to the H™ atom [19]. Briefly, in this
CI approach, a nearly complete set of discretized one-
electron radial hydrogenic functions Y,,; corresponding to
orbital angular momentum [/ and nuclear charge Z,
defined by

11U+1)
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is employed in the construction of the L? basis in calcu-
lating the Hamiltonian matrix for the two-electron atom.
The solutions ., of Eq. (1) are expanded in terms of a set

of B splines defined between » =0 and r =R [16,20,21].
By diagonalizing the Hamiltonian matrix corresponding
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to a total spin .S and a total orbital angular momentum L
in the LS coupling, an energy eigenstate of total energy
E, identified by a set of quantum numbers
A={S,L,M ,M,}, is represented by a state wave func-
tion ®%, which is a linear combination of orthogonal
two-electron configuration functions constructed from
both negative- and positive-energy ;.

In Sec. II, we first introduce the use of a sinelike knot
sequence for the B-spline set, which helps to extend the
applicability of this simple CI procedure to the continu-
um spectrum. The scattering phase shifts for the outgo-
ing electron will be determined directly from the calculat-
ed wave functions confined in a finite volume. The posi-
tion and width of the resonance structure in the continu-
um can then be determined by the energy variation of the
phase shifts. A simple procedure will be introduced to
calculate the photoionization cross section from a bound
state. In Sec. III, we present the numerical results of this
theoretical procedure including scattering phase shifts,
the positions and widths of the resonance structures, and
the photoionization cross sections for H™ and He atoms.

II. THEORETICAL PROCEDURE

In a bound-state calculation, the set of B splines of or-
der K and total number n is often defined with an ex-
ponentially increasing knot sequence [16,21]. The choice
of such a knot sequence satisfies the need for a more
densely populated set of B splines near the nucleus in or-
der to accommodate the fast raising inner s orbitals at
small . On the other hand, a more evenly populated set
of B splines at larger 7 is required if the oscillating behav-
ior of the positive-energy orbitals at large distance can
also be properly represented. As a result, for transitions
involving both a bound state and a continuum, we have
chosen a sinelike knot sequence d,, defined by

y
T

2

(v—1)Ah

d,=R sin R

v=12,...,n—K+2, (2)

where Ah=R /(n —K +1). The distribution of knot
points can be adjusted by changing the position of the
first nonzero knot d,, which in turn determines the value
of y according to Eq. (2). By employing such a knot se-
quence, we are able to limit the size of the B-spline set to
a modest n (e.g., n =70-90, K =7-9 for R =120a, in
our H™ calculation), which is sufficiently large to take
into account adequately both the small- and large-r be-
havior of the orbital functions.

Similar to our earlier bound state calculation
[16,18,19], the one-electron radial hydrogenic functions
X, are subject to the boundary conditions

Xu(r=0)=x,,(r =R)=0. (3)

In the present calculation, by applying the same numeri-
cal procedure presented earlier [16,18,19] with the knot
sequence defined by Eq. (2), all positive-energy radial
functions, with energy eigenvalues up to few Ry, exhibit
an oscillating behavior identical to the analytical

Coulomb function at the same energy. The phase shifts
determined from our numerical one-electron radial func-
tions Y,, confined in a sphere of radius R, agree with the
analytical Coulomb phase shift 6. to at least seven
figures. For the positive-energy orbitals, with energy €,
up to few Ry, only those with momentum k., =(2¢,,)!"?
that satisfy the boundary condition given by Eq. (3), i.e.,

kR +-Zn2k ,R)— T +5.=mm @
k., 2

appear in the nearly complete set of discretized radial hy-

drogenic functions ;.

The Hamiltonian matrix is constructed from a basis set
consisting of a number of two-electron configuration
series pll’ [17-19]. Each pll’ series includes a set of LS-
coupled two-electron Slater determinant wave functions
1/};[1\11/1' with one of the electrons (e.g., the inner electron)
occupying a fixed hydrogenic orbital u/ and the other /'
electron extended from negative to positive energy €,
over an entire set of eigenfunctions Y, of Eq. (1). After
diagonalizing the Hamiltonian, the state wave function
for a state |E > corresponding to a total energy E is
given by

A — =A
(DE—E :E,[.LH' 5 (5)
pll’

where the configuration series function

2 =3 CAulL VI, ©

represents the contribution to the state wave function
from the wpll’ configuration series. A complete set of
coefficients C(ul,vl') forms the eigenvector of the state
|E >.

