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Multiphoton ionization in superintense, high-frequency laser fields.
II. Stabilization of atomic hydrogen in linearly polarized fields
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This is the second of two papers studying multiphoton ionization (MPI) in superintense, high-
frequency laser fields. They are based on a general iteration scheme in increasing powers of the inverse
frequency. To lowest order in the frequency, i.e., the high-frequency limit, the atom is stable against
decay by MPI, though distorted. To next order in the iteration, an expression for the MPI amplitude
was obtained. In our first paper [preceding paper, Phys. Rev. A 44, 2141 (1991)], an alternative
expression for the MPI amplitude was obtained for atomic hydrogen, which is substantially simpler,
though somewhat less accurate. In the present paper, we study its consequences for the case of
atomic hydrogen in superintense, linearly polarized fields with the emphasis on the ground state.
Special attention is paid to the case in which the de Broglie wavelength of the photoelectrons is small
with respect to the amplitude of oscillation of the (distorted) electronic cloud. This condition defines
a radiation regime which yields features in sharp contrast to those obtained in weak fields. Most
importantly, the total decay rate decreases with increasing intensity at given (high) frequency ("high-
intensity stabilization" ). The angular distributions of photoelectrons are found to be characterized
by rapid oscillations with the polar angle, arising from a peculiar way in which outgoing electron
waves interfere. At the same time, the overall behavior of the photoelectrons is to be ejected in
directions nearly perpendicular to the polarization axis. We have solved the limit of extremely
high intensities at fixed, but otherwise arbitrarily chosen, frequency analytically. We find that in
"ultrastrong fields" the branching ratios for decay by absorption of the various number of photons
possible are only weakly dependent on the values of the intensity and frequency of the laser field, yet
excess-photon ionization constitutes a sizable part of the decay modes of the atom (typically 30'%%uo). At
very high intensities, the hydrogen atom tends to stabilize at fixed, but otherwise arbitrarily chosen
frequency. The (a priori unexpected) relative stability of the hydrogen atom in ultrastrong fields is
explained as a result of "radiative distortion" of the electron cloud and "destructive interference"
of outgoing electron waves. Although the lifetime of the atom turns out to be extremely short for
values of the intensity around the atomic unit, for low enough frequencies and very high intensities,
it can be remarkably long. Finally, we discuss the problem of how the atom subject to these extreme
radiation conditions could be observed experimentally.

I. INTRODUCTION

This is the second of two papers studying multipho-
ton ionization in superintense, high-frequency laser fields.
They are based on a general iteration scheme in increas-
ing powers of the inverse frequency developed by Gavrila
and Kaminski [1]. (In this procedure, a certain parame-
ter o, p, a combination of the intensity and the frequency,
is kept fixed. ) The considerations are made in a frame of
reference that moves along with a classical electron driven
by the laser field, the "Kramers frame of reference. "
To lowest order in the frequency ("the high-frequency
limit" ), the atom turns out to be stable against decay
by multiphoton ionization. The "radiative distortion" of
the electron cloud of the atom and the ac Stark shifts of
its levels can be calculated from a Schrodinger equation
with a modified atomic binding potential, the "dressed
potential, " depending on the parameter np only. We have
studied this in great detail for the case of atomic hydro-
gen in both linearly [2] and circularly polarized fields [3].
Among other things, we found a drastic decrease of the
ionization potential and a dramatic distortion of the elec-
tron cloud with increasing o.p, resulting in its splitting
(for linear polarization) into two separate parts for high

values of no, this feature we called "dichotomy. " A brief
summary of our findings, together with a recapitulation
of the basic equations of the Gavrila-Kaminski scheme
(for arbitrary polarization), is given in Secs. I and II of
the preceding paper (hereafter referred to as paper I) [4].

To next order in the iteration in increasing powers of
the inverse frequency, an expression was obtained for the
multiphoton ionization amplitude, in which the bound
and continuum solutions of the Schrodinger equation
with the dressed potential enter as initial and final states
[1] [see Eq. (15) of paper I]. The condition under which
the Gavrila-Kaminski theory is applicable requires the
photon energy to be large with respect to the ionization
potential of the atom in the field, i.e. , io )& ~EO(no) ~

[see
Eq. (16) of paper I].

In Sec. V of paper I, we derived from the Gavrila-
Kaminski result for the multiphoton ionization amplitude
a simplified expression applicable to atomic hydrogen in
the form of a one-dimensional integral [see Eq. (49) of
paper I]
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The coeflicients 4p appearing in this equation were
given in Eq. (52) of paper I by the Fourier coeflicients of
the periodic C g(—np cos P):

from which we can calculate the angular-dependent decay
rate for n-photon ionization dI'g „/dA = k„~f~ „~ [see
Eq. (8) of paper I ].

This could be done for the case of arbitrary polariza-
tion. This simplified expression was obtained by neglect-
ing (among others) the attraction of the photoelectron by
the dressed potential on its way out (the "final-state in-
teraction"). Here 4~{r) is the spatial part of the {station-
ary) wave function of a certain (deformed) initial bound
state [an eigensolution of the Schrodinger equation with
the dressed potential with eigenenergy E(np)] and per-
tains to the Kramers reference frame. The vector k„
is the momentum of the electron ejected from the atam
after it has absorbed n photons. Its length is fixed by en-
ergy conservation, i.e. , k„= /2[E(np) + nu] [see Eq. (7)
of paper I].The vector n(P) in fact represents the excur-
sion of a free electron driven by the field [and is given by
Eqs. (3) and (4) of paper I] with P the phase of the laser
field. The amplitude of this oscillation is by definition
equal to the parameter np. The above approximation
has essentially the same region of validity as the Gavrila-
Kaminski expression [5], although it obviously yields less
accurate results. It does not, for example, allow for the
(weak) asymmetries in the angular distributions of pho-
toelectrons occurring in the case of elliptic polarization
that were recently reported by Bashkansky, Bucksbaum,
and Shuhmacher [6] as discussed in Sec. III of paper I.
As we have pointed out, in the radiation regime where
our theory applies, these asymmetries will be weak.

In this paper we will make a detailed study of the
angular-dependent and angular-integrated multiphoton
ionization decay rates for the case of atomic hydrogen
subject to a superintense, high-frequency radiation field
of linear polarization based on our simplified expression
for the multiphoton ionization amplitude, Eq. (1) [7]. In
the case of linear polarization, we have cr(P) = npe cos P,
with e the (real) polarization vector. [See Eq. (3) of our
paper I, recalling that for linear polarization g = 0'.]
Thus, in the Kramers reference frame the proton oscil-
lates harmonically along the polarization axis between
the turning points+exp ——+npe. The parameter np when
expressed in terms of the intensity and frequency is given

by np —Iit2u 2 (in atomic units) [see Eq. (4) of paper I].
{The atomic unit of int, ensity amounts to Ip ——3.51 x 10
W cm 2.) Our study will be restricted to er states, which
are nonvanishing on the polarization axis.

As we have shown in Sec. V of paper I, this simpli-
fied expression can be cast in the equivalent form of an
(infinite) sum of Bessel functions. For the case of hnear
polarization this yields [see Eqs. (53) and (59) of paper
I]

Henceforth we will drop the subscript A, which specifies
the decaying state of interest. It is convenient to chaose
the positive z axis of our coordinate system along e.

Equation (2) enables us to analyze and compute im-

portant physical quantities which can be inferred from
experiment, such as the lifetime of the atom, the angular
distributions of the photoelectrons, and the peak pattern
in their energy spectrum.

In Sec. II we present our analytical results We. de-
velop our analysis only for the case that the de Broglie
wavelength of the photoelectrons (2rr/k„) is small with
respect to the amplitude of oscillation of the atomic
electron cloud (erp). This condition defines a radiation
regime which yields features in sharp contrast to those
obtained in weak fields by lowest-order perturbation the-
ory (LOPT). We have called it the highly nonperturba-
tive radial'ion regime. We study successively angular-
dependent and angular-integrated multiphoton ioniza-
tion decay rates. Finally, we analyze the special case of
high np in which "atomic dichatomy" occurs. This lat-
ter radiation regime corresponds to the limit of extremely
high intensities at fixed, but otherwise arbitrarily, chosen
frequency. We will refer to it as the ultrastrong field l-imit.

There exist several calculations (Keldysh [8], Mittleman

[9], Pert [10], Reiss [ll]) that purport to give the ioniza-
tion probability for an asymptotically large intensity by
using a procedure in which the electron-field interaction
is taken to be large compared with the electron-nucleus
interaction. In these calculations, the modification of
the final state by the field is incorporated to all orders
through the use of a Volkov state [12], in a similar way as

in our expression Eq. (43) of paper I. On the other hand,
in these approaches the deformation of the initial state
was neglected. It was realized by Mittleman that such an
approach leads to results that are in serious error at high
intensities [13]. A formalism was proposed by Mittleman
in which also the distortion of the initial state could be
included. This formalism was applied by Janjusevic and
Mittleman to the case of atomic hydrogen [14]. However,
it has now been realized that the procedure followed in
Refs. [13] and [14] is incorrect [15].

Numerical results and discussion of angular-
dependent, partial and total decay rates for multiphoton
ionization from the ground state of atomic hydrogen in
superintense, high-frequency laser fields are discussed in
Sec. III. Finally in Sec. IV we discuss the problem of how
the atom subject to these extreme radiation conditions
could be observed in an experiment.

