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The quantum-mechanical superposition of two coherent states of identical mean photon number
but different phases yields a state that can exhibit sub-Poissonian and oscillatory photon statistics,
as well as squeezing.

I. SUB-POISSONIAN PHOTON COUNT STATISTICS
AND SQUEEZING FROM COHERENT STATES

At the heart of quantum mechanics lies the superposi-
tion principle —to quote from the first chapter of Dirac's
classical treatise' —".. .any two or more states may be
superposed to give a new state. " Insight into the far-
reaching consequences of this principle is offered by the
most elementary example of superposing two coherent
states ' of identical mean number of photons (m ) =a
but with a phase difference y as shown in Fig. 1. The
analysis of the properties of such a state

~ g) as a function
of cp constitutes the center of interest of the present pa-
per.

A coherent state of an electromagnetic field mode, or
in the language of its mechanical analog, of a harmonic
oscillator with dynamically conjugate variables x and p,
minimizes the uncertainty product with identical uncer-
tainties (b,x ) = (hp ) =

—,'. Thus they are quantum states
closest to classical states —pseudoclassical states. ' In
contrast, the quantum-mechanical superposition of two
such coherent states forming the state ~g), Eq. (2.l), ex-
hibits highly nonclassical features, such as sub-
Poissonian and oscillatory photon statistics ' as well as
squeezing" of the x variable. '

For an appropriately large displacement, a, and go=a,
the state ~1Ib) can be interpreted as the quantum superpo-
sition of two macroscopically distinguishable states, ' '
that is, a Schrodinger-cat-like-state. Consequently, these
states have attracted a lot of interest. ' ' In particular,
they have been shown to be extremely fragile and sensi-
tive to dissipation: The decay of their interference
properties is governed by their separation in phase
space. ' This makes it extremely difficult to detect
such states. In contrast, the nonclassical features of the
state

~ g) discussed in the present article make their ap-
pearance when the two coherent states are not distin-
guishable yet, and thus the decay of the interference
properties is extremely slow, as discussed in Appendix A.
Various ingenious mechanisms to produce such states
have been suggested. ' ' Hence we in this paper
confine ourselves solely to the discussion of their proper-
ties.

The paper is organized as follows: In Sec. II we ana-

lyze the photon statistics, that is, the probability 8 ~ of
finding m photons in the state

~ g) in its dependence on
the phase difference y. Figure 2 shows y domains in
which the photon-count probability curve gets narrower
than the Poisson distribution of a single coherent state,
that is, we find sub-Poissonian photon statistics —an indi-
cator of a nonclassical state. These domains are separat-
ed from each other by zones in which 8' is broader
than a Poisson distribution, that is, super-Poissonian.
The resulting oscillations in the normalized variance
o. —:( m ) /( m ) —( m )—displayed in Fig. 3 and similar
to those in the photon statistics of the micromaser —die
when the two coherent states are distinguishable. As a
consequence, 8' shows rapid oscillations with the famil-
iar Poisson envelope. The analogous effect arises in the
photon statistics of a highly squeezed state. ' Section
III deals with the question of possible squeezing in g).
A single coherent state shows identical uncertainties
(b,x ) and (hp ) in the conjugate variables x and p equal
to —,'. In contrast, in the state ~g) the uncertainty (b,x)

I g e''P~2)

(a e-''P" &

FICx. 1. In its most elementary version the quantum-
mechanical superposition of two coherent states of mean photon
number ( m ) =a2 and phase difference y can be visualized by
two circles of radius unity displaced by an amount &2a from
the origin and having the angle y between them.
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p(W)
IQ&

'I. 5

The two interfering areas of crossover between the two
Gaussian bells and the mth Planck-Bohr-Sommerfeld
band or the thin phase-space highway located at x shown
in Figs. 6 and 7, respectively, create the nonclassical phe-
nomena in 8' or 8'„. We conclude by summarizing our
main results in Sec. V. In order to focus on the essential
points, we banish all lengthy calculations to appendices.

II. SUB-POISSONIAN PHOTON STATISTICS VIA
QUANTUM-MECHANICAI. STATE SUPERPOSITION

In this section we discuss the photon-count probability
of a state '
q &

=JV —(

lac�'~~')

+ lac '~"
& )v'2 (2.1)

FIG. 5. The Wigner function P
l&

&' of the quantum-
mechanical superposition of two coherent states does not con-
sist of two Gaussian bells located in x-p oscillator phase space
at x =&2a cos(cp/2) and p =+&2o.'sin(y/2} corresponding to
two individual coherent states lae'~~ ) and lae '~~'& but in-

volves an interference term located on the x axis. This contri-
bution originates from the quantum-mechanical superposition
of the two coherent states and the bilinearity of the %'igner dis-
tribution, Eq. (4.1), in the wave function. This interference bell
can be narrower in the x direction than the individual
coherent-state Gaussian bells giving rise to squeezing in the x
variable [Fig. 4(a)] or even take on negative values to create an
oscillatory photon-count probability O', Fig. 3(d). (Here we

have chosen e =36 and cp= ~/3. )

the nonclassical features of the photon-count probability
and the squeezing. In addition, the concept of area

of overlap and interference in phase space of Sec. IVB
grasps immediately the essential properties of the photon
distribution 8' or the position probability curve

oo m

lae'") =exp( —
—,'a ) g e' Plm ), &m!

(2.2)

of number states lm ).
As a result of the nonorthogonality of two coherent

states, ' '
l/3) and ly),

«Pl y &
=exp[ —

—,'( I
Pl'+

1 y I')+P*y ], (2.3)

the normalization constant JV for this state takes a more
complicated form,

A'2(y) =— 1

[1+cos(a sing)exp( —p„)]
where

(2.4)

built out of the quantum-mechanical superposition of two
coherent states,

l
a exp(+i y j2) ), of real, positive dis-

placement &2a in x-p oscillator phase space and real
phase, +cp/2. Here we consider coherent states as
defined ' by the superposition

(o) [bj

'2

FICx. 6. Photon statistics of the superposition state
l P) from

interference in phase space. The mth Planck-Bohr-Sommerfeld
band of the m-number state has two distinct areas of crossover
A. with the state ltt & represented in phase space by two
Gaussian bells and depicted in (a} in its most elementary version

by circles. Interference between these zones of phase difference

2P given by the dotted phase-space domain of (b) gives rise to
the oscillatory photon distribution 8', shown in Fig. 3(d).

