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In higher orders of the Rayleigh-Schrodinger-type perturbation theory for nonlinear time-independent
Hamiltonians care should be taken about the normalization in the wave-function-dependent perturba-
tion operator. Low-order results, which have been presented earlier [P. R. Surjan and J. Angyan, Phys.
Rev. A 28, 45 (1983)],remain valid; nevertheless, small corrections appear for higher orders (n ~ 3). Ex-
plicit expressions are given for the energy correction in the generalized reaction-field theory in terms of
nonlocal polarizabilities and reaction-field response functions.

I. INTRODUCTION sidered explicitly, i.e., instead of Eq. (2) we write

v(e)=A(ylBlq& . (2)

The same equation has been treated with a different per-
turbation formalism by Cioslowski [8—10]. A related
nonlinear problem concerning intermolecular interac-
tions has also been discussed recently by one of us [11].

The form (2) of the nonlinear term in the solute-only
reaction-field Hamiltonian is widespread in the literature
[3,12]. Nevertheless, we should be aware of the fact that
in Eq. (2) the wave function g is implicitly assumed to be
normalized to 1.

While usual variational algorithms for the solution of
the nonlinear Schrodinger equation (1) take normaliza-
tion into account, this is not so in perturbation theory,
when intermediate normalization is used. Normalization
corrections are expected to appear from third order in
the nonlinear perturbation operator. In our previous pa-
per [1] such corrections have not been evaluated.

In the present paper normalization terms are con-

In a previous paper [1] a modification of the Rayleigh-
Schrodinger (RS) perturbation theory has been proposed
to solve the time-independent nonlinear Schrodinger
equation,

[H'+ v(q)]ly& =El'&,
which arises, e.g. , in the average reaction field models of
solvent eff'ects [2—7]. The nonlinearity in these models
appears as a consequence of the wave-function depen-
dence of the potential. Explicit energy and wave-function
corrections were given at the lowest orders and recursion
formulas were derived at the general order for the follow-
ing specific form of the nonlinear perturbation: Any arbitrary nonlinear perturbation can be parti-

tioned into contributions of a different order, such as

P(q) —Ir (1)+ Ir (2)+ y (3)+ (4)

We are looking for the solutions of the Schrodinger equa-
tion

[H + I (@k )] I teak & =Ek
I teak &

Suppose that the solutions of the zeroth-order equation,

are known, and the exact solutions gk satisfy the inter-
mediate normalization condition:

We introduce the reduced resolvent operator Rk which
satisfies the following equation:

Although the first- and second-order results of Ref. 1

remain valid, higher-order results must be revisited. In
the following the RS-type perturbation theory (PT) will
be developed first by arbitrary nonlinear perturbation.
Low-order formulas, taking into consideration normali-
zation effects, will be given explicitly. Specific results in
the framework of the generalized reaction-field model
will be given in Sec. IV.

II. NONLINEAR PERTURBATION THEORY
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~Ek —Ek —Ek" .

Then the Schrodinger equation can be rewritten as

(9)

Let us define the perturbational energy correction AEk as
the difference of the exact and zeroth-order energies:

or

( ) —y
'"-'E"—g '"-'&y"'Iv "Iq"'&

mWk

(E(0) E (0))

Ek ) ek & (~Ek vk)Iek & (10)
(21)

where the subscript recalls the wave-function dependence
of the perturbation. Apply the reduced resolvent opera-
tor from the left; use Eq. (8) and the intermediate normal-
ization condition to get

Pk(H ' Ek"—) I yk & =(I—lg(k') & & g(k" I) 1@k &

—I@k &
—

I@k & +k(~Ek vk)l@k &.
(11)

The following equation is obtained for the perturbed
wave function:

III. COMPARISON WITH PREVIOUS RESULTS

The above formulas are valid for arbitrary nonlinear
perturbation, which can be expanded in a series, accord-
ing to Eq. (4). The results, presented in our previous pa-
per [1] can be obtained through an expansion of the
operator V= A (JIB p&, by inserting the series (14). In
order to account for the normalization correction proper-
ly we are going to expand, however, the normalized
operator (3). The energy corrections at the lowest orders
remain unchanged:

Ilk & I(('k &++k(~Ek vk )I Pk & (12)
(22)

sE„=(q(„"IP„ly„&. (13)