Before facusing our attention on the highly nonper-
turbative radiation regime, defined by npk„)) 1, let us
briefly comment here on the relation of Eq. (1) to LOPT.
For low enough intensities, np is small and we have, from
Eq. (3),

= 4(0)b p, (4)
where 4(0) denotes the value of the unperturbed initial
state (which we assume here to be of s symmetry) at
the origin. Moreover, on top of np gg 1 we also have
npjt", „&& 1 and we may replace the Bessel functions in
Eq. (2) by their small argument behavior [16]:
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The application of Eqs. (4) and (5) in Eq. ('2) yields (re-
taining only the lowest-order term in powers of the in-
tensity, which corresponds to single-photon ionization)

-„„=,I. "I'IC(o)l'=, „,I e'I'fC(0)l', (6)

where ek denotes the unit vector in the direction of k. In
the last step we have set, no ——I / ~ and /; J2~ [we
used k„= /2[E(no) + n~], for the case of single-photon
ionization, and invoked the condition of high-frequency
u )) fEo(no) f]. For the ground state of atomic hydrogen
we have fC (0) f

= 1/z and we find Eq. (6) is identical to
the high-frequency form of the LOPT result, Eq. (41) of
paper I. This demonstrates that if o,pk„« 1 and o;p « 1,
Eq. (2) yields results which are in agreement with LOPT.
As we know, the parameter o;p characterizes the degree of
"radiative distortion" of the electron cloud (see Ref. [2]).
As will become apparent in the following, the param-
eter o.pk„ is a measure of "destructive interference" of
outgoing electron waves. LOPT applies when the influ-
ence of both is negligible; as will become apparent, the
reason why in LOPT the decay rate increases with in-
creasing intensity (at fixed frequency) is due to the fact,
that if o.pI-„« 1, we have "constructive interference" of
electron waves. Destructive interference leads to high-
intensity stabilization (see Sec. II C).

II. THE HIGHLY NONPERTURBATIVE
RADIATION REGIME

Expressions for the angular-dependent and angular-
integrated rates at which electrons are ejected from the
atom by single- or excess-photon ionization in a superin-
tense, high-frequency laser field simplify if the condition

npk~ P) 1 (7)
is satisfied. This leads to results which are in strong con-
trast to those obtained from LOPT. They characterize
what we have called the highly nonperturbative radiation
regime. It is important to be aware of the fact that for
moderately high frequency, both conditions, the condi-
tion of high frequency, i.e., u )) fEo(no) f, and (7) above,
can be satisfied arbitrarily well if the intensity is taken
sufIIciently large. This is due to the decrease of the ion-
ization potential of the atom (within a manifold of states
with the same magnetic quantum number as the initial
state) with increasing no, which we have discussed earlier
(see Ref. [2]).

In the following sections we will focus on the analysis of
the physics described by Eq. (2) in the highly nonpertur-
bative radiation regime. In Sec. II A we study angular-
dependent decay rates for single- and excess-photon ion-
ization. Section II B is devoted to angle-integrated decay
rates. Finally, in Sec. IIC we study the special case of
ultrastrong fields (high no) in which atomic dichotomy
occurs.

A. Angular-dependent multiphoton
ionization decay rates

If fno k„
f
)) 1 we may replace the Bessel functions

in the sum of Eq. (2) by their well-known asymptotic

behavior for large arguments [17]:

& (~)- g'rz 9 2 4p

(AVe assume for the moment that, no k„) 0.) The
substitution of this into Eq. (2) yields

2 2 X/2

kr vr~mo . k„()
x [@( )

+i[cxo.k„—(1/2)nx —w/4J

+@(+ )
—i[cxo'k —(1/2)nx —x/4J] (9)

where the summation with respect to m in Eq. (2) was
carried out with the help of the relation (3). A similar
result holds for no k„( 0. From Eq. (9) we have, for
o& states,

8fC'(~o) f' cos'(f~o k
f

——,'n~ —~/4)
dO xr 3 fno k„

f

(»)
valid for fno k„ f &) 1, i.e. , it does not hold for direc-
tions that are nearly perpendicular to the polarization
axis. For ungerade states the cosine must be replaced
by the sine function. Note that the angular dependence
is universal in the sense that it does not depend on the
shape of the (radiatively distorted) initial state.

According to Eq. (10), the rate at which electrons are
ejected contains regular oscillations between zero and two
times the value

dl'„i '
4f4( o) f

dO ) znok4 cos0'

This shows that, having averaged out the rapid oscilla-
tions in angle, the multiphoton ionization decay rate de-
pends on the polar angle as I/cos8, independent of the
intensity, the frequency, and the number of photons ab-
sorbed. This angular dependence difF'ers drastically from
what is found in weak fields. In (relatively) weak fields
the electrons are preferentially ejected in the direction of
the polarization (see, e.g. , Leuchs and Walther in Chap.
5 of [18], Humpert e/ cl. [19], and Wolff' e$ al. [20]). In
the particular case of single-photon ionization we have,
according to LOPT, a cos2 8 dependence. One would
expect from a semiclassical point of view that the dis-
tribution of photoelectrons becomes more peaked in the
polarization direction as the number of excess photons
increases, since the electric field acts in the polarization
direction. This is in strong contrast with the present
case where the electrons leave the atom preferentially in
directions away fram the polarization axis.

In LOFT we have the selection rule Al = +1 associ-
ated with each absorbed photon, so that for n-photon
ionization from an s state, the final state consists of
partial waves up to orbital angular momentum $ = n.
It is apparent from the angular dependence determined
by Eq. (10) that in the highly nonperturbative radiation
regime many / waves contribute. One would need to go
to very high order in perturbation theory to reproduce
the angular dependence given by Eq. (10).

Equation (10) has an interesting physical in$erpre/a-
tion. This becomes more transparent if we write Eq. (9)
in the form
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where

f+ = o(+~0)~+'~ '"")
l )

2

(qr ]no . k„i
exp[+i(qr/4)sgn(no k„)]

k2 )

n

valid for ~np k„~ && 1.
Equations (12) and (13) suggest that the oscillations

in Eq. (10) arise from the interference of electron waves
that are emitted from two sources. The proportionality
factors 4 (+np), on the one hand, and the phase factors
e+'&~' "~, on the other hand, suggest that the source,
associated with the amplitude f+, is located at r = +nQ,
and the other, associated with the amplitude f, at r =
—n, . The two sources are the image of one another after
a reflection in the zy plane. (Reflection in the zy plane
corresponds to replacing k„by —k„, since we have axial
symmetry around the axis of polarization. ) Furthermore,
the factor (—1)" in Eq. (12) can be seen to be related to
the fact that the two sources are out of phase by precisely
half the oscillation time of the laser field. (If ungerade
states are considered there is an extra phase factor —1
involved. ) Without the coherence of the two sources, the
oscillations in dI'„/dQ would not appear and we would
obtain Eq. (11). [In that case, we would have the sum
of the squared modulus of each amplitude in Eq. (12)
and not the squared modulus of their sum. ] In Appendix
A the above given interpretation to Eq. (10) is justified
by explicit construction of an effective density of sources
which yields exactly the ionization amplitude given by
Eqs. (12) and (13).

From the above discussion we obtain the following
physical picture in the laboratory frame of reference: The
angular pattern of photoelectrons arises from the inter-
ference of (freely propagating) outgoing electron waves
that are created in the near vicinity of the proton each
time that the distorted electron cloud, which oscillates
like a free-electron driven by the field, reaches its turning
points. From this it is clear that Eq. (7) is a condition for
the occurrence of interference oscillations in the angular
dependence of photoelectrons; it requires the de Broglie
wavelength of the emitted electron waves to be small with
respect to the distance between the two sources.

From Eq. (10) we see that maximal constructive in-
terference between waves emitted from the two sources
takes place in the direction

+0 ~~
npk„sin 0

(16)

From this it is easily seen that this width decreases grad-
ually if the angle 0 is increased from the polarization
axis to directions perpendicular to it. It is easily shown
from Eq. (14) or (15) that the number of interference
fringes for 0 between 0' and 180' is approximately equal
to 2cxok~/1! .

It is interesting to express the condition Eq. (7),
which characterizes the highly nonperturbative radiation
regime, in an alternative form. By invoking no ——Ii~~/u2
and our high-frequency condition, i.e. , ~ && iEo(no)~,
Eq. (7) can be expressed as

where we have required the validity of Eq. (7) for all
open channels. Equation (17) states that the energy in
the jitter )notion of a free electron driven by the laser
field has to be large with respect to the photon energy
[21].

Angular integration of Eq. (10) leads to divergence.
There is no internal inconsistency, however, since the di-

vergence comes from the behavior of dI'„/dQ as the polar
angle 0 tends to 90', whereas Eq. (10) does not apply to
directions that are (nearly) orthogonal to the polariza-
tion axis. The calculation of the partial decay rates I'„—
starting from Eq. (1) or Eq. (2) with which it is equivalent

and which yields a finite result for dI'„/dQ (0 = 90') [see
Eq. (63) of paper I]—is carried out in Sec. II B.