FIG. 7. Position probability of the superposition state t()
from interference in phase space. The phase-space strip parallel
to the momentum axis and located at x —the representative of a
position eigenstate —has two distinct areas of crossover A „with
the two Gaussian bells depicted in (a) in the most elementary
way by circles. Interference between these domains with a
phase difference governed by the dotted phase-space domain
shown in (b} gives rise to the oscillatory position distribution,
Eq. (3.5).
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Ip, I
—= +&2a»n(p/2) I

. (2.5) and

=JV —'
I (m lae'+ ) + (m Iae '+ ) I (2.6)

With the help of Eq. (2.2), that is,

we find

W [ I P) ]= IA '~ exp(iP )+A ' exp( i/ )—I
or

(2.7)

W [lg)]=4A cos P

Here we have introduced

(2.8a)

(2.8b)

Here, p denotes the "mean momentum" of a single of
the two coherent states. In the definition of the state I g),
Eq. (2.1), we have separated the normalization factor
1/V'2 which arises naturally in the superposition of two
orthogonal states from the factor JV measuring the
nonorthogonality of the two interfering coherent states.

The probability W to find m photons in lg) is given
by

W [ly&]=l(mls)l'

—=my/2 . (2.8c)

Hence the superposition of the two coherent states-
two contributors of interfering probability amplitude
( m

I ae —'+ ) as expressed by Eqs. (2.6) and (2.7)—
creates the interference term cos P, which modulates
the familiar Poissonian statistics of a single coherent
state.

In Fig. 2 we analyze the consequences of this contribu-
tion in more detail by depicting the photon-count proba-
bility W of Eq. (2.8), as a function of quantum number
m and the phase difference y. All curves here are plotted
for definiteness for the same value o.=6 of the displace-
ment parameter a. For a vanishing phase angle, that is,
@=0, the two coherent states are on top of each other,
that is,

I f) is a single coherent state and W is a Poisson
distribution [Fig 2(a.)]. When we increase y, the photon-
count probability narrows, having a slightly shifted,
higher maximum as shown in Fig. 2(b). This narrowing
effect stands out most clearly when we compare and con-
trast the initial Poisson distribution of y=0 [solid line in
Fig. 3(a) and dashed lines in Figs. 3(b)—3(d)], to the pho-
ton statistics 8 for the special y value indicated in the
lower part of Fig. 3 by (b).

Mathematically, we describe this phenomenon by the
normalized variance

=1—4a sin (y/2)exp[ —2a sin (y/2)]
cos(a sing+@)+cos (cp/2)exp[ —2a sin (y/2)]X

I 1+cos(a sing)exp[ —2a sin (y/2)]I I 1+cos(a sinp+g)exp[ —2a sin (g/2)]I2 2 2 2 2 2
(2.9)

In the last step we have evaluated the moments (m )
o m W and ( m )—:g o m W of the distribu-

tion W, Eq. (2.8), shown in detail in Appendix B.
The 1ower part of Fig. 3 depicts the so-calculated vari-

ance o. as a function of the phase difference y for fixed
displacement a =36. For y=0, that is, for a coherent
state with Poisson statistics, we find from Eq. (2.9),
o(cp=O)=1. Values o (1 define sub-Poisson statistics
whereas o. & 1 indicate super-Poisson statistics. A phase
difference y such that (ag) /2 (( 1 reduces Eq. (2.9) to

o. =—1 —(ay) /2 . (2.10)

Consequently, there exists a range of y values, shown in
the lower part of Fig. 3, in which the photon-count prob-
ability W of lg) shows a substantial amount of sub-
Poisson statistics. This is a remarkable result when we
recall that the transition from the Poisson distribution of
a coherent state to the sub-Poissonian was induced solely
by the superposing of the two coherent states. This ex-
ample illustrates in a striking way the power of the super-
position principle.

When we increase y further, the first "wave front" of

I

Fig. 2 bends to the left and abruptly a second wave train
breaks off, giving rise to the two peaks in 8 . As a re-
sult, the photon-count probability is broader than a Pois-
son distribution, that is, a super-Poissonian with o. & 1 as
shown in the lower part of Fig. 3. For even larger y, this
second wave front again gains height, indicating the re-
currence of the narrowing of 8' to a sub-Poissonian dis-
tribution. However, this narrowing again gets abruptly
interrupted by the sudden breakoff of the third wave
front, at the phase value (c) of Fig. 2, again leading to
super-Poissonian statistics. The transitions between cr & 1

and o ) 1 occur when the second contribution in Eq. (2.9)
changes sign, that is, at phases y' ', satisfying the tran-
scendental equation

cos(a sinip' '+y' ')

+cos (yi '/2)exp[ —2a sin (y' '/2)]=0 .

(2.1 1)

The oscillatory term in o. , Eq. (2.9), is damped by the
term exp[ —2a sin (&p/2)] resulting from the nonortho-
gonality of the coherent states, Eqs. (2.3). Hence, the os-
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III. SQUEEZING VIA QUANTUM-MECHANICAL
STATE SUPERPOSITION

In this section we analyze the uncertainties

(«)2= &x') —&x )'
= f dxx W — f dxxW (3.1a)

and

cillations in o only appear for y values when the two
coherent states are not distinguishable yet, that is,

~p~~ =&2a sin(y/2) & 1 .