Explicit equations for corrections of a given order can be
obtained by inserting the expansions of the wave function

gk, the perturbational energy correction, EEk of Eq. (9)
and the nonlinear perturbation operator P'k of Eq. (4):

11(k &
= X IW',"'&,

p=0
(14)

~Ek = X Ek"',
p=1

p y p (p)

p=1

(15)

The nth-order energy correction Ek"' can be obtained by
expanding Eq. (13):

n—y (y 0)l P (p)lq( —p)
&

p=1
(17)

while the energy correction can be obtained by multiply-
ing the Schrodinger equation (10) with (p(k )I from the
left:

(@,'"I A" I@(,"& & @'"IBly',"&

k X E(0) E(0)
iWk k i

x(&q(„"IA Iq(,"&&@(„0)IBly(„0)&

+2&@'"IA le'"& & @k"IB I@!"» (23)

The only difference from the formula (13) of Ref. [1],
apart from a misprint, is that the Bkk matrix elements
should be subtracted from the diagonal matrix elements
of the k operator. This means that the normalization
correction is

On the other hand the third-order energy correction has
to be slightly modified with respect to Ref. [1]. Using the
shorthand notation for the matrix elements of A and k,
we get

Ek = g Cki~ (2AkkBkl + Ak;Bkk )
iWk

+ g g ck,"ckl '[2 A k; Bkl + A kk (B;l Bkk 5,)—) ] .
iWk 1&k

(24)

while the nth-order wave-function correction is obtained
immediately from Eq. (12):

5 AkkBkk g (Ckl )
iWk

(25)

I@(k")& =~k Z «k(")—v(k"))l@(k"-")&

p=i
(18)

("'& = g c(")l~(0)
&

1&k
(19)

The expansion coefficients ckl"' are obtained from Eq. (18)
as

( ~k(0) E(v) P (v),l,(n
—v)

&(g) ( y(0)lp(pg)
& y wl k k Y k

kl l k (E(0) E(0))v=1 1 k

(20)

This result can be made more explicit by inserting the
spectral resolution of the reduced resolvent operator and
expanding the solution with respect to the unperturbed
eigenvectors of 8

A similar correction holds for Eq. (21) of Ref. [1], too.
Note that 6 is always negative.

Higher-order energy corrections can be obtained in a
similar manner. Perturbed wave functions, given in Ref.
[1], are not repeated here because normalization correc-
tions do not affect ck,"and ck; ', which inAuence the ener-

gy up to third order.
It might be interesting to estimate the magnitude of en-

ergy corrections of various orders and the correction to
the third-order energy 6. This can be done most easily in
the framework of a simple dipolar model outlined in Sec.
VI of Ref. 1. In this model we have A =p, B=—gp,
where p is the dipole-moment operator and g is the
reaction-field factor, which can be estimated to be around
0.01 in atomic units [13,14]. The formulas of low-order
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PoiPlo+ E(0) E(0)
iWO i 0

Poi Pij ijPoo j2jo( —& )

(E; E)(E— E).—

(26)

An upper bound to the normalization correction, 5,
can be found by rewriting the definition (25) of 5 for the
ground state:

corrections and the normalization correction are collect-
ed in Table I. The corresponding values can be approxi-
mated by using a dipole moment )Lt

= ( g I)M I g ) =0.73 a.u. ,
a dipole polarizability a=8. 3 a.u. , and a hyperpolariza-
bilty P=5. 5 a.u. These data, taken from Dykstra et al.
[15], represent a typical polarizable polar species, the wa-
ter molecule.

For the sake of completeness we report the definition
of a and@:

TABLE I. Low-order PT terms and their approximate values
with an estimate of the normalization correction 5 for a typical
parameter set, given in the text.

E(1)
g(2)
E(3)

Formula

gp

26K g p
+ 2pg3p3

—( 1/26Eo& )o.g 'p

Value

+5.3 X 10-'
—6.6X10-'
+7.4X10 '
+ 1.4X 10
—3.9X 10

(q, Ip~s)ill, )H=H +I Jdrdsp(r)G(r, s)
k k

(29)

simple Onsager model, discussed in [1],can be considered
as a special case of this generalized reaction-field theory.
Accordingly, the nonlinear model Hamiltonian operator
is written in a more general form:

00 00 ~ 00 [E(p)
6=3 8 ~8

I pp; I'

[E' ' E(0)]—
1 3 4

Ag P )

where AEoi is the lowest excitation energy, which has a
typical value of 0.3 a.u. (8 eV) for the water molecule.