At energy above the first ionization threshold of a
two-electron atom, the spectrum is dominated by a series
of doubly excited autoionization states embedded in a sin-
gle continuum open-channel 1sl/. The state wave function
@4 can be separated into two parts, i.e.,

A —=A =A
CI)E T —E,1sl + 2 =E,polgl’ > (7
Kolo!

where the first term represents the ionization channel and
the second term denotes the combined contribution from
doubly excited configurations from all closed channels.
The kinetic energy € and the momentum k of the ionized
electron are given by

e=1lk*=E+E,, (8)

where E, is the ionization energy of the remaining ls
electron.

Asymptotically, the correct wave function of an outgo-
ing I electron with momentum k, evaluated in a direct
scattering calculation, is given by the expression

172
2 sin
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kr+d 1n(2kr)—12’1+sc+51

asr—o , (9)
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where ¢ is the effective nuclear charge experienced by the
outgoing electron and §; is the scattering phase shift due
to the short-range interaction. The scattering phase shift
can be extracted from the present calculation by compar-
ing the configuration series function Eg,lsl for the 1sl
open channel with the asymptotic expression given by
Eq. (9). First, the configuration series function Z3 ,; can
be expressed in a form identical to the Slater determinant
function 1/]?5551’ where one of the radial hydrogenic func-

tions is replaced by a one-particle radial function
Ea(N=T CH(1s,v)x,,(r) . (10)
Second, the numerical function &,(7) is matched at a

finite » against an asymptotic expression employed by
Burgess, i.e., [22],

172

Eq(r)—> 4 ﬁ sin[¢(r)+8;] as r—>R , (11)

where § and ¢ are functions of 7. As r— o, {—k and
¢— kr+%1n(2kr)—121r—+sc (12)

An accurate representation of the continuum by a
discretized finite basis set, of course, depends critically on
its ability to match the calculated radial function against
the correct asymptotic expression over a large portion of
r with a constant amplitude 4. In Fig. 1, we present the
calculated radial functions &,(7) at two different momen-
ta in the lss open channel for the electron-hydrogen
scattering below the n =2 threshold. The matching be-
tween our calculated &, (7) and Eq. (11) is nearly perfect.
The scattering phase shift §, can be determined easily
without the help from any elaborate fitting procedure
such as the one proposed by Martin and Salin [12]. As
expected, the numerically determined amplitude A (or
the ‘“normalization constant” [10—13]) equals approxi-
mately (2p,,; /R)'/?, where

Prsi=2 \Cé\(1s,vl)|2=(¢’11\s§dl¢{\s§d)

={(&,(N)E4(r) (13)

is the probability density due to the ls/ configuration
series. We note that for a two-electron atom, the effective
nuclear charge g equals Z —1 even when &,(7) is, in fact,
a sum of one-particle hydrogenic functions which are
subject to a nuclear charge of Z asymptotically. At ener-
gy near the Feshbach resonances below the n =2 thresh-
old, the phase shift increases rapidly by a total of 7. Con-
sequently, a set of closely populated energy eigenvalues is
required to describe the detail energy variation of the
scattering phase shift across the resonance. This is car-
ried out by repeating our calculations at slightly varied
values of R. The energy E, and the width I" of the reso-
nance are determined by a least-squares fit of the phase
shifts to the usual expression [23, 24]

L, T2
E,—E

r

2
8,(E)=3 a;E'+tan (14)
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FIG. 1. The calculated one-particle functions &(r) represent-
ing the H™ lss configuration series at momenta k =0.10949
and 0.404 95.

The cross sections (in unit of a3) for the photoioniza-
tion from an initial state [I > are given by

o=%r’ag(E,)|Dg*, (15)

where a is the fine-structure constant and g(E)=E
and E ! for the dipole length and velocity approxima-
tions, respectively. The photon energy E, is given in
atomic units. The dipole matrix between the initial state
|I > and the final state |E > is given by

Dy =(®4|D(1,2)|®}) (16)
where
D(1,2)=D(r)+D(r,) , (17)

and D represent the position and gradient operators for
the length and velocity approximations, respectively.