For larger y values (in this specific example, q&
~ m/4),

the wave fronts align themselves more and more parallel
to the y axis. This results in multipeaked photon distri-
butions W, as shown in Fig. 3(d), that is, in an oscillato-
ry photon distribution with a Poissonian envelope. This
example demonstrates that o.-=1 does not imply Poisson
statistics since the second moment of W is not sensitive
to the oscillations in W . Moreover, for y ~ ~/2 the two
coherent states are distinguishable and the oscillations in
W merely reAect this fact analogously to the rapid vari-
ation in the photon statistics of a highly squeezed
state. ' This analogy stands out most clearly when we
compare Eqs. (2.7) and (2.8) to the corresponding equa-
tions of Refs. 9 and 10. We conclude this section by not-
ing that the oscillations in o. are very reminiscent of those
in the corresponding quantity in the photon statistics of
the one-atom maser.

(hp) =&p ) —&p) = f dpp W~
— f dppW~

W, =
I & p I @&

I'=
I @(p)I'

A single coherent state obeys

(«)'.h=(~p).'a =
—,
' (3.2)

and therefore maintains the minimum uncertainty rela-
tion

(«) (hp) =—,
' . (3.3)

However, a system in the state ~P), Eq. (2.1), can ex-
hibit Auctuations in x below the coherent-state limit pro-
vided the two coherent states

~
ue ™/2) and

~
ae '~~ )

have the appropriate phase difference cp. Thus, for cer-
tain values of y, the state ~itj) is a squeezed state.
Moreover, in these regions the uncertainty (bp) in-
creases such that the minimum uncertainty relation, Eq.
(3.3), is (approximately) maintained. The state ~g) is
hence (approximately) a minimum uncertainty squeezed
state.

We study these squeezing phenomena in more detail by
starting from the wave function of ~g) in x representa-
tion,

(3.1b)

in the dynamically conjugate variables x and p for the su-
perposition state g), Eq. (2.1). The corresponding posi-
tion and momentum distributions W and W follow
from

g(x)=&x g)=sr '~ JV —exp[ —a sin (p/2)]exp[(i/2)a sing]v'2

X Iexp[ —
—,'(x —+2ae'+~ ) ]+exp( ia sin—y)exp[ —

—,'(x —+2ae '+~
) ]] .

In the last step we have used the fact that for any coherent state ~/3),

& x llt3&
= ir '~' exp[ —,'(P' —lP ') ]exp[ —

—,'(x —&2P)'] .

We thus find from Eq. (3.4),

W'„—= ig(x)i =4A„cos P, ,

where

A = —,'JV ~ ' expI —[x —v'2a cos(y/2)] ]

and

P, =&2a sin(y/2)[x —
—,'V'2a cos(y/2)] .

(3.4)

(3.5a)

(3.5b)

(3.5c)

The probability distribution W =
~ g(x )

~
in the x variable takes a form similar to the photon distribution W of Eq.

(2.8): The Gaussian distribution A„[~p) ]—analogous to A [~1t ) ] of Eq. (2.8b)—centered at x =&2a cos(y/2)—
the x coordinate of the center of the coherent states

~
ae —™/2), shown in Fig. 1—is modulated by the oscillatory func-

tion cos P, as a result of the quantum-mechanical superposition of the two states The phas. e P, of this modulation, Eq.
(3.5c), has its zero at x =

—,x„, that is, different from the x location of the maximum of the Gaussian, A.„. This is in

complete accordance with the photon distribution W, Eq. (2.8): maximum of A for m -a and zero of P at m -0.
We recall the cos P contribution as the origin of the sub-Poissonian photon statistics of the state ~g). The close simi-
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larity between Eqs. (2.8) and (3.S) hence suggests the analog for the x distribution —a distribution narrower than that of
a coherent state, (bx )„b=—,', that is, squeezing.

We start the discussion of the variance (bx ), Eq. (3.1a), by presenting the "mean position"

(x ) =+2a cos(y/2) —&2a sin(y/2)exp[ —2a sin (q&/2)]2 ' 2 sin(a sing)
1+cos(a sing&)exp[ —2a sin (y/2)]

of a particle in the state
~ P), Eq. (2.1), as calculated in Appendix C. When the two coherent states are distinguishable,

that is, p =&2a sin(y/2) ) 1, the moment (x ) is identical to the x value of the center of the two coherent states, as
suggested by Fig. 1. However, for small y values or small displacements a, that is, ~p ~

&&1, when the Gaussian bells
overlap, the mean position (x ) is quite different from this geometrically determined value.

We now turn to the variance (hx ), Eq. (3.la). When we substitute Eq. (3.S) into Eq. (3.1a) and perform the integra-
tions, we find after minor algebra shown in Appendix C,

)2, 1 4 2 .
2( ) [

2 .
2( /2)] cos(a sing)+exp[ —2a sin (y/2)]

I 1+cos(a sing)exp [ —2a sin (y/2) ] J

(3.6)

cos(a sing'"')+exp[ —2a sin (tp" /2)]=0 . (3.7)

This equation is quite similar to the corresponding equa-
tion (2.11), determining the phase angles y' ', separating
zones of sub- and super-Poissonian statistics. We
recall that due to the exponential decay term

a result quite similar to the variance o., Eq. (2.9), of the
photon distribution 8

The solid line in Fig. 4(a) depicts the uncertainty
(b,x ), Eq. (3.6), as a function of the phase difference y
for a fixed displacement a =36. We note that (b,x ) re-
peatedly falls below the coherent-state value of 0.5, Eq.
(3.2), thus indicating squeezing in the x variable. More-
over, y domains of no squeezing follow domp. ins of
squeezing analogous to the oscillations in the variance o.
of the photon distribution 8' . The phases, cp' ' separat-
ing the domains of squeezing and no squeezing are given
by the zeros of the second contribution of Eq. (3.6), that
1S,

I

exp[ —2a~sin (y/2)] in Eqs. (2.9) and (3.6), these non-
classical effects only appear for phase angles y ~ 2
arcsin(+2a) . Hence for a ))1, the approximations

cos(a siny+y)—=cos(a sing)

cos (IF/2)-=1

make (apart from the prefactor —,') the two expressions for
o. and (bx ), Eqs. (2.9) and (3.6), and, hence, Eqs. (2.11)
and (3.7) identical. Therefore, y regions exhibiting sub-
Poissonian photon-count probability also show squeezing
in the x variable, as shown in Figs. 3 and 4(a) for the case
of a =36. For small values of e, however, these two re-
gions do not coincide.