By taking a glance at the numerical estimates reported
in Table I, one finds that the perturbational series con-
verges reasonably well with the present parameters. The
normalization correction is smaller by an order of magni-
tude than the total third-order contribution, although it
is larger in absolute value than the hyperpolarizability
contribution itself.

IV. (GENERALIZED AVERAGE
RKACTIC)N-FIELD OPERATOR

Recent developments of solvent eFect theories put into
evidence the general mathematical structure of the non-
linear term in the reaction-field model Hamiltonian. The

& p, &.= & 4'k" Ipk IW'k" & (30)

and charge-density response functions of the system. The
subscripts of the charge-density operator may stand ei-
ther for continuous or discrete arguments. At the lowest
orders we need the generalized polarizability (linear
charge-density response function), a„„:

( E (0) E(0))

+
(E (0) E(0)) (31)

and hyperpolarizability
response function):

(nonlinear charge-density

where G(r, s) is the reaction potential response function of
the solvent and p(r) is the total charge-density operator
of the solute subsystem at the space point r.

0H can be considered as the zeroth-order operator and
the rest of the Hamiltonian as perturbation. The normal-
ized expectation value of the charge density, which ap-
pears in the nonlinear perturbation operator, can be
developed in terms of the unperturbed charge density

(E(0) E(0))(E(0) E(0)) (32)

where S (r, r', r") stand for all permutation of the p„p„,
and p„- operators. With the help for the above-
mentioned quantities the charge density can be expanded
to the lowest orders as

A P,

leak

=&p ) 'G ' (p )

a G .a ~ -.G- (p )k+ rs ss s s

+ ,'l3„, G;, &p, &.G;,-&p, &. +
(33)

& q,'"Ip, ly',"&

ck' (0) (0) G &p &k (35)

where the ck,
". expansion coefficients are defined in Eq.

where repeated subscripts of the charge-density operators
and response functions involve integration over continu-
ous or summation over discrete variables.

The first-order eigenvalue and eigenvector corrections
are analogous with the usual "linear PT" results:

E"'=&p„) G„,(p, )
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(19).
The second order eigenvalue correction is

Ek"= —
—,'&p„&kG„a„G,, &p, &k . (36)

A linear Rayleigh-Schrodinger-type (RS) and a non-
linearity (non-RS) component can be easily identified in
the second-order wave-function correction. The former
is due to the first-order perturbation operator:

response approximation. Since in most of the physical
applications this total energy is the meaningful one, we
give the lowest-order corrections, as obtained by inserting
the perturbational expansion of the wave function in Eq.
(40):

—,& p, &.G„a„G,, & p, &k

Pi Pr Pr 4 Pj Pr' Pk( (0)~~ (~ )~ (0))( (0)~~ (0))

jWk
(E(0) E(0))(E(0) ~(0))

i k j k

X G„,.(p, . )kG„, (p, ) k (37)

Note, that the appropriate factor in the total energy
expression is —,', which corrects the value of —,

' in Eq. (26)
of Ref. [1].

The third-order correction reads

while the ck;' (non-RS) term is essentially a first-order
wave-function correction, due to a higher-order
reaction-field contribution:

8k ——&p )G a G - a-.G .&p )

(42)

(38)

Third-order eigenvalue corrections can also be ex-
pressed in terms of polarizabilities and hyperpolarizabili-
ties:

Zk"'=2(p„) k G„,a„G, .„.a„,.G, .„.(p, . )„

Two kinds of higher-order contributions can be dis-
tinguished in the third-order energy correction. One is
due to the higher polarizabilities of the system, while the
other term comes from the iteration of linear polarizabili-
ties. Provided that the linear polarizability is much
larger than the higher-order hyperpolarizabilities, these
latter contributions might be neglected.

+-,'P„„,„„G„,&P, )„G„., &p, )„G„,&p, &, . (39) ACKNOWI, KDGMKNTS

In the generalized reaction-field model the energy 6'k,
associated with the total solute-solvent system is related
to the eigenvalue of the nonlinear Schrodinger equation
by

(40)

where half of the expectation value of the nonlinear
reaction-field operator is the polarization work, necessary
to distort the solvent charge distribution, in the linear
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