B. Angular-integrated multiphoton
ionization decay rates

where the prime indicates that the summation is to be
carried out over all p and q for which p+ q is even. In
Eq.(18) we have defined the integral I)) q(z) by

I„(z)= J„(r)J (r)dr
0

(19)

From Eq. (2) we find that the angular-integrated decay
rates can be expressed as the double sum

4

p ~ —q piq

)

This integral cannot be evaluated in. closed form; how-
ever, it is possible to obtain an asymptotic expression for
z suKciently large (see Appendix B):

cos0 =

with q an arbitrary integer. Here P denotes the parity
quantum number, which equals 0 (1) for gerade (unger-
ade) states. Maximal destructive interference takes place
in the direction

qr [g ~ -', (n + P) ——,']
(15)

npk„

The width of the interference fringes (the distance be-
tween two successive maxima or minima) is therefore

( 1)K))-q)/21
II,,q(z) =

q+ I)

+0(—
~

+0(z '), (20)
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in which g denotes, as usual, the logarithmic derivative
of the I" function. The substitution of the expression
Eq. (20) into the sum of Eq. (18) yields, for I'„,

I „= —
I {[In(2ap k„) —@(-')]St'l(np)

np

+s&'&(,)).
In this equation the sums S„(np) and S„(np) are given
by the expressions

st'& = ) 'e„„c„',
P)V

(22)

and

p q+
2

respectively. The sum S„ is readily evaluated from the
Fourier series Eq.(3), yielding

S."= IC'(np) I' (24)

I4(np cos P) I
cos nP —I4(np) I

IC (np) I
sin P

Equation (26) demonstrates explicitly that (partial)
decay rates vanish rapidly with increasing frequency at
fixed np, namely roughly as k„oc u . Note that the
vanishing of the partial rates with increasing ~ at fixed np
is in accordance with the general theory, summarized in
Sec. II of paper I (high-frequency stabilization). The de-
pendence of the partial decay rate, Eqs. (26) and (28), on
the intensity, the frequency, and the number of photons
absorbed is rather intricate, as could be expected from
the nonperturbative nature of our theory. As it turns
out, in the special case of high np (the ultrastrong-field
limit) this dependence is greatly simplified. This we will
discuss in Sec. IIC. For high-lying Rydberg states one
may neglect the atomic distortion, i.e., the implicit np
dependence in Eq. (26). We then find that at fixed fre-

(it is assumed that 4 has a definite parity). The evalu-

ation of S„ is more cumbersome and is carried out in
Appendix C. It equals

( o o q~)l ~ —I@( o

sin P

(25)
With Eqs. (24) and (25), Eq. (21) yields

»(2npk ) —g(2)+& (op)
&»' l@(np)l'
(k„p np

(26)
where we have defined K„(np) by

a. = s&'lily(n. ) I',

or equivalently by [see Eq. (25)]

quency the rates decrease as I /, hence high-intensity
8/a bilizatio n.

np )) 1. (29)
If we keep the frequency fixed and let the intensity
grow large, it is easily checked that the three follow-
ing conditions, namely the condition of high frequency:

)) IEp(o'p) I, the condition of destructive interference:
npk„)) 1 [see Eq. (7)], and the condition of dichotomy:
np )) 1 [see Eq. (29) above], can be satisfied arbitrarily
well irrespective of the value of tlute frequency This. is so
because the binding energy of the ground state (within
a manifold of states defined by the magnetic quantum
number of the initial state) tends to zero as np becomes
very large. We have termed the radiation regime, which
is characterized by these three simul/aneous conditions,
the "ultrastrong-field limit. "

We have shown earlier that in fields of high np the
bound-state eigenfunctions of the dressed potential split
into two parts, each of which is concentrated near ei-
ther of the two end points of the line segment of charge
generating the dressed potential, i.e. , +np, and is neg-
ligible elsewhere. We have called this phenomenon the
"dicliotomy" of the hydrogen atom (see Ref. [2]).

Let us give here a short summary of our findings. Since
each of the two parts of the wave function separately
satisfies approximately the Schrodinger equation for the
same value of the energy, the eigenfunctions of Vp appear
in "gerade-ungerade" pairs:

(30)

with P the parity 0 or l. [We will assume here that
y(r) is normalized to unity. ] Near each end point the
dressed potential attains a simpler form. It was shown
(see Ref. [2]) that the eigenfunctions and eigenvalues of
the Schrodinger equation containing the "end-point po-
tential" scale with o.p. It was shown that y(r) satisfies
the scaling law

—1/3~np r
np

while the energy E can be expressed as E = W np
—2/3

Here u(r) is an eigenfunction of the Schrodinger equation

1, 1 f'2)'~'
2 7r (r)

t' I —cos 01
u(r)

= W u(r), (32)

with energy eigenvalue W, independent of np. Here K
denotes as usual the complete elliptic integral of the first
kind. The potential entering Eq. (32) is in fact the end-
point potential for np ——l. [We assume that the eigen-

C. Partial and total multiphoton ionization
decay rates in ultrastrong fields (high np)

Equation (26) can be further analyzed under the con-
dition that np is large:
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functions u(r) are normalized to unity. ]
From Eqs. (30) and (31) we find in particular that, for

su%ciently high o,p, the probability density to find the
electron at the end points +np of the line charge is given
by

I@(~ ) Iz lu(0) I'

2o (33)

where the overlap between the functions y( —r —np) and
g(r —exp) was neglected. From Eq. (33) we see that
the probability to find the electron at the points +exp
decreases inversely proportionally to Ap.

Using Eq. (33) in Eq.(11)gives the (averaged) angular-
dependent multiphoton ionization decay rate in the
ultr astrong-field limit

dI'„" lu(0)l ~
dQ 2vrn~I cos 0' (34)

Here we have used the relation k„/2nu (where
we have used k„= +2[E(op) + n~] and we have in-
voked our condition of high frequency) and we have set
0,'p —I ~ 4) . Note the particularly simple way in which
the angular-dependent decay rate depends on the inten-
sity, the frequency, and the number of photons absorbed.
It is, however, not possible to draw conclusions from this
about the dependence of the (partial or total) angular-
integrated multiphoton ionization decay rates on the in-
tensity, the frequency, and the number of photons ab-
sorbed, since angular integration of Eq. (34) leads to di-
vergence (for 0 tends to 90').

When making use of the scaling relation Eq. (31) in
Eq. (28), we can show after some elementary manipula-
tions, which we will not reproduce here, that

'
lu( —&)I' —lu(o) I'

I (0)I'~

+ lu(-&) I'„
i lu(0) I

'( (36)

b,„—s ln np —ln 2+ C,

up to terms vanishing in the limit o,p ~ oo. In this
formula we have defined the constant C by

CI&r = ailn
I

—I+ I1~,I (u)
in which the constants Bi and B2 are defined by

(4o)

the intensity and frequency that fulfill our three above-
mentioned conditions cu » IEp(np)l, Eq. (7), i.e. , npk ))
1, and Eq. (29); i.e., np )) 1.]

From Eq. (37) we find that in ultrastrong fields the
branching ratios for decay by absorption of the various
number of photons possible are only weakly dependent
on the values of the intensity and frequency of the laser
field, a situation that is in strong opposition to what hap-
pens in weak fields. From Eq. (37) we see that the rate
of decay by multiphoton ionization depends on the num-
ber of photons absorbed, roughly through n . Conse-
quently, single-photon decay is dominant, while decay by
more than one photon becomes gradually less important
as the number of excess photons increases. However, if
this number grows, the ratio of decay by absorption of n
to n + 1 photons approaches unity. Due to this long-tail
behavior in ultrastrong fields, excess-photon ionization
(EPI) does nevertheless constitute a sizable part of the
decay modes of the atom.

The peak pattern in the energy spectrum of photoelec-
trons that our theory predicts (for the case of an "ideal
EPI experiment") differs drastically from what is pre-
dicted by LOPT, in weak fields. According to LOPT, the
partial decay rates depend on the intensity through the
number of photons absorbed via the well-known power
law I'„oc I". Furthermore, the partial decay rates
drop with increasing frequency with a steeper and steeper
slope as the number of photons absorbed increases (un-
der the condition that the frequency is large with respect
to the ionization potential). Consequently, in weak fields
the peak pattern of EPI electrons is quite sensitive to
the intensity and frequency of the irradiated light. Ex-
periments carried out at higher intensities prove that this
trend persists even beyond the limit where LOFT is ap-
plicable (see, e.g. , ['22,23]). This sensitivity of the peak
pattern contrasts with the weak dependence which ap-
pears in our case.

The total multiphoton ionization decay rate I' can be
easily obtained from Eq. (37) by summing over all open
channels (I' = P„ i I „).This gives

In the ultrastrong-field limit, we find for the partial
multiphoton ionization decay rates I'„ Ili = —lu(o)I'

18
(41)

('nsI )r. =, Ailnln2I g io ) (37)

This relation was obtained from Eq. (26) by invoking
Eq. (35) for 4„, setting np ——I I~u, and replacing k„
by /2nio. In Eq. (37) the constants Ai and Aq are given
by

Ai ——~s lu(0) I~ (38)

Az = Iu(o) I'[In 2 —24(-,') + 2C]

respectively. [Recall that Eq. (37) is valid for values of

7r2a, = —lu(O) I'[I» 2 —2q(-,') + 2C] —lu(O) I'( (2), (42)
6

respectively. As usual, ((z) denotes the Riemann zeta
function, defined by ((z) = P„ i n 2; in particu-

lar we have ((2) = P„ i n = x2/6 and ( (2)
i n ~ ln n = —0.9375482543185. [@(2)

—1.963510026021.] [We remark that Eq. (40) is valid
for values of the intensity and frequency that satisfy the
three above-mentioned conditions. ]

Equation (40) represents an important result. It shows
how the lifetime of atomic hydrogen depends on the fre-
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quency and the intensity under conditions that the in-
tensity reaches extremely high values. We have found a
striking feature; At high intensities, the hydrogen atom
tends to stabilize at fixed, but otherwise arbitrarily cho-
sen frequency. In fact, the lifetime of the atom increases
practically proportionally to the intensity of the laser
field, at fixed high frequency. From LOPT one finds
that at low intensity, the ionization rate increases with
the intensity if the frequency is kept fixed. (If the min-
imum number of photons to ionize the atom is n, this
increase is proportional to the nth power of the inten-
sity. ) Consequently, if at fixed frequency the intensity is
increased from the value zero, the lifetime of the atom
first decreases, then reaches one or, possibly, more min-
ima, and subsequently, within the general assumptions
of our theory, increases monotonically with no bound.
It is important to be aware of the possibility that the
lifetime of the atom is not a unimodal function of the
intensity. This situation may occur, when at low in-
tensities we start off with a frequency smaller than the
field-free ionization potential, so that, as the intensity
is increased, atomic levels, displaced by the (intensity-
dependent) ac Stark effect, shift into resonance. As has
recently been found, these resonances can also occur with
atomic levels that disappear when the intensity is lowered
("field-induced bound states"). These states arise from
so-called shadow states: eigensolutions of the Floquet-
system with wrong" asymptotic boundary conditions
(ingoing instead of outgoing waves) [24].