When the final-state wave function @Q is calculated by
using the discretized finite basis set, the usual normaliza-
tion constant (2/7k)!/? is replaced by the amplitude A4
given in Eq. (11). As a result, a constant

2/(wk)
N, = —A ) (18)

should be added to Eq. (15) when we replace the dipole
matrix Dy; by Dg,, i.e.,

o=3%r%ag(E,)N,|DgI* . (19)

The new dipole matrix Dg;, also defined by Eq. (16), is
evaluated using the state wave functions ®4 and ®4 cal-
culated with the discretized finite basis set. Alternatively,
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the photoionization cross section can be expressed in
terms of the oscillator strength fj; for absorption by the
simple relation

- Ara
kA?

where fg; can be calculated numerically following the
same procedure for the bound-bound transitions given in
detail earlier [25].

o SfEer > (20)

III. RESULTS AND DISCUSSION

The accuracy of the present simple CI procedure is
first illustrated in Fig. 2 by the excellent agreement be-
tween our calculated S- and P-wave phase shifts for the
electron-hydrogen scattering and few selected earlier and
recent theoretical calculations [9,26-28]. The energy
variations of the calculated phase shift near the lowest 'S
Feshbach resonances below the n =2 threshold of H™
and He are presented in Fig. 3. Our calculated energy
and width for the lowest H™ 1S resonance at —0.297 563
and 3.49X 1073 Ry, respectively, are in very good agree-
ment with some of the most accurate theoretical results,
including the recent R-matrix calculation by Scholz,
Scott, and Burke [9], the earlier complex-coordinate cal-
culation by Ho [5], and the electron-hydrogen scattering
calculation using Hylleraas correlation function by Ho,
Bhatia, and Temkin [7]. A complete summary of other
earlier theoretical [29,30] and experimental [31,32] re-
sults is given recently by Pathak, Kingston, and Ber-
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FIG. 2. The calculated S- and P-wave phase shifts for the
electron-hydrogen scattering. The R-matrix results are taken
from Ref. [9]. Other data shown are taken from Refs. [26], [27],
and [28].
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FIG. 3. The energy variation of the phase shifts for the
lowest 'S Feshbach resonance below the n =2 threshold for H™
and He.

rington [33]. A second 'S resonance for H™ is found to
locate at —0.252035 Ry with a width of 1.87X 107 * Ry
(or, about 2.54 meV). This is about 0.87 meV above the
1p resonance according to our calculation, which is also
consistent with the experimental observation by Bryant
et al. [34]. The overlapping 'S and !P states are easily
coupled by the electric field, as the width of the 'S reso-
nance is greater than the separation between these two
states. An earlier scattering calculation by Callaway [35]
has suggested initially that the S state lies about 0.6 meV
below the 'P state with a width of about 5.6 meV, but a
subsequent calculation by Callaway and Rau [36] has
found that the 'S state lies about 2.3 meV above the 'P
state. Our calculated width of 2.54 meV for this 'S state
agrees well with the value of 2.6 meV from recent R-
matrix calculations by Pathak, Kingston, and Berrington
[33]. We again refer to Ref. [33] for a review of other
earlier theoretical results for this 'S state. Our calculated
excitation energy and width of 57.8562 and 0.142 eV, re-
spectively, for the He 252 'S state also agree very well
with the available theoretical [5,23,37-39] and experi-
mental [40,41] results reviewed recently by Froese Fisch-
er and Idrees [15].

The calculated photoionization cross sections below
the resonance structure for H~ and He, using the pro-
cedure outlined in Sec. II, are presented in Fig. 4. The
present photodetachment cross sections from the ground
state of H™ agree very well with some of the most accu-
rate earlier theoretical calculations [2,42-44]. A collec-
tion of the earlier theoretical results has been given by
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FIG. 4. The photoionization cross sections below the reso-
nance structure for H™ and He. Comparisons are made with
data taken from Refs. [42], [43], [2], [44], [49], and [48].

Daskhan and Ghosh [45]. A simple model calculation by
Crance and Aymar [46] has led to cross sections that are
significantly smaller at the low-energy side but larger on
higher energies than most of the more elaborate theories.
In contrast, a more recent calculation, using the hyper-
spherical coordinates [47], yields cross sections in the
length form that are slightly higher near the peak region
and slightly lower at higher energy than other theoretical
results. Only the dipole-length results from the present
calculation are plotted in Fig. 4. The agreement between
our dipole-velocity and dipole-length results is about
1-2 % or better for the entire energy range. Our calcu-
lated photoionization cross sections from the ground
state of He agree very well with the experimental data
compiled recently by Samson [48], which are accurate to
1-2 %. The present photoionization cross sections from
the excited 1s2s 1S state of He are also in close agreement
with the earlier calculation by Jacobs [49]. Similar to the
photoionization from the ground state, our length and ve-
locity results agree to about 1-2 % or better, and only
the length results are plotted.