We now evaluate the uncertainty (bp), Eq. (3.1b), in
the conjugate variable p by starting from the momentum
distribution

W =~/(p)~ =
—,'JV ((~ ' exp[ —[p —/2asin(y/2)] I+sr '~ expI —[p+&2a sin(y/2)] ]

+2~ '~icos(a sing)exp[ —2a sin (g/2)]exp( —p ))

calculated in Appendix D. After minor algebra outlined in Appendix E, we find

(p)=0
and

(3.8)

(Ap) =
—,
' 1+4a sin (g/2) 1

1+cos(a sing)exp[ —2a sin (g/2)]
(3.9)

Hence a particle in the state
~ g), Eq. (2.1), has zero mean

momentum, as suggested by the symmetry of Fig. 1. The
second contribution of (bp ), Eq. (3.9), is positive for all

y values. Hence no squeezing in the p variable is possi-
ble, as shown in Fig. 4(a) by the dashed line.

More insight into these quantities is offered by consid-
ering Eqs. (3.6) and (3.9) in the limit of small phase angles
y, that is, for (ay) /2«1, or large angles, that is, for

(a(p) /2))1.
In the case of (aq&) /2 « 1, Eq. (3.9) reduces to

(b,p) =——,'[I+(ay) /2], (3.10a)

and thus yields an uncertainty larger than the corre-
sponding —,

' value of a coherent state, Eq. (3.2).
On the other hand, in the same limit the uncertainty in
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x, Eq. (3.6), simplifies to

(hx )'= —,
' [1—(ag)'/2], (3.10b)

confirming the squeezing in the x variable displayed in
Fig. 4. We note the analogy to the corresponding expres-
sion for the nonclassical variance o, Eq. (2.10). More-
over, from Eq. (3.10) we find

(hx) (hp) =——,',
that is, for this particular choice of parameters the state
~g) is approximately a minimum uncertainty squeezed
state, Eq. (3.3), as shown in Fig. 4(b). Here we have de-
picted the product (hx) (hp) given by Eqs. (3.6) and
(3.9).

In the y zone of oscillatory photon distribution, that is,
when (ay) /2)) 1, Eq. (3.6) reduces to

~1t ), Eq. (3.4).
When we substitute Eq. (3.4) into Eq. (4.1) and perform

the integration, we arrive after minor algebra shown in
Appendix D at

Pt~) = ,'M—(P,'„i,(;q,~2)) +PI,'„),(;(),~2)) +P;„,), (4.2a)

where

a-)(+~zz)) —= ')r exPI [x i 2acos(g/2)] I

&(' exp I
—[p + V'2a sin(y/2) ]~ j (4.2b)

denotes the Wigner function of a single coherent state
of displacement o, and phase +y/2. The interference
term

P;„,(x,p):——cos{2V'2a sin(y/2)[x —
—,'i 2a cos(qr/2)] I

(hx) =——',
2 X exp I

—[x —&2a cos(g/2) ]
—p (4.2c)

that is, to the uncertainty of a coherent state, Eq. (3.2),
whereas Eq. (3.9) simplifies to

(hp) -=—,'[1+4a sin ((p/2)],

that is, the sum of the p width ( = —,
'

) of the two coherent
states and their relative displacement in the p direction,

2p~ =2[&2a sin(tp/2)]

The uncertainty product then reads

(hx ) (hp) —= —,'[1+4a sin (y/2)] .

Thus, the state ~)t() does not remain a minimum uncer-
tainty state, as shown in Fig. 4(b).

We conclude this section by emphasizing again that
whereas a single coherent states does not exhibit squeez-
ing, a state built out of the superposition of two coherent
states can exhibit a considerable amount of squeez-
ing. "' This example illustrates in a striking way the
power of the superposition principle in quantum mechan-
ics promoting two pseudoclassical states to a single, high-
ly nonclassical state.

IV. CONSIDERATIONS IN PHASE SPACE

More insight into the power of the superposition prin-
ciple and its consequences for nonclassical features
springs from the Wigner distribution Pt&~) of the state
~P) on the one hand and the area-of-overlap approach~9
on the other.

A. signer function approach

One possible representation of the state
~ g), Eq. (2.1),

in x-p oscillator phase space consists of the Wigner func-
tion"

P~&~'(x,p)=sr ' f dy exp(2ipy)g"(x+y)P(x —y),
(4.1)

arises as a consequence of the bilinearity of the Wigner
distribution, Eq. (4.1), in the wave function. Therefore,

P(
&

is not the sum of the two Wigner functions,

PI '+;~~&), Eq. (4.2b), of the two coherent states but in-ly/2 ) y

volves the Gaussian bell P;„„Eq. (4.2c), located at the
positive x axis at x =v'2a cos(y/2) and modulated by
the oscillatory function of phase 2$, Eq. (3.5c). We note
from Eq. (4.2) that the local widths of the three peaks in
the variable p are identical and equal to unity. Moreover,
they are independent of y. The same holds true for the

( W3
width in the x direction of P~ +;~/&&. In contrast, the x
width of the interference term, P;„„Eq.(4.2c) due to the
cos(2$„) modulation, strongly depends on y. For ap-
propriate values of y, it gets narrower than the coherent-
state Gaussian bell, Eq. (4.2b), that is, it causes the
squeezing discussed in Sec. III. In a quite different cp re-
gion, however, domains in phase space exist in which P;„,
takes on negative as well as positive values —ditches in
phase space, as illustrated in Fig. 5. These Wigner wave
crests and troughs are the origin of these nonclassical
features of the superposition state ~P).

We now focus on the interference term P;„, giving rise
to the photon-count probability O', Eq. (2.6). In the
Wigner function approach the probability 8' to find m

photons in the state ~g) is given by the phase-space in-

tegral

W =2 f dx f dp Pt&~)(x,p)P' '(x,p), (4.3)

where PI&&) is the Wigner function of the state ~g), Eq.
(4.2), and

()()P' '(x,p)= exp[ (x +p )]I. (2(x—+p ))

(4.4)

denotes the Wigner function of the mth number state.
Here I, is the mth Laguerre polynomial.