The unexpected (relative) stability of the hydrogen
atom in ultrastrong fields can be understood qualitatively
on the basis of the following approximation to the open-
channe/ part of the decaying state of the atom in the field
[see Eqs. (64) and (65) of paper I]:

~1(i., t) = (43)

in which the source density p(r, t) is given by
C ( —n(t)) exp( —iWt)

lr+ n(~) I

As Eq. (43) demonstrates, the decaying state con-
sists of a superposition of outgoing electron waves (cor-
responding to the ionization process) which are created
by the source of Eq. (44). It shows that (in the Kramers
frame of reference) outgoing electron waves are created
in the vicinity of the momentary position of the oscil-
lating proton. The calculation of the multiphoton ion-
ization amplitude from Eqs. (43) and (44) yields exactly
our simplified expression, Eq. (1). This latter expression
contains the probability amplitude 4(—n(P)) to find the
electron at the position of the proton and a phase factor
exp(in(P) k„}associated with the displacement of the
proton from the origin of the Kramers reference frame
by —n(P). These notions form the key to the physi-
cal mechanism underlying the stabilization of the atom
in ultrastrong fields, which we will now discuss. The
first stabilizing effect arises from the phenomenon of ra-
diative distortion of the electron cloud, as discussed in
Ref. [2]. This causes the probability amplitude of find-
ing the electron at the position of the proton to decrease
with increasing no (or at fixed frequency, with increasing

III. NUMERICAL RESULTS AND DISCUSSION
In this section we will present and discuss our numer-

ical results of the decay rates for multiphoton ionization
from the ground state of atomic hydrogen in a super-
intense, high-frequency laser field of linear polarization.
Our calculations are based on expression Eq. (2) for the
n-photon ionization amplitude f„. The coefFicients C

in this expression are defined in Eq. (3).
The form of Eq. (2) is well suited for numerical evalu-

ations. For a given value of o.o, we determine the coe%-
cients 4 by quadrature

4),„= e' ~C (—no cos P)dP2~
n. /2

cos(mp) C)(no cos P) dP (45)

intensity). On the other hand, in the ultrastrong-field
limit, the de Broglie wavelengths of the photoelectrons
are small with respect to the spatial extension (2no) of
the source from which they are emitted, as follows from
the condition Eq. (7), i.e. , nok„)) l. It thus follows
that the phase factor exp[in(P) k„] varies rapidly with
the phase P of the field. Consequently, waves emitted
from different positions of the proton tend to cancel each
other due to destructive interference. This suppresses
the outgoing fiux of electrons with increasing no (or at
fixed frequency, with increasing intensity). Since our ar-
guments for "high-intensity stabilization" are based on
Eqs. (43) and (44), which do not pertain to a particular
state of polarization, the phenomenon of high-intensity
stabilization is universal. Clearly, the precise dependence
of the total decay rate on the intensity depends on the
details of its two underlying mechanisms, namely "ra-
diative distortion of the electron cloud" and "destructive
interference of the outgoing electron waves" [25]. Note
that high-intensity stabihzation sets in when Eq. (17) is
satisfied. (Compare Dorr et al. [24]) and that radiative
distortion assists, but is not necessary for stabilization
(see Sec. IIB).

Equation (40) presents another surprise. As Eq. (40)
shows, the total ionization decay rate is approximately
proportional to the square of the frequency. This demon-
strates that in the extreme case of ultrastrong fields, the
lifetime of the atom increases substantially with decreas-
ing frequency. This is in strong contrast with what we
find from LOPT. According to LOPT, at low intensities
and high frequencies, the lifetime of the atom increases
substantially when the frequency is increased. For single-
photon ionization we have the well-known w i decay of
the ionization decay rate with increasing frequency [see
Eq. (42) of paper I ], whereas it can be argued that this
decrease is even steeper if the excess number of absorbed
photons is larger.

The frequency and intensity dependence of the total
decay rate given by Eq. (40) implies that for frequen-
cies that are low, yet sufficiently high so as to meet the
three conditions under which they are valid, the lifetime
of the hydrogen atom in an ultrastrong radiation Geld
can be quite moderate. This will be discussed in detail
in Sec. III C.
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for I even and zero for I odd, up to a value I, which
we choose suKciently large. [The wave function C (r) was
obtained in Ref. [2].] In Eq. (45) we have made use of the
fact that the ground state has parity P = 0. The inser-
tion of these coeKcients into Eq. (2) then immediately
yields the multiphoton ionization amplitude f„. The
momenta kn are computed from k„= +2[En(era) + nw]
with the values Eo(no) given in Ref. [2] ([26]).

In Sec. IIIA we study the angular distributions of
the photoelectrons. In Sec. III B we discuss the (angle-
integrated) partial rates as a function of the number of
photons absorbed. Finally, in Sec. III C we present our
results for the total ionization decay rates of the atom.

The validity of our approach is limited by the require-
ment of high frequency ~ && !Ea(no)!. We have studied
those cases in which the frequency is at least a factor of 4
higher than the binding potential of the atom in the field.
Under similar conditions, as has been shown by Bards-
ley and Comella and by Bhatt, Piraux, and Burnett us-

ing a direct numerical computation on one-dimensional
model atoms, the exact results compare reasonably well
with the lowest-order results provided by the Gavrila-
Kaminski theory [27]. Thus the above condition poses
a lower limit to the values of the frequency that we can
consider. Moreover, in all cases we have to ensure that
I' && ~ in order that our approach of stationary decay is
applicable. Yet we have chosen the frequency such that it
is not unrealistically high. (The maximum value we have
chosen is u = 1 a.u. , the minimum value is ~ = 0.125
a.u. )

On the other hand, the assumption that relativistic
and retardation effects can be neglected also imposes cer-
tain restrictions on the values of no and cu for which
our approach is valid. Relativistic eA'ects become im-
portant when the maximum jitter velocity of a classical
free-electron driven by the field (= non) becomes com-
parable to the speed of light (c 137 a.u.). The validity
of the dipole approximation requires the wavelength of
the light to be large compared to the size of the atom.
The estimation of the size of the atom in the laboratory
frame of reference by 4no leads to essentially the same
restriction, as one can easily check.

With the above restrictions, we are able to treat the
entire intensity range which extends from 1 to 104 atomic
units of intensity. This includes the interesting frequency
and intensity values of the pulses created by laser sys-
tems which are already in operation, but extends beyond
into the intensity range of the near-future generation of
laser systems which is now being developed in laborato-
ries throughout the world [28].
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Figs. 1—3 we have plotted the cases o.o ——20, ~ = 0.25;
o!o = 20, (d = 1; and a'p = 100,u = 0.125, respectively. In
all three 6gures we have displayed the results for ioniza-
tion by absorption of one, two, and three photons, respec-
tively. As is apparent from these figures we And in agree-
ment with Eq. (10) regular oscillations between zero and
an envelope which varies smoothly with the polar angle.
As was predicted in Sec. II A we find that the overall be-
havior of the photoelectrons is to be ejected in directions
away from the polarization direction. The interference
oscillations become more rapid the higher the value of o, o,
cu, or n (the number of photons absorbed). As one can
easily check, the number of interference fringes between

A. Angular-dependent multiphoton
ionization decay rates

As well known, in the case of linear polarization, the
angular-dependent distributions of ejected electrons pos-
sess axial symmetry with respect to the polar axis and
are also invariant under a reflection in the origin. Con-
sequently, it suKces to present our results for dl „/dA as
a function of the polar angle ranging from 0' to 90'.