Photoionization of He at energy near the lowest 2n +
doubly excited resonance (i.e., the 2s2p P state observed
first in detail by Madden and Codling [50] and classified
later by Cooper, Fano, and Prats [51]) provides perhaps
the best quantitative benchmark test for any theoretical
and experimental approach intended for the study of
multielectron interactions. The results of the present cal-

culation are shown in Fig. 5. The position and width of
the He 2s2p 'P resonance, derived from the energy varia-
tion of the calculated phase shifts, at 60.1825 and 0.0397
eV, respectively, compare very well with most of the ex-
isting theoretical and experimental results. Detailed
summaries, including many earlier and recent theoretical
[5,38,39,52,53] and experimental [50,54,55] studies, are
given recently by Sanchez and Martin [13], Wu and Xi
[56], Froese Fischer and Idrees [15], Gersbacher and
Broad [57], and Hamacher and Hinze [58]. The reso-
nance profile parameters ¢ =2.68+0.06 and o,=1.40
Mb are in very good agreement with other existing data.
A maximum cross section close to 12 Mb is also in good
agreement with the recent theoretical results by Sanchez
and Martin [13], Gersbacher and Broad [57], Hamacher
and Hinze [58], and Salomonson, Carter, and Kelly [53].
A more symmetric resonance profile representing the
photoionization from the He 1s2s 'S excited state is also
shown in Fig. 5. A maximum cross section near 500 Mb
at energy clnse to the resonance energy agree well with
the maximum cross section of 541 Mb calculated by
Doyle, Oppenheimer, and Dalgarno [59]. Our result is
about 25% higher than the maximum value of 383 Mb
calculated by Jacobs [49]. This disagreement may be par-
tially attributed to the approximately 10% overestima-
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FIG. 5. The photoionization cross sections in the vicinity of
2s2p 'P resonance from both the ground state and the 1s2s 'S
excited state of He.
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FIG. 6. The H™ photodetachment cross sections near the 'P
Feshbach resonance below the n =2 threshold from the ground
state. The calculated probability densities p,,, due to the lsp
configuration series and the corresponding phase shifts are also
plotted as functions of photoelectron energy for comparison.

tion in width from Jacobs’s calculation when compared
with most of the existing theoretical values. Again, the
overall agreement between our length and velocity results
is about 1-2 % or better.

In Fig. 6, we present our calculated H™ photodetach-
ment cross sections from the ground state at energies in
the vicinity of the lowest 'P Feshbach resonance. The
phase shifts and the probability densities p,,, for the 1sp
ionization channel are also plotted on the same energy
scale for comparison. As the energy approaches the reso-
nance position, the value of p;y, is seen to reach a
minimum. This confirms the expectation that at the reso-
nance, the combined probability density of all closed
channels dominated by the doubly excited configurations
is at its maximum. The position of the resonance at
—0.252099 Ry from the present calculation is in close
agreement with the earlier close-coupling calculation by
Callaway [35], the complex coordinates calculation by
Wendoloski and Reinhardt [4] and the recent R-matrix
calculation by Pathak, Kingston, and Berrington [33].
The width of this narrow resonance is about 10~ ¢ Ry,
which is not resolved experimentally. Some of the calcu-
lated widths are listed in Table I. Clearly, additional
theoretical calculation is required if the width of this res-
onance is to be determined more precisely. The width
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TABLE 1. Comparison of the theoretical width I' in 107® Ry
for the H™ P Feshbach resonance blow the n =2 threshold.