When we substitute Eqs. (4.2a) into Eq. (4.3), we arrive
where g(x)=(x ~itt) is the x representation of the state at
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W =
—,'JV [W [~aexp(it(p/2))]+W [~aexp( —i(p/2))]+W [int]]

2' 27rf dx f dp P p('+/2))P +2')rf dx f dp P p(
. /2))P

00 oo OO QO
a exp —sy

+21rf" dx f" dp P,„,P'~) (4.5)

~2m
W [ ~a exp(+i (p/2) ) ]= e

m!
(4.6a)

The photon-count probability, W is thus given by (1)
the overlap in phase space between the two coherent
states a exp(+i(p/2) ) represented by the corresponding
Wigner functions Pt,'„(+, /2)&, Eq. (4.2b), and the mth
number state Wigner function P' ', Eq. (4.4), which
yields the standard Poisson result

X exp
I +—,

' —a2 2

&2a

W [~aexp(i(p/2))]—:)(m ~ae'P/ ) [

2m

exp( —a )m!
—:( 271 )

—1/2a —1

(4.7a)

and (2) by the overlap between the interference term P;„„
Eq. (4.2c), with the mth number state function P' ' pro-
vrdrng

Zm
2

W [int]=2 e cos(my) .
m! (4.6b)

B. Area of overlap and interference in phase space

In this section we bring out the striking features of the
photon-count probability, W =—

~ ( m
~ P) ~, Eq. (2.8), and

the position distribution W =—
~ (x ~1(i) ~, Eq. (3.5), of the

state
~ lit ), Eq. (2.1), using the two central ingredients of

the concept of interference in phase space: (1) In the
semiclassical limit the quantum-mechanical scalar prod-
uct between two states is governed by the area of overlap
between the two states represented in phase space. (2) In
the case of two or more distinct zones of crossover, the
corresponding contributions have to be added with a
phase difFerence given by the area caught between the
center lines of the state. We focus the present discussion
on the case p =v'2a sin(tp/2)))1, that is, on a case
when the two coherent states do not have considerable
overlap, that is, when they are distinguishable.

1. Photon-count probability

The details of the integration may be found in Appendix
F.

W'hen we substitute Eq. (4.6) into Eq. (4.5), we arrive at
Eq. (2.8). We can hence trace back the origin of the non-
classical features of ~1'), that is, of the cos P contribu-
tion, to the interference contribution P;„t in the Wigner
function phase-space representation of

~
l)/).

of finding m photons in a coherent state of large displace-
ment a ))1 is governed by the area of the overlap

[ ~a exp(i(p/2) ) ]

= f dx f dp PIaexp(ig/2)) (x»)
r

2 2I+2 CX

&2a
=(21r) '"a 'exp

(4.7b)

I((& x» = 2~[Ptaexp(ie/2))(x~p)

8')+P -p( —~/2&«p)] ~ (4.8)

Here we have introduced the factor —,
' to ensure the nor-

malization

f dx f dp Pi&)(x,p)=1 .

Hence the mth Planck-Bohr-Sommerfeld band enjoys two
distinct, symmetrically located zones of overlap with the
state representation P~&), Eq. (4.8), as shown in Fig. 6(a).
Each domain has an area

where J dx f dp is over the mth band, between this
Gaussian bell and the mth Planck-Bohr-Sommerfeld
band.

We depict the superposition state, Eq. (2.1), in its ele-
mentary way by t(Jo Gaussian bells, Eq. (4.2b), located at
x =&2a cos((p/2) and p =+&2a sin( t((t/2), that is,

In the semiclassical limit the mth number state ~m )
can be represented ' ' in phase space as a circular
Planck-Bohr-Sommerfeld band with its inner edge given
by r'"'=(2m)'/ and its outer edge by

=
—,
' f dx f dp P(&)(x,p)

=
—,'(2') '"a 'exp

m+ —' —o;2
'2

2

&Za
(4.9)

(out) [2( + 1 )]1/2

A single coherent state, ~ae'e' ), we depict by a Gauss-
ian bell, Eq. (4.2b), located at x =&2a cos(tp/2) and

p =&2a sin(tp/2). The probability

where jdx f dp is over the mth band, following from Eq.
(4.8) with the help of Eq. (4.7). Each contribution
represents a complex-valued probability amplitude of ab-
solute value 2 ' which interferes with its counterpart,
that is,
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W [lf) ]=
l
A ' exp(iP )+ 2 ' exp( —iP ) ~

(4.10a)

The phase difference 2P [~f)] is the domain embraced
by the center line of the mth band and that of the two
coherent states, as indicated in Fig. 6(b). The area of this
phase-space segment of angle y reads

and (4.11): In the limit of large average numbers of pho-
tons and small angles cp, the two coherent states are in the
immediate neighborhood of the x axis. Moreover, the
Planck-Bohr-Sommerfeld bands for large I values are
infinitely thin and, close to the x axis, their edges are
straight lines. This makes an m band almost indistin-
guishable from the phase-space representation of a posi-
tion state.

The phase P, Eq. (4.10b), however, is different from the
corresponding exact expression (2.8c). We note that the
factor —,

' resulting from the zero-point energy of the har-
monic oscillator is missing.

2. Position probability

We now turn to the position distribution W, Eq. (3.5).
This distribution results from the scalar product between
an x eigenstate ~x) and the state ~P). The state ~x)
represented in x-p oscillator phase space as an infinitely
long thin strip parallel to the p axis located at x cuts out
of the distribution P~&), Eqs. (4.8) and (4.2b), two distinct
symmetrically located domains shown in Fig. 7(a). The
area of each overlap reads

Ax [ ~ g) ]= —,
' f dx' f dp 5(x —x')P~&& (x,p)

exp [
—[x —&2a cos( y/2 ) ] ) =A„.