In Figs. 1—3 we present some representative cases. In

FIG. 1. Angular-dependent decay rates for absorption of
one, two, and three photons, respectively, for ionization from
the ground state of atomic hydrogen in a superintense, lin-
early polarized laser field (of ao ——20 and u = 0.25), as a
function of the polar angle (in atomic units).
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0' and 90' is indeed approximately equal to nuk„/7r as
noted in Sec. IIA. For example, for the case of ioniza-
tion by absorption of three photons in a field of o;o ——20
and ~ = 1, we have nuks/z = 15.8, whereas by inspec-
tion of Fig. 2 we find approximately 14.5 oscillations.
Note also that, as we have predicted, the width of the
fringes becomes smaller as the angle with the polariza-
tion axis is increased. From Figs. 1—3 we may remark
that in accordance with Eq. (63) of paper I dl'„/dQ van-
ishes for 0 = 90' if the number of photons absorbed is
odd, whereas it attains a finite value for even n (T.his is
most clearly shown in Fig. 3. As it turns out, the values

of the partial decay rate for 0 = 90' and n = 2 in Figs. 1
and 2 are rather small. )

In Fig. 4 we make a comparison to Eq. (10), which is
valid for inc . k„l » 1, for the case of three-photon ab-
sorption in a field of o.o —20 and cu = 1. As expected,
the agreement is better for small values of the polar angle
and becomes gradually worse if the direction perpendic-
ular to the polarization axis is approached. (Although
o,ok„= 49.6 )& 1, as the polar angle approaches 90', the
condition era Ic„» 1 is no longer fulfilled. ) For smaller
values of o.uk„(not shown), the absolute comparison of
Eq. (10) with Eq. (2) is not as good, but nevertheless

=20 =' 0 = ].00 =0 '25
2,0x)0

)
I I I

I
I I I

I
I I l

I 1.0x10

0.'75x) O

I I
I

I I I
)

I I I

N~1

I I I
) 1

i.Ox1O
L5x10

O.axl 0
O.R5xl 0

g.Ox1Q

QOx1 Q

&~kgb 4
$0

I j I I I
f

I I I

1.5xlP

0 '~l~~l' R
0 SO 60

I I I
)

I 'I I
)

I I I
(

I I I

N=R

R.OxIQ

1.0x)0

0.5xl0

D
0

K
R.OxIO

l.nx1 0

50
I I I

f
I I I

f
I I I

(
I I I

M~3
4.0xtO

S.OxlO

~r, /i/LAMMAS~, II I, i

I I I
)

I I I i I I I f I

1.0x10
1.040

0.5xj Q

&mw ~iP /AA/A/i/i4(1

1.0xl0

I
!I

i//Li, i .

FIG. 2. Angular-dependent decay rates for absorption of
one, two, and three photons, respectively, for ionization from
the ground state of atomic hydrogen in a superintense, lin-
early polarized laser field (of a&& = 20 and u = 1.0), as a
function of the polar angle (in atomic units).

FIG. 3. Angular-dependent decay rates for absorption of
one, two, and three photons, respectively, for ionization from
the ground state of atomic hydrogen in a superintense, lin-
early polarized laser field (of os = 100 and cu = 0.125), as a
function of the polar angle (in atomic units).
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FIG. 4. Comparison of the angular-dependent decay rate
obtained from Eq. (2) (solid curve) with Eq. (10) (dotted
curve) for ionization by three-photon absorption from the
ground state of atomic hydrogen in a superintense, linearly
polarized laser field (of ao = 20 and cu = 1), as a function of
the polar angle (in atomic units).

reproduces the positions of the maxima and minima in
the angular-dependent rate [see Eqs. (14) and (15)] sur-
prisingly well.

B. Angular-integrated multiphoton
ionization decay rates

Before discussing in Sec. III C the lifetime of the atom
decaying by multiphoton ionization, let us first study the
partial decay rates as a function of the number of pho-
tons absorbed. Our results are summarized in Tables
I—IV, where we have given the partial decay rates for
ionization by absorption of one through five photons for
u = 1.0, 0.5, 0.'25, and 0.125, respectively. (In the tables
we have put powers of 10 in between square brackets. )
These values were computed by numerical integration
of the angular-dependent rates obtained directly from
Eq. (2). Typical cases are illustrated in Figs. 5—7, where
we have given a graphical representation of the partial
decay rates as a function of the number of photons ab-
sorbed for 1 & n & 10. We have chosen the same exam-
ples for which we have presented the angular-dependent
rates in Sec. IIIA. These figures can be looked upon as
the peak pattern obtained in an ideal EPI experiment in

which the photoelectron yield is recorded as a function
of the energy [29].

As is apparent, the single-photon decay channel is
dominant, and the heights of the higher-order peaks de-
crease steadily with their order. Yet for higher orders,
two consecutive peaks in the EPI spectrum attain similar
heights. Because of this long-tail behavior, the ratio of
decay by excess-photon ionization to single-photon ion-
ization is still quite significant. For example, for o.p = 20
and u = 1 the decay rate for absorption up through ten
photons equals I' = 0.000420 (from Table VI), whereas
decay by single-photon absorption yields I'i ——0.000298
(see Table I). Consequently, about one-third of the decay
takes place by excess-photon ionization. We also find,
when comparing the various cases represented in Figs. 5—
7, that the pattern of peaks is only weakly dependent on
the intensity and the frequency. These notions agree well
with the analysis presented in Sec. II C [although strictly
spoken, the validity of our expression (37) is limited to
ultrastrong fields].

In Table V, we give the values of !4(czo)! and A„
(n & 5) for various values of the parameter ao. Here
we have calculated b,„by the evaluation of the sum S~f 1

of Eq. (23) and using the relation A„= p( l/!@(~o)!2
[see Eq. (27)]. With the values of!4(ceo)!z and A„given
in Table V, the partial decay rates I „can be calculated
from Eq. (26) for arbitrary values of the frequency subject
to the conditions nok„)) 1 and u )) !Eo(no)!. Excellent
agreement is obtained with Eqs. (26) and (28) for almost
all cases that we have investigated (surriinarized in Table
VI and Fig. 8 of Sec. III C). For example, for the cases
0,'p = 100 and u = 0.125 and o.'p ——20 and u = 1, direct
numerical integration from Eq. (2) agrees with Eq. (26)
in three significant figures [for all values of n in Table V
(1 & n & 5)]. For lower values of crpk„, the agreement
is not as good. For example, for single-photon ionization
in a field of o, p ——20 and u = 0.25 we obtain by direct
calculation from Eq. (2) I'i ——0.00744 (see Table III),
while Eq. (26) yields Fi —0.00760 (see Table V).

C. Total multiphoton ionization decay rates

Our results for the total decay rates for multiphoton
ionization from the ground state of atomic hydrogen in
a superintense, linearly polarized laser field, as a func-
tion of the intensity, are given in Table VI for various

TABLE I. Values of partial decay rates I' for ionization by absorption of one through five
photons, from the ground state of a.tomic hydrogen in a superintense, linearly polarized laser field
of u = 1 a.u. , as a function of no (in atomic units). a[5] = a x 10 .

5
10
20
40
70

100

1.08[—2]
1.44[—3]
2.98[—4]
1.1V[—4]
4.63[—S]
2.13[—5]

2.2S[
3.1V[
s.s6[
2.O2[
8.95[
4.28[

—3]
—4]
—s]
—s]
—6]
—6]

r3
9.2V[—4]
1.38[—4]
2.s2[—s]
V.92[—6]
3.2V[—6]
1.54[—6]

I 4

4.91[—4]
v.s2[—s]
1.42 [—5]
4.sv[—6]
1.76[—6]
v.98[—v]

3.O1[—4]
4.71[—5]
8.92[—6]
2.96[—6]
1.15[—6]
5.20[—7]
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TABLE II. Values of partial decay rates I' for ionization by absorption of one through five

photons, from the ground state of atomic hydrogen in a superintense, linearly polarized laser field

of u = 0.5 a.u. , as a function of ns (in atomic units).

Q'p

10
20
40
70

100
200

7.20[
1.34[
4.91[
1.87[
8.53[
2.O2[

—3
—3
—4]
—4]
—s]
—s]

1.36[
2.24[
7.88[
3.4S[
1.66[
4.34[

—3]
—4]
—5
—5
—5
—6]

5.62[—4]
9.93[—5

3.oo[—s]
1..23[—S]
5.81[—6]
1.60[—6]

3.00 [—4]
s.s4[—s]
1.72[—5]
6.58 [—6)
2.98[—6]
7.73 [—7]

1.85[—4]
3.44[—S]
1.11[—5]
4.30[—6]
1.94[—6]
4.68 [—7]

values of the frequency. The values for the total mul-
tiphoton ionization decay rates were obtained by sum-
ming the partial rates I'~ for single- through ten-photon
absorption. To facilitate their discussion, we have dis-
played them graphically in Fig. 8, where we have also
indicated the corresponding values of the parameter o.p.
In Fig. 8 the intensity ranges from 1 to 10 a.u. and the
frequency values we have considered are 0.125, 0.25, 0.5,
and 1.0 a.u. Because of the several orders of magnitude
over which both the intensity and the total multiphoton
ionization decay rate vary, we have chosen a representa-
tion with a double-logarithmic division.

The four dotted curves in Fig. 8 (which appear to be
quasistraight, on the log-log scale) represent the result of
Eq. (40) for u = 1.0, 0.5, 0.25, and 0.125, respectively.
The values of the constants Bi and B2 in Eq. (40) were
extracted from the values of the ground-state wave func-
tion on the line segment of charge for ct. p = 1000. We
thus obtain [30]

Bj
——0.00746,

Bg ——0.285.

Although Eq. (40) strictly holds for the ultrastrong-field
regime, it nevertheless forms a suitable basis from which
we can discuss the overall dependence of the total decay
rates on the frequency and the intensity.

As is apparent from Fig. 8, markers corresponding to
the same value of the frequency follow approximately
the dotted curves. As one can easily check, the quasi-
straight lines have a slope of about —1. This demon-
strates that at fixed frequency and increasing intensity,

the total multiphoton ionization decay rate decreases
roughly inversely proportionally to the intensity, in agree-
ment with Eq. (40). This is the (a priori unexpected)
high-intensity stabilization as discussed in Sec. IIC of
this paper.