Theory I (107¢ Ry)
Present 3.44
Taylor and Burke (Ref. [29]) 3.31
Seiler, Oberoi, and Callaway (Ref. [30]) 1.78
Ajemera and Chung (Ref. [27]) 2.10
Broad and Reinhardt compiled by 5.43
Bryant et al. (Refs. [2] and [34])
Callaway (Ref. [35]) 2.73
Wendoloski and Reinhardt (Ref. [4]) 76.00

from the present calculation is about 40% smaller than
the J-matrix result [2] compiled by Bryant et al. [34]. On
the other hand, a peak cross section at about 2600 Mb
from the present calculation is about 80% higher than
the J-matrix result. In addition, as we pointed out re-
cently [19], the numerical convergence of the transition
matrix from the ground state depends critically on the ac-
curate account of the continuum-continuum interaction
between positive-energy orbitals included in the ground-
state wave functions. The use of an enlarged basis set for
a more accurate representation of the continuum spec-
trum in the present calculation has limited our ability to
exhaust the continuum-continuum interaction included
in the ground state on a relatively modest work station.
In fact, the present calculation yields an oscillator
strength of approximately 0.001 45, which is about 30%
larger than the value of 0.001 08 from a more complete
recent calculation [19]. As a result, a converged calcula-
tion should yield a maximum cross section perhaps
slightly less than 2000 Mb.

In conclusion, the numerical results from the present
calculation clearly establish the quantitative reliability of
the nonvariational finite basis CI procedure presented in
this paper. The extension to divalent atoms, following its
extensive recent applications to the bound-bound transi-
tions [16,18], should be straightforward. In fact, our pre-
liminary calculation for the Be 2p? 'S resonance yields a
width of 76.0 cm ! which is in close agreement with the
experimental value of 74.9 cm™! by Clark et al. [6] as
well as the theoretical value of 72.4 cm ™! by Moccia and
Spizzo [11]. The accuracy of the present calculation can
be improved easily if the numerical works are carried out
on a more powerful computer when required.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation (NSF) under Grant Nos. PHY89-03384 and
PHY89-13521 and the Department of Energy (DOE) un-
der Grant No. DE-FGO03-87ER60504. One of us
(T.N.C.) would like to thank J. A. R. Samson for the use
of his recent compilation of He photoionization data pri-
or to its publication.



238 T. N. CHANG AND X. TANG 44

[1]1E. J. Heller, W. P. Reinhardt, and H. A. Yamani, J.
Comp. Phys. 13, 536 (1973).
[21J. T. Broad and W. P. Reinhardt, Phys. Rev. A 14, 2159
(1976).
[3]E. J. Heller and H. A. Yamani, Phys. Rev. A 9, 1201
(1974); A 9, 1209 (1974).
[4]J. J. Wendoloski and W. P. Reinhardt, Phys. Rev. A 17,
195 (1978).
[5]1Y. K. Ho, Phys. Rev. A 23,2137 (1981).
[6] A. K. Bhatia and Y. K. Ho, Phys. Rev. A 41, 504 (1990).
[71Y. K. Ho, A. K. Bhatia, and A. Temkin, Phys. Rev. A 15,
1423 (1977).
[8] J. Callaway, Phys. Rev. A 26, 119 (1982).
[9] T. Scholz, P. Scott, and P. G. Burke, J. Phys. B 21, L139
(1988).
[10] R. Moccia and P. Spizzo, J. Phys. B 20, 1423 (1987); 23,
3557 (1990).
[11] R. Moccia and P. Spizzo, J. Phys. B 18, 3537 (1985).
[12] F. Martin and A. Salin, Chem. Phys. Lett. 157, 146 (1989).
[13]J. Sanchez and F. Martin, J. Phys. B 23, 4263 (1990).
[14] C. Froese Fischer and H. P. Saha, Can. J. Phys. 65, 772
(1987).
[15] C. Froese Fischer and M. Idrees, J. Phys. B 23, 679 (1990).
[16] T. N. Chang, Phys. Rev. A 39, 4946 (1989) and references
cited therein; in Relativistic, Quantum Electrodynamics,
and Weak Interaction Effects in Atoms, edited by W.
Johnson, P. Mohr, and J. Sucher, AIP Conf. Proc. No.
189 (AIP, New York, 1989), p. 217.
[17] T. N. Chang and Y. S. Kim, Phys. Rev. A 34, 2609 (1986).
[18] T. N. Chang, Phys. Rev. A 41, 4922 (1990); T. N. Chang
and X. Tang, J. Quant. Spectrosc. Radiat. Transfer 43, 207
(1990); T. N. Chang and Y. Mu, ibid. 44, 413 (1990).
[19] T. N. Chang and R. Q. Wang, Phys. Rev. A 43, 1218
(1991).
[20] C. deBoor, A Practical Guide to Splines (Springer, New
York, 1978).
[21] W. R. Johnson, S. A. Blundell, and J. Sapirstein, Phys.
Rev. A 37, 307 (1988).
[22] A. Burgess, Proc. Phys. Soc. London 81, 442 (1963).
[23] P. G. Burke and D. D. McVicar, Proc. R. Soc. London 86,
989 (1965).
[24] T. N. Chang, Phys. Rev. A 34, 4554 (1986); G. Bates and
P. L. Altick, J. Phys. B 6, 653 (1973).
[25] T. N. Chang, Phys. Rev. A 36, 447 (1987).
[26] C. Schwartz, Phys. Rev. 124, 1468 (1961).
[27] M. P. Ajmera and K. T. Chung, Phys. Rev. A 10, 1013
(1974).
[28] R. L. Armstead, Phys. Rev. 171, 91 (1968).
[29] A. J. Taylor and P. G. Burke, Proc. Phys. Soc. London 92,
336 (1967).
[30] G. J. Seiler, R. S. Oberoi, and J. Callaway, Phys. Rev. A 3,
2006 (1971).
[31] C. D. Warner, G. C. King, P. Hammond, and J. Slevin, J.