In the last step we have made use of Eq. (3.5b) and JV—= 1.
These two contributing areas interfere,

W„[~g)]= A' exp(iP )+A,' exp( iP„)~— (4.11)

The phase difference 2P, Eq. (3.5c), between the two am-
plitudes,

2P„=2[+2a sin(y/2)x

—
—,
' &2a cos(y/2)&2a sin(y/2) ],

also allows a simple geometrical interpretation in phase
space: It is the difference between the rectangular phase-
space area, +2a sin(qr/2)x, that is, the phase xp of the
position eigenstate exp(i') and the phase difference of
the two coherent states expressed by the area

—,'V2a cos(y/2)&2a sin(y/2),

of the phase-space triangle shown in Fig. 7(b).
We conclude this section by noting that the concept of

interference in phase space readily explains the similarity
between the photon number distribution W, Eqs. (2.8)
and (4.10), and the position distribution W, Eqs. (3.5)

(4.10b)

This result, Eq. (4.10), is very reminiscent of the corre-
sponding exact expressions, Eq. (2.7) and Eq. (2.8). This
stands out most clearly when we recall the Gaussian ap-
proximation (4.7a) of the Poisson distribution (2.8b) as
well as the property JV—= 1 for p ))1, which yields

V. SUMMARY

The striking consequences of the superposition princi-
ple of quantum mechanics —a single coherent state, a
quasiclassical state, the quantum-mechanical superposi-
tion of two coherent states of identical average number of
photons but well-defined phase difFerence, a highly non-
classical state that exhibits sub-Poissonian and oscillatory
photon statistics —are the central results of the present
article. The phase difFerence between the two states, y,
determines in a sensitive way the statistics of this super-
position state: y domains characterized by sub-
Poissonian photon-count probability interchange repeat-
edly with ones of super-Poisson statistics. The resulting
oscillations in the normalized variance of the photon-
count probability curve make their appearance when the
two coherent states have still considerable overlap, that
is, when they are not distinguishable yet. Hence in this y
region the nonclassical features are not sensitive to dissi-
pation. When the two states are well separated, the pho-
ton distribution displays an oscillatory behavior with a
Poissonian envelope. Consequently, the normalized vari-
ance of the photon-count probability which is insensitive
to these oscillations approaches the Poissonian value of
unity. This superposition state also displays another in-
teresting nonclassical feature of the radiation field, name-
ly, squeezing. There exist cp domains in which the uncer-
tainty in one of the conjugate variables, in the present ex-
ample of the x variable, falls below the corresponding
coherent-state value. These domains are separated from
each other by domains of nonsqueezing, that is, fluctua-
tions larger than that of a single coherent state. In the
limit of large average number of photons the critical
phase angles at which transitions from nonsqueezing to
squeezing and vice versa occur are identical to the ones
where the photon-count probability shifts from super- to
sub-Poissonian statistics. Hence, here sub-Poissonian
statistics is always accompanied by squeezing. However,
when the state ~g) contains only a few photons, these
phase angles difFer. The strong correlation between sub-
Poissonian statistics and squeezing stands out most clear-
ly when we view this superposition state from phase
space: The phase-space representatives of a number state
of large photon number (a thin Planck-Bohr-Sommerfeld
band of large radius) and a position eigenstate (a thin
phase-space strip) are almost identical in the neighbor-
hood of the x axis where the two superposing coherent
states exist. Hence the resulting areas of overlaps be-
tween the highway and the superposition state ~P) on
one the hand and the band and the ~P) state on the other
give similar results for the absolute value of interfering
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probability amplitudes. Their phase differences however,
differ in the two cases. Another insight into these non-
classical factors created by the seemingly innocent princi-
ple of quantum mechanics springs from the Wigner func-
tion. This distribution also contains, apart from the two
Gaussian bells corresponding to the two coherent states,
a contribution which for the state !g & exists on the x axis
of x -p oscillator phase space and can assume negative as
well as positive values. It is from these ditches and
troughs that the nonclassical features discussed in this
paper originate.

APPENDIX A: DECAY
OF INTERFERENCE FEATURES

dp
dt 2

(2a pa ' —a'a p
—pa'a ), (A2)

where a and a denote the annihilation and creation
operators for the energy eigenstates

~
n &, and y is the de-

cay constant. The time dependence of the photon statis-
tics, W ( t) = ( m

~ p( t )
~

m &, resulting from Eq. (A2) fol-

lows from the differential-recurrence relation

In this appendix we discuss the inhuence of dissipation
on the photon statistics

!~ i /2 im p /2 +~ i /2 —im y/2
~

2
m ! m m

of the superposition state ~f &, Eq. (2.1). A harmonic os-
ciHator weakly coupled to a zero-temperature heat bath
serves as a model. ' The density operator p of the os-
cillator then obeys the master equation

—yt/2)2m
2W (t) =JV2 exp[ —(ae r'/2)2]

m!

X I 1+cos[m y+ a (1—e ~')sin~p]

Xexp[ —2a sin (~p/2)(1 —e ~')]J .

This is the central result of this appendix. Three impor-
tant features of the decay of the photon statistics stand
out most clearly:

(1) Due to the coupling of the oscillator to the heat
bath, the amplitude common to the two coherent states
a exp(iy/2) & and ~a exp( —iy/2) & building the state

decays as ae i'/, giving rise to the Poisson en-
velope of decaying mean photon number

(m &(t)=a e

(2) The interference term experiences a time-dependent

phase shift a (1—e ")sing, which converges towards
the time-independent value e sing.

(3) For short times, that is, yt «1, this interference
contribution decays exponentially with the decay con-
stant 2a sin (y/2)y and hence with the separation of the
two coherent states. Since many of the nonclassical
features of this state discussed in the article, such as sub-
Poissonian photon statistics or squeezing arise when the
two coherent states are not distinguishable yet, that is,
when ~a sin(i)2/2)~ &&1, the decay of these nonclassical
phenomena is slow. This is in strong contrast to the ordi-
nary investigations ' of superposition states, which
focus on the limit

~
a sin(ip/2) ~

))1.