The values of the frequency that we have represented
in Fig. 8, namely 0.125, 0.25, 0.5, and 1, respectively,
were chosen in a geometric progression. As Fig. 8 dis-
plays, the quasistraight curves representing the result of
Eq. (40) are approximately equidistant, which reflects
the fact that the total ionization decay rate at a fixed
value of the intensity depends on the frequency through a
power law. Indeed, it follows from Eq. (40) that (at fixed
intensity) the total multiphoton ionization decay rate is
roughly proportional to the square of the frequency. This
can be easily checked by inspection of Fig. 8, where we
find that, when at fixed intensity the frequency is de-
creased by a factor of 2, the total decay rate decreases
by about a factor of 4. As we have already discussed in
Sec. IIC, the dependence of the total multiphoton ion-
ization decay rate on the intensity and the frequency
under these extreme radiation conditions is totally dif-
ferent from what is obtained from I OPT, valid for low
intensities. Indeed, according to LOPT the total decay
rates increase rather than decrease with increasing in-
tensity at fixed frequency. Moreover, according to LOPT
the total decay rates decrease rather than increase with
increasing frequency, at, fixed (low) intensity.

From Fig. 8 we may also remark that markers corre-
sponding to the same value of no (e.g. , 20, 40, 70, 100,
and 200) also lie on almost straight lines. As was noted
from Eq. (26) in Sec. IIB, at a fixed value of no, the
(partial) decay rates drop approximately with the square

TABLE III. Values of partial decay rates I'„ for ionization by absorption of one through five

photons from the ground state of atomic hydrogen in a superintense, linearly polarized laser field

of ~ = 0.25 a.u. , as a function of no (in atomic units).

&p

20
40
70

100
200
400

7.44[—3]
2.3O [—3]
8.10[—4]
3.61[—4]
8.23[—S]
2.12[—S]

9.76[—4]
3.18[
1.37[
6.S2[
1.7O[
4.79[

1.17[
4.68[
2.22[
6.11[
1.83[

4]
—s]
—s]
—6]
—6]

4.08[—4]
6.62[
2.47[
1.12[
2.91[
9.O2[

—s]
—s]
—s]
—6]
—7]

2.22[—4]
4.22[
1.61[
7.2S[
1.7S[
5.15[

—5]
—5]
—6]
—6]
—7]

1.35[—4]
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TABLE IV. Values of partial decay rates 1 for ionization by absorption of one through five

photons from the ground state of atomic hydrogen in a superintense, linearly polarized laser field

of u = 0.125 a.u. , as a function of no (in atomic units).

70
100
200
400

1000

4.14[—3]
1.73[—3]
3.59[—4]
8.79[—5]
1.37[—5]

5.79[—4]
2.71[—3]
6.85[—5]
1.87[—5]
3.24[—6]

1 84[—4]
8.68[—5]
2.37[—5]
7.18[—6]
1.34[—6]

4.25[
1.11[
3.43[
6.81[

—5]
—5]
—6]
—7]

9.48[—5] 6.10[—5]
2.74[—6]
6.55[—6]
1.91[—6]
3.93[—7]

of the frequency, if the latter is increased. [We do not
need no to be high, as in Eq. (40), in order that Eq. (26)
be valid. ] This simply illustrates the high-frequency sta-
bilization which forms the central issue of the Gavrila-
Kaminski iteration scheme. It thus follows that at fixed
o, o, i.e. , for a given distortion of the atom, the total de-
cay rate decreases with the square root of the intensity
as the latter is increased. Consequently, markers corre-
sponding to the same value of the parameter o.o appear
in Fig. 8 on straight lines with a slope of —0.5, as one
can easily check.

%'e could compare our calculations with one published
very recently by valet, using a novel approach, solving
the Floquet equations in the Kramers frame of reference
on a grid, using a variant of complex rotation which is
most suitable to the case of interest. In this paper pre-
liminary results are presented only for o,p: 20 (see his
Fig. 9). For u = 0.5, our results presented in Fig. 8 s!iow
only 20'%%uo deviation from his data [31].

As is apparent from Fig. 8, the lifetime is extremely
"bort for values of the intensity about the atomic unit,
&~rhich could have been expected from extrapolation of
the well-known LOPT formula for single-photon ioniza-
tion towards high intensities. (Although one has to be
very careful with such estimates, since as was shown in

Ref. [32] perturbation theory may overestimate decay
rates at intermediately high intensities by several orders
of magnitude. ) However, for low enough frequencies and
very high intensities, we find from Fig. 8 that the life-
time of the atom can be remarkably long. For example,
for I = 100 and u = 0.25, values that have already been
annouiiced [33], the width of the decaying state is only
2 x 10 4. This amounts to about one-seventeenth of the
interlevel distance and corresponds to about 200 oscil-
lations of the oscillating light field (i.e. , 120 fs). (The
atomic unit of time amounts to 7o —0.0242 fs.)

IV. EXPERIMENTAL CONSEQUENCES:
DISCUSSION

In the foregoing, we established the existence of ra-
diation dressed states of the atom in fields of intensi-
ties far beyond the atomic unit, which have lifetimes
that allow —at least in principle —experimental proof of
their existence. In the following we would like to discuss
how it might be possible to verify the existence of these
(strongly) deformed states.

Observation of the dressed ground saba/e, starting from
the atom outside the field in the ground state, appears
to be difIhcult to realize. As we have shown in Sec. III,
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FIG. 5. Partial decay rates for ionization from the ground
state of atomic hydrogen in a superintense, linearly polarized
laser field (of os = 20 and u = 0.25), as a function of the
number of photons absorbed (in atomic units).

FIG. 6. Partial decay rates for ionization from the ground
state of atomic hydrogen in a superintense, linearly polarized
laser field (of ao = 20 and u = 1.0), as a function of the
number of photons absorbed (in atomic units).
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FIG. 7. Partial decay rates for ionization from the ground
state of atomic hydrogen in a superintense, linearly polarized
laser field (of no = 100 and w = 0.125), as a function of the
number of photons absorbed (in atomic units).

during the buildup of the field intensity, the atom in
its ground state is very short lived, even for the soft-
x-ray laser systems that are now being developed (see
Ref. [34]). The atom is likely to be ionized in the edges
of the pulse before it sees the very high intensities (see
also [35]). A sudden rise of the intensity ("square" in-
tensity profile of the pulse or relativistic atomic beam)
does notseem , to solve t, his difficulty, not to mention the
problems arising from transient effects that will thus be
induced in the atom. These transient effects will mask
the spectrum of the atom dressed by the very intense
field that we want t,o resolve. The fact, that, one cannot
appeal to the conventional experimental methods is ap-
parently the price one has to pay for the curiosity to learn
about the atomic dynamics in superintense fields. In the
following, we will outline a few alternative schemes that
one may envisage. Let us for the moment postpone the
discussion of the ground state and examine whether the
consideration of excited states can offer a solution to this
problem.

The situation is indeed different for Rydbery s/a/es of
high magnetic quantum number. These may be prepared
outside the field, starting from the atom in its ground

state, e.g. , with the help of an excitation 1aser of circu-
lar polarization. In the first place, the frequency condi-
tion that requires the photon energy to be much larger
than the binding energy can be fulfilled rather easily (in
principle, even with lasers operating in the infrared; see
Ref. [2]). In contrast to the ground state, this can be
done before the atom has entered the field, i.e. , before
its ionization potential has been reduced by the intense
field. In the second place, it is expected that the lifetime
of these states can be made sufficiently large so as to
survive the (high) intensities, which are present during
the rise of the pulse, simply by increasing the magnetic
quantum number m [36]. There are, however, some lim-
itations. One has to take care that —taking into consid-
eration the high principal quantum number —the size of
the excited state does not get so large that the dipole ap-
proximation breaks down. For example, one cannot have
n = 100 and at the same time ~ = 0.1, or larger. An-
other point that we have to keep in mind is that, in order
to create interesting effects of "radiative distortion, " we
need o.o to be high with respect to the size of the un-
perturbed state (see Ref. [2]). Thus the value of no that
we need in order to achieve a significant distortion of our
Rydberg state must be quite large, much larger than for
the ground state. (For excited states, however, fields of
relatively low frequency can be considered, so that it is
not difficult for a given intensity to obtain large values of
no. )

On the other hand, as we learned from the preceding
sections, high-intensity stabilization can also be realized
by creating a situation for which nzcu is large. This ap-
pears to be much easier to realize in practice. As we have
discussed in Sec. II A, this condition defines what we have

called the highly nonperturbative radiation regime. As
we have pointed out, this radiation regime is character-
ized by destructive interference of electron waves emit-
ted from different positions of the proton in the framers
reference frame, It yields angular distributions of pho-
toelectrons and a peak pattern in their energy spectrum
that are entirely different from what is obtained in fields
of moderately high intensity (see Secs. II and III).

So far we have been thinking of the preparation of a
pure s/a/e outside the field which subsequently enters the
pulse adiabatically Yet there is. another way in which

excited states can be employed, namely in the form of a

TABLE V. Values of I4(oo)I and D„(n & 5) for the ground state of atomic hydrogen in a.

superintense, linearly polarized laser field, as a function of no (in atomic units).