Phys. B 19, 3297 (1986).

[32]J. F. Williams, in Electron and Photon Interactions with
Atoms, edited by H. Kleinpoppen and M. R. C. McDowell
(Plenum, New York, 1976), p. 309.

[33] A. Pathak, A. E. Kingston, and K. A. Berrington, J. Phys.
B 21, 2939 (1988).

[34] H. C. Byrant, D. A. Clark, K. B. Buttefield, C. A. Frost,
H. Sharifian, H. Tootoonchi, J. B. Donahue, P. A. M.
Gram, M. E. Hamm, R. W. Hamm, J. C. Pratt, M. A.
Yates, and W. W. Smith, Phys. Rev. A 27, 2889 (1983).

[35] J. Callaway, Phys. lett 68A, 315 (1978).

[36] J. Callaway and A. R. P. Rau, J. Phys. B 11, 1.289 (1978).

[37] A. K. Bhatia and A. Temkin, Phys. Rev. A 11, 2018
(1975).

[38] D. H. Oza, Phys. Rev. A 33, 824 (1986).

[39] Y. Komininos, N. Makri, and C. A. Nicolaides, Z. Phys.
D 2, 105 (1986).

[40] P. J. Hicks and J. Comer, J. Phys B 8, 1866 (1975).

[41] F. Gelebart, R. J. Tweed, and J. Peresse, J. Phys. B9, 1739
(1976).

[42] K. L. Bell and A. E. Kingston, Proc. Phys. Soc. London
90, 895 (1967).

[43] M. P. Ajmera and K. T. Chung, Phys. Rev. A 12, 475
(1976).

[44] A. L. Stewart, J. Phys. B 11, 3851 (1978).

[45] M. Daskhan and A. S. Ghosh, Phys. Rev. A 28, 2767
(1983).

[46] M. Crance and M. Aymar, J. Phys. B 18, 3529 (1985).

[47] C. H. Park, A. F. Starace, J. Tan, and C. D. Lin, Phys.
Rev. A 33, 1000 (1986).

[48]J. A. R. Samson, Phys. Rep. 28, 303 (1976); (private com-
munication).

[49] V. L. Jacobs, Phys. Rev. A 9, 1938 (1974).

[SO] R. P. Madden and K. Codling, Astrophys. J. 141, 364
(1965).

[51]J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Lett. 10,
518 (1963).

[52] A. K. Bhatia and A. Temkin, Phys. Rev. A 29, 1895
(1984).

[53] S. Salomonson, S. L. Carter, and H. P. Kelly, Phys. Rev.
A 39,5111 (1989).

[54] H. D. Morgan and D. L. Ederer, Phys. Rev. A 29, 1901
(1984).

[55] H. Kossmann, B. Krissig, and V. Schmidt, J. Phys. B 21,
1489 (1988).

[56] L. Wu and J. Xi, J. Phys. B 23, 727 (1990).

[57] R. Gersbacher and J. T. Broad, J. Phys. B 23, 365 (1990).

[58] P. Hamacher and J. Hinze, J. Phys. B 22, 3397 (1989).

[59] H. Doyle, M. Oppenheimer, and A. Dalgarno, Phys. Rev.
A 11, 909 (1975).

[60] C. W. Clark, J. D. Fassett, T. B. Lucatorto, and L. J.
Moore, J. Opt. Soc. Am. B 2, 891 (1985).