W =y(m +1)W +,—ymW

We can easily verify that

(A3) APPENDIX B: NORMALIZED VARIANCE cr

In this appendix we calculate the normalized variance

W (t)=e r' g W +, (t =0)
j=0

m+j
(1—e r')i

m

(A4)

o2—:(m2&/(m &
—(m &,

where the moments

(m&= g mW
m=0

(B1)

(B2)

is a solution of Eq. (A3). When we substitute the photon
distribution, Eq. (Al), into Eq. (A4) and use the relation and

m+j , n 1 cz &2a
e

m! jt

(m &= g m W
m=0

(B3)

follow from the photon-count probability W, Eq. (2.8),
in the form

following from the definition ofA, Eq. (2.8b), we arrive
after minor algebra at (a ) 1 (a e'~)

m! 2 m!

W (t)=A
mt

X (exp( —a e r')
The relation

(a2e —i9 )m+
m! exp( —a ) .

or

+ —,'expt imp+a [(1—e r')e'~ —1]I

+ —,'expI —imp+a [(1—e i')e ''P —1]])

oo oo

o m!,(m —1)!
=A,e~

yields for the first moment, Eq. (B2),
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(m ) =JV Ia + —,'a e''P exp[ —a (1—e'+)]

+ —,'a e ''P exp[ —a (1—e '~)] I

=a JV [ 1+cos(a sing+ g)exp( —p „)]
or

1+cos(a sing+@)exp( —p„)
&m ) =a'-

1+cos(a sing)exp( —p„)
(84b)

of a single Gaussian bell,

Ip, I

=&2a»n(q /2),
and have made use of the normalization, Eq. (2.4).

The relation
oD 2 co gm —1

m =2 m=1

=(iL +X)e

Here we have recalled the "mean momentum, " Eq. (2.5), allows to calculate the second moment, Eq. (83),

(m ) =JV Ia (a +1)+—,'a (a e '++e'+)exp[ —a (1—e''P)]+ —,'a (a e '++e '+)exp[ —a (1—e '+)]I

=a JV {1+cos(a sin&p+y)exp( —p )+a [1+cos(a sin&p+2@)exp( —p )]J .

When we divide Eq. (85) by Eq. (84a) and subtract Eq. (84b), we find for o, Eq. (81),

1+cos(a siny+y)exp( —p ) 1+cos(a siny+2y)exp( —p )o. =1—o,
1+cos(a sing)exp( —p ) 1+cos(a siny+y)exp( —pz)

(85)

We combine the two terms in large parentheses by making use of the identities

2cos(a sing+@) —[cos(a sing+2@)+cos(a sing)]=2(1 —cosy)cos(a sing+@)=4sin (p/2)cos(a siny+y)

cos (a siny+y) —cos(a sing)cos(a sinqr+2y)= —,
'

t l+cos[2(a sing&+p)][ —
—,'Icos(2y)+cos[2(a siny+y)]I

=sin y=4sin (&p/2)cos (y/2)
to arrive at

cos(a sing+ y)+cos (y/2)exp( —p )
cr =1—2p„exp( —p )

[1+cos(a sin&@)exp( —p )][1+cos(a sing+@)exp( —p„)]

APPENDIX C: UNCERTAINTY IN x

In this appendix we calculate the uncertainty

(AX )'= (X') —(X )2

for the state ~P), Eq. (2.1).
We start from the probability distribution ~P(x)

~

in the form

(C 1)

8'„=~g(x) ~

=sr ' JV (expI —[x —&2a cos(y/2)] I+ —,
' exp( —p )

X Iexp(ia sing)exp[ —(x —+2ae™2)]+exp( —ia sing)exp[ —(x —&2ae ™/2)]I ) .

(C2)

When we recall the formula

1 for n=0
vr

' f dx x exp[ —(x —z) ]=,z for n =1
z + —,

' for n=2,
(C3)

we can easily verify the normalization

f dx 8'„=A'
I 1+exp[ —2a sin (y/2)]cos(a sing)] =1 .

With the help of Eqs. (C2) and (C3), we find

(x) = f dx XR' =IV [+2acos(y/2)+&2acos(a siny+y/2)exp( —p„)] .
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When we make use of the relation

cos(a sing&+y/2)=cos(y/2)cos(a sing) —sin(y/2)sin(a sing),

we arrive at

(x ) =v'2a cos(y/2) —V 2a sin(y/2)exp( —p )
sin(a sing)

1+cos(a sin&p )exp( —p ~ )

The second moment (x ) follows from Eqs. (C2) and (C3),

(x~) =I dx x W =JV [[2a cos (y/2)+ —,']+—,
' exp( —p~)

X [exp(ia sing)(2a e'++ —,')+exp( —ia sing)(2a e '++
—,')]]

=
—,'JV [1+cos(a sing&)exp( —p )]+2a JV [cos (y/2)+cos(a sing+@)exp( —p„)] .

When we use the relation

cos(a sing+@) =cos (y/2)cos(a sing) —sin (y/2)cos(a sing) —sing sin(a sing)

and the normalization, Eq. (2.4), we arrive at

sin(a sing)(x ) =2a cos (y/2) —2a sing exp( —p & )
1+cos(a sing)exp( —p~)

+ —,
' 1 —4a sin (y/2)exp( —p~)

cos(a sing)
1+cos(a sing)exp( —p~)

~e substitute Eqs. (C4) and (C5) into the expression, Eq. (Cl), for the variance (b,x ), to find

cos(a sing)+exp( —p~)
(b,x) =

—,
' 1 —2p exp( —p„) [1+cos(a sing)exp( —p )]

APPENDIX D: SIGNER FUNCTION OF STATE
I y &

In this appendix we calculate the Wigner function PI&~) (x,p) of the state
~
t/i), Eq. (2.1), from the definition

Pt&~)(x,p) =~ ' I dy exp(2ipy)g*(x +y)g(x —y)

and Eq. (3.4), that is,

PI&~'(x,p) =(2') 'JV exp( —p )m '~ J dy exp(2ipy)