5
10
20
40
70

100
200
400

1000

Ic'(oo) I

0.045 2
0.021 7
0.014 1
0.012 6
0.010 6
0.008 40
0.005 68
0.004 11
0.002 61

—0.291
+0.520
+0.443
+0.0303
—0.516
—0.454
—0.614
—1.07
—1.64

—0.296
+0.294
—1.15
—2.16
—2.20
—2.04
—1.79
—1.84
—2.07

—0.600
+0.231
—1.09
—2.87
—3.33
—3.33
—3.06
—2.84
—2.70

—0.842
+0.0568
—1.15
—2.86
—3.63
—3.84
—3.93
—3.76
—3.42

—1.01
—0.128
—1.33
—2.90
—3.63
—3.86
—4.29
—4.42
—4.12
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TABLE VI. Values of total decay rates I' for multiphoton ionization from the ground state of
atomic hydrogen in a superintense, linearly polarized laser field, as a function of o.o for various
values of the frequency (in atomic units).

10
20
40
70

100
200
400

1000

u = 0.125

5.18[—3
2.22[—3
4.83[—4
1.22[—4
2.01[—5

ur = 0.25

9.45 —3]
2.93[—3]
1.07[—3]
4.82[—4]
1.14[—4]
3.03[—5]

u =0.5

9.97[—3]
1.83[—3]
6.51[—4]
2.54[—4]
1.17[—4]
2.84[—5]

1.53[—2]
2.11[—3]
4.20[—4]
1.59[—4]
6.39[—5]
2.96[—5]
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FIG. 8. Total decay rates for multiphoton ionization from
the ground state of atomic hydrogen in a superintense, lin-
early polarized laser field, as a function of the intensity for
various values of the frequency (in atomic units). The num-
bers next to the markers indicate the values of ap. The dotted
curves represent the result of Eq. (40).

Rydberg wave pacI-ek. (We shall continue to assume that
the entrance of the atom into the laser pulse proceeds
adiabatically. ) This packet could be prepared outside the
field, starting from the atom in its ground state with the
help of a, pulsed excitation laser of circular polarization,
similarly as above. When the excitation laser pulse has
passed, the packet moves out in an "orbit, " whose recur-
rence time is essentially dictated by the laws of classical
mechanics. After the orbit time (7 = 2mn s, with n the
principal quantum number) the wave packet has returned
near to its original position, i.e. , close to the proton. If
during this motion the wave packet is irradiated by an
intense laser, appreciable ionization will take place only
when it passes very closely to the proton. This simply

reflects what we discussed in Sec. V of paper I, namely
that it is only in the immediate vicinity of the proton that
appreciable energy transfer to the electron can take place
(see also [36]). This eA'ect was demonstrated experimen-
tally by ten Wolde et at. [37] by probing the atom with a
second laser and recording the ionization signal as a func-
tion of time. The time-resolved ionization signal shows a
series of peaks spaced by the round-trip time of the elec-
tron. I"or the case of their experiment (principal quantum
number n 40), this corresponded to a few picoseconds.
By using now a very intense laser pulse instead of a weak
probe pulse as was used in this experiment, it appears to
be possible to synchronize the excitation pulse and the
"probe" pulse in such a way that the packet, submerged
in the relatively weak-field part of the pulse, has only
a small probability to become ionized (where the wave

packet is at a large distance from the nucleus), until it
reaches the region where the intensity attains its peak
value (where the wave packet is close to the nucleus).
(Obviously the theory summarized in Sec. II of paper I
applies to ionization from a stationary state and has to
be modified accordingly so as to describe ionization from
a wave packet. ) It is important to realize that in order
to draw interesting conclusions from this experiment, the
lifetime of the atom needs to be long with respect to the
round-trip time of the electron.

It will be clear from the above discussion that Rydberg
states do ofI'er an interesting alternative to the ground
state for demonstrating nonperturbative eA'ects of the in-
teraction of the radiation field with the atom. In contrast
to the ground state of the atom, which we have studied
in detail in this work, at present no values for the life-
times of Rydberg states are a.vailable and it is therefore
diKcult to subst, antiate to a larger extent than we have
done above, the possible realization of an experiment in

which the theory could be tested.
Let us now return to the discussion of an experiment

in which the deformed ground state could be observed.
When electrons are scattered from protons in the pres-
ence of an intense radiation field, the elastic-scattering
cross section will exhibit deviations from the well-known
Rutherford formula. In the case that the scattering is

inelastic (i.e. , involving the net absorption or emission
of a certain number of photons) one speaks of "free-free
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transitions. " During the past few years much interest has
developed in the study of this phenomenon. (For a review
about this subject, see, e.g. , [38] and [39]. For particu-
lar experiments carried out to study this phenomenon,
see, e.g. , Refs. [40, 41].) In fact, the basic formalism of
the Gavrila-Kaminski theory was originally developed for
these situations [42]. In this theory —to lowest order in
the iteration —the electron is elastically scatttered from
the dressed potential, while free-free transitions become
possible in the next order of the iteration. The study of
the elastic scattering has already exhibited some interest-
ing features [43]. The validity of the theory is, however,
limited to cases where not only the earlier discussed con-
dition of high frequency must be fulfilled, but, also the in-
cident energy of the electron is required to be small with

respect to the photon energy. Under these circumstances,
Feshbach resonances iri the elastic or inelastic cross sec-
tions cannot occur. Here we will be interested in the case
where, on one hand, the photon energy is large with re-
spect to the ionization potential of the atom in the field,
but, on the other hand, the energy of the incident elec-
tron is comparable or larger than the photon energy. It
then becomes possible that the incident energy matches
the ac Stark shifted levels of the atom in the field (modulo
an integer number of the photon energy). Under these
circumstances, the dynamics may lead to the emission of
photons and cause the electron to be captured temporar-
ily in a bound state of the dressed potential until the
subsequent absorption of photons permits the electron to
escape into the continuum again. The delay introduced
by this capture-escape episode shows up as a resonance
in the elastic and inelastic cross sections. Indeed, since
there are two quantum paths involved in this scattering
process (a "resonant" and a "nonresonant" path) lead-
ing to the same final state, as usual, interference will
take place. This interference phenomenon will typically
show up in the cross sections as a Fano-type profile on
a smooth background, with a width that corresponds to
the strong-field width of the hydrogen atom in the bound
state at resonance. (As an illustration, see Ref. [44] for
the result of a theoretical calculation of this effect in the
case of weak fields. ) Finally we note that these reso-
nances are tunable either by varying the laser frequency
at fixed energy of the incident beam of electrons or vice
versa,

Let us finally discuss another way in which one may
create the atom in the field in the deformed ground state.
To this end the atom must be prepared in a certain l
mixture of states belonging to the same (high) princi-
pal quantum number, but having a magnetic quantum
number rn = 0. This initial state must be prepared in
such a way that it resembles the dressed ground state
(i.e. , has a large overlap integral with it). By making the
rise of the pulse short, enough (square pulse), the wave
function of the state under consideration will hardly un-
dergo a significant change during this rise (nonadiabatic
or sudden entrance of the pulse). On the other hand,
during the entrance of the pulse, the wave function will
start to oscillate like a free electron driven by the field. It
may be possible that this situation can be realized before
the atom has a chance to become ionized. The recorded

In this appendix we will discuss the physical picture
underlying the angular pattern of photoelectrons given
by Eq. (10). This we will do by demonstrating that
the multiphoton ionization amplitude corresponding to
Eq. (10), given by Eqs. (12) and (13), can be thought
of as generated by a certain effective density of sources
p, tr(r, t). Here we will derive this effective density of
sources in a heuristic way.

In what follows we will need the Fourier transform of
the "end-point potential" Vo(r) given by

/'1 —cos 0)
j (Al)

in terms of a complete elliptic integral of the first kind
(see Ref. [2]). Similar to the case of the dressed potential
Vo, the end-point potential can be looked upon as the
electrostatic potential created by a (linear) charge dis-
tribution. By making use of the integral representation
[45]

=1
2

OQ d'8

~upi + u2 + 2u cos 9

(A2)

Eq. (Al) can be cast in the form

Vo(r) =-
7r+2o, o

OO

~u~r+ eu~
'

The Fourier transform of Vo(r),

Vo(k) = dre '"'Vo(r), (A4)

can b e easily evaluated using the integr al form of
Eq. (A3). By carrying out the integration with respect

multiphoton ionization signal will then be a fingerprint of
the dynamics as predicted by our high-frequency theory.
These dynamics will mark their signatures on the angu-
lar distributions of photoelectrons and the peak pattern
in their energy spectrum as discussed in this paper and
in a previous work [48].
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to r first and by putting u = r jle . kl, we obtain

2 6 2
V.(k) = -—,!&' &l~o. kl)

exp[i sgn(no k)7.]7. ' d7.

high no (the dichotomy; see Ref. [2]). Using Eq. (10) of
paper I to carry out the Fourier synthesis leads to

V(r+ cr(t)) = Vp(r —no)T ) b(t —(n+ -')T)

~!no .kl)
.7r

sxp i —sgn(sss k)), if r +no and

where the integration with respect to 7 was carried out
in the complex plane along the positive or negative imag-
inary axis for no k positive or negative, respectively.