X I exp[ —
—,'(x +y —V 2ae '+~

)
—

—,
' (x —y —V 2ae'+~2)2]

+exp( ia sing)exp[ ——
—,'(x +y —V 2ae '& ) —~ (x —y —V'2ae '&~~)2]+c c j

When we recall the identity

2= 1
2ipy —

—,'(x +y —z, )
—

—,'(x —y —z~) = —(z, —z~) —[x —
—,'(z, +z2)]

2

p+ —(z, —z2) —[y —
—,'(z, —z2+2ip)]

I

together with Eq. (C3), we can perform the integration, that is,

Pt~)'(x, p) =(2m. )
'A' exp( —p„)

X(exp(p )exp[ —[x —V2a cos(y/2)] —[p —V 2a sin(y/2)] ]

+exp(p )exp [
—[x —V'2a cos(g/2) ] —[p+ V 2a sin(qr/2)] ]

+e ~ Iexp( ia sing)exp[ ——(x —V2ae '+~
) ]+exp(ia sing)exp[ —(x —V'2ae'+~ ) ]] )

or
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Pt&&'(x,p) =
—,'A (ir ' exp[ —[x —+2a cos(y/2)] —[p —+2a sin(g/2)] j

+m 'exp[ —[x —&2a cos(y/2)] —[p+&2a sin(y/2)] j

+2m. 'cosIa siny+2i/2a sin(y/2)[x —V2acos(y/2)]jexp[ —[x —i/2acos(y/2)] —p j) . (Dl)

%e conclude this appendix by evaluating the marginal, that is, the momentum distribution

W—:ig(p)i'= f dx P ~)'(x,p)

'JV (7—r ' exp[ —[p —i/2a sin(y/2)] j+rr ' exp[ —[p ++2a sin(qr/2)] j

+2~ '~ cos(a~sing)exp[ —2a sin (y/2))exp( —p )) .

Here we have made use of the integral

vr
' f dy cos(zy)e ~'=exp( —z /4) .

When we integrate Eq. (D 1) over p, we find the position distribution

W„'—:jp(x)~ =f dp P &~&(x,p)=IV (m
'r exp[ —[x —&2acos(y/2)] j

+m. ' cos[a sinp+2&2a sin(qr/2)[x —&2acos(y/2)]jexpI —[x —&2a cos(y/2)] j ),
in agreement with Eq. (3.5).

(D2)

APPENDIX E: UNCERTAINTY IN p

We now calculate the uncertainty (hp) =—(p ) —(p ) for the state ~P), Eq. (2.1), starting from the momentum dis-
tribution, Eq. (3.8),

W'—:~P(p)~ = ,'JV (vr '
e—xp[—[p —i/2a sin(y/2)] j+m ' exp[ —[p+i/2a sin(p/2)] j

+2' '~ cos(a sin&p)exp( —p )exp( —p )) .

When we make use of Eqs. (C3) and (2.4), we can convince ourselves that W is properly normalized, that is,

f dp W =
—,
'A' [1+1+2cos(a sing)exp( —p )]=1 .

Moreover, we recognize from Eq. (El) the symmetry relation

(El)

and, hence,

(p)= f dppS' =0.
The second moment (p ) follows from Eq. (C3),

(p )=f dpp W~= —,'JV [2[2a sin (y/2)+ —,']+2cos(a sincp)exp( —p ) —,'j
We thus find, with the help of Eq. (E2),

z, 2a sin (y/2)
1+cos(a sing)exp( —p~)

(E2)

APPENDIX F: PHOTON DISTRIBUTION W VIA SIGNER FUNCTION

In this appendix we evaluate the photon-count probability W of the state
~
i)'j) via the Wigner function technique.

A rotation of the coordinate system,

x =cos(y/2)x+sin(y/2)p,

p = + sin(y/2)x +cos(y/2)p,

allows to express the coherent-state contributions
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W [ aexp(+iy/2)}]=2~f dx f dp PI~,'„~{+, &&i&Pm

m
=2 exp( —2a~) f dx f dp exp[2&2a[cos(y/2)x+sin(y/2)p]]

Xexp[ 2(x—+p )]L (2(x +p )}

to the photon distribution W of the state ~P }as

W [~aexp(+iy/2)}]=exp( 2a —)I (y=O),

that is, in terms of the integral

I (y)=2 f dx f dp exp(2&2ae'+r x)exp[ —2(x +p )]L (2(x +p )) .(
—1)

(F1)

(F2)

The interference contribution

W [int]= 2m—f . dx f dp P;„,P'

=exp[ ia s—iny —2a cos (y/2)]

( —1) oo

X2 f dx f dp exp(2&2ae'~~ x)exp[ 2(x +p )—]L (2(x +p ))+c.c.

can also be expressed in terms ofI, Eq. (F2),

W [int]—= exp( —a —a e' )I (y)+c.c. (F3)

We now evaluate the integral I, Eq. (F2), following a technique which we have already applied in Ref. 32 for the
case of a single coherent state.

When we introduce the new variables p and y' via x =(p/2)'~ cosy' and p = (p/2)'~ siny', we find

I (y)=( —1) f dpe t'L (p) f dy'e px(2 ea' sp~'r cosy')
0 2~

=( —1) f dp e t'L (p)JO(2[p( ae'~—)]' ~),

where we have performed the integration over y' with the help of the Bessel function J0 of zeroth order. The generat-
ing function of the Laguerre polynomial,

( I ) k( a2e i%') k

Jo(2[p( ae'~)—]' }=exp(a e'~) g, Lk(p),
jc =0 k!

reduces the above integral to
co

( 1 )k+m(a2eig)kI (y) =exp(a e'&) g, f dp e ~L (p)Lk(p)
k=0 0

or

I (y)=(a e'&) (m!) 'exp(a e'+),

where in the last step we have used the orthonormalization property of the Laguerre polynomials.
When we substitute this result into Eqs. (Fl) and (F3), we arrive at

~2m 2
W [~ae p(+xiy/2) }]= e

m!

and

~2m 2
W [int]=2 e cos(my) .

m!
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ae'r~~ }
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