In order to discuss the mechanism of the multiphoton
ionization process, we return to a dynamical, i.e. , time-
dependent picture. We will describe the process in the
reference frame in which the proton oscillates according
to r = —n(t) and in which external forces are absent (the
Kramers frame). For sufficiently high frequencies, as was
noted in Sec. V of paper I, the wave function of the open
channel part of the decaying state can be replaced to an
excellent approximation by Eq. (62):

V(r+ n(t)) = Vp( —r —np)T ) b(t —nT)

(Al 1)

if r —cxo. The addition of the contributions from
each turning point, followed by the insertion in Eq. (A7),
yields the following expression for the eftective source
density:

p fr(r, t) = C'(+np)Vo(r —no)T ) b(t —(n+ k)T)
A =—OO

+OO

+4(—~o) Vo( —r —cxo)T ) . b(t —nT)

4 (r, t) = dt'go+i(r, r', t —t') p(r', t'), (A6)
x exp( —iWt). (A12)

in which the source density p(r, t) is given by Eq. (63):

~(r t) =- 4 ( —cx(t)) exp( —iWt)
li + ~(t)l

(A7)

As we have discussed in Sec. II A, in the highly non-
perturbative radiation regime the de Broglie wavelengths
of the photoelectrons are small with respect to the spa-
tial extension of the source from which they are emitted
(npI"„)) 1). The phase factor exp[in(P) k„] associated
with electron waves emitted at a position of the proton
—n(P) varies rapidly with the phase P of the field. Conse-
quently, waves emitted from diA'erent positions of the pro-
ton tend to cancel each other due to destructive interfer-
ence. However, when the proton passes its turning points
there is no such cancellation. This suggests that the an-
gular dependence of photoelectrons arises from outgoing
electron waves which are created near the turning points
of the oscillation of the proton +no. Let us now con-
struct an efI'ective interaction potential exerted by the
proton, which replaces U(r + ct(t)) [= —I/lr + n(t)l]
in Eq. (A7). It can be shown from Eq. (11) of paper
I that the Fourier time components of V(r + n(t)), i.e.,

V„(r), have the following limiting behavior. For r ~ +c1p
we have

V„(r) ~ (—1)"Vp(r —cap),

whereas for r —+ —a.o

(A8)

V„(r) ~ Vp( —r —np). (AQ)

As is displayed, the limiting potential Vo is the same for
all Fourier components. In the case n = 0, we already
encountered it when studying the mechanism underlying
the splitting of the (bound) electron cloud in fields of

f = f +(—1)"-f+. (A13)

The amplitudes fy appearing in this equation are given

by

1
exp(~imp . k) C (+cap) !Vp(k) l

x exp[+i arg Vp(k)], (A14)

in which Vp(k) is defined by the Fourier transform of the
end-point potential. When substituting Eq. (A5) into
Eq. (A14) we see that our heuristically derived expression
for the multiphoton ionization amplitude coincides with
Eqs. (12) and (13).

Thus we have shown that the angular distribution of
photoelectrons Eq. (10) can be thought of as created by
the density of sources given in Eq. (A12). This justifies
the dynamical picture which we have given to the rate
at which photoelectrons are ejected as a function of the
angle, Eq. (10).

It has the form of a train of b pulses in time, multiplied
either by Vp(r —np)4(+no) exp( —iWt) at times when
the proton is in its extreme right-hand position, or with

Vp( —r —np)4( —np) exp( —iWt) when the proton is in
its extreme left-hand position. Thus the eA'ective source
of Eq. (A12) emits electron waves at the instants when

the proton passes its turning points. By the insertion of
Eq. (A12) into Eq. (A6), it can be shown [by carrying out
the Floquet analysis of Eq. (A6) and by determining the
asymptotic behavior of its Floquet components for large

lrl, following Eq. (6) of paper I] that Eq. (Al'2) yields a
multiphoton ionization amplitude of the form of Eq. (12),
l.e. ,
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APPENDIX B: DERIVATION OF EQ. (20)

In this appendix we evaluate the integral

I
, (*)= J (r)J„(r)dr,

with m+ n even, for large values of its argument. For
this purpose we introduce the auxiliary function

I „(z;A) = f 1 ir)J„(v.)7 dr, (B2)

(B3)

where 0 & A & 1. Thus we may express I „(z) in terms
of I „(z;A) as

I „(z)=hm[I „(0;A) —I „(z;W)].

For the moment we restrict rn and n to non-negative
values. Let us consider first the integral I „(z;A) if z is
identically zero. It has the value [46]

I'(A)I'((m + n —A + 1)/2)
2"I'((m —n+ A+ 1)/2)I'((m+ n+ A+ 1)/2)I'((n —m+ $+ 1)/2)

This expression can be readily expanded in a I.aurent series about A = 0, yielding

(B4)

1)(m —n)/2
I „(0;A) =

(m n) /2)—
(B5)

2 „, 6 1 ir') / 1
Im„(zA)= — 7

" cos
~

r ——mm ——
~

cos
~

r — nx ———
~
dr+0(z "

)2 4y q 2 4)
( I)(m —n)/2 ~

( )I( m+n) 2/i d7+ r " sin 2rdr+ O(z )

Consider now the integral I „(z;A) if z is large. By replacing in Eq. (B2) the Bessel functions by their asymptotic
series for large arguments [17], we obtain

By the substitution of the results of Eqs. (B5) and (B6) in Eq. (B3) we obtain

(B6)

(B7)

where we have made use of the relation i/)(1) —21n2 = i/)(z). The final relation holds irrespective of the signs of m

and n This on. e may be easily verified from the relations J „(z) = (—1)"J„(z) in Eq. (Bl) and i/)( —n+ 2) = i/)(n+ 2)
in Eq. (B7).

APPENDIX C: DERIVATION OF EQ. (25)

In this appendix it will be shown that the sum S( ) of Eq. (23),

&2)
(C1)

can be cast in the integral form of Eq. (25):

g(2) —2
(C (no cos P) (

cos nP —[4(~o) [ dP. (C2)

To do this we make use of tlie following integral representation of the i/) function for half-integer values of its
argument [47]:

&( +-,') -&(-,') =
/' 1 —cos2my

dP. (C3)

From this we have
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Consequently

cospP cosy' —I
sing

(C5)

where we have denoted C„(P) by

C„(P) = ) ' 4„&4„' z cospP cosy'. (C6)

The summation can be carried out with the help of Eq. (3). This yields

C„(P) = iC(no cosP)i cos n&P, (C7)

where we have assumed that the bound initial state C has definite parity. We thus find from Eqs. (C5) and (C7) the
result of Eq. (C2).

[1] M. Gavrila and J. Z. Kaminski, Phys. Rev. Lett. 52, 614
(1984), and unpublished; M. Gavrila, in Atoms in Un

usual Situations, Vol. 143 of NATO Advanced Study Insti-
tute, Series B: Physics, edited by J. P. Briand (Plenum,
New York, 1987), p.225.

[2] For a detailed study of the radiative distortion of the
hydrogen atom in a linearly polarized field, see M. Pont,
N. Walet, M. Gavrila, and C. W. McCurdy, Phys. Rev.
Lett. 61, 939 (1988); M. Pont, N. Walet, and M. Gavrila,
Phys. Rev. A 41, 477 (1990).

[3] M. Pont, M.J. Offerhaus, and M. Gavrila, Z. Phys. 9, 297
(1988); M. Pont, Phys. Rev. A 40, 5659 (1989).

[4] M. Pont, preceding paper, Phys. Rev. A 44, 2141 (1991).
[5] We would like to recall here that Eq. (1) was derived

from Eq. (15) of Ref. [4], obtained to lowest order in the
inverse frequency. It should be valid irrespective of the
value of na, if the condition w» ~Ec(na)~ is well enough
satisfied. The validity of Eq. (15) of Ref. [4] was assessed
by estimation of the next term in the iteration in in-
verse powers of the frequency, a point which is supported
by exact numerical calculations (see Ref. [27]). As such,
some caution has to be taken with respect to mathemati-
cal rigor. As frequently happens with iterative procedures
applied in theoretical physics, our high-frequency itera-
tion scheme too is expected to be of the asymptotic type,
i.e. , formally divergent. What one would like to have is a
rigorous bound on the error introduced when truncating
the (asymptotic) series, but the most one may hope to be
able to achieve is to prove that the truncation error is of
some order in w/~Ea(na)~. It should be realized that even
with such a, statement in hand, all practical calculations
based on the Gavrila-Kaminski theory, derived from ei-
ther Eq. (15) of Ref. [4] or (1) of the present paper, will
still be subject to uncertainty. Although we realize the
importance of such rigorous mathematical statements, it
would carry us too far into mathematical physics, away
from our main goal. With this in mind, we have chosen
a more practical point of view.

[6] M. Bashkansky, P.H. Bucksbaum, and D.W. Shuh-
macher, Phys. Rev. Lett. 60, 2458 (1988).

[7] The consequences of our simplified expression for the to-
tal multiphoton ionization rate in superintense laser fields

have very recently been examined for the case of atomic
hydrogen a nd circular p ol ariz ation by M. Pont and M.
Gavrila, Phys. Rev. Lett. 65, 2362 (1990).

[8] L. V. Iieidysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov.
Phys. —JETP 20, 1307 (1965)].

[9] M. H. Mittleman, Phys. Lett. 47A, 55 (1974).
[10] G. J. Pert, J. Phys. B 8, L173 (1975).
[11] H. R. Reiss, Phys. Rev. A 22, 1786 (1980).
[12] D. M. Volkov, Z. Phys. 94, 250 (1935).
[13] M. H. Mittleman, Theory of Laser Atom -Interactions

(Plenum, New York, 1982).
[14] M. Janjusevic and M. H. Mittleman, J. Phys. B 21, 2279

(1988).
[15] "I he inclusion of the distortion of the initial state requires

special care. It is incorrect to first. neglect the electron-
nucleus at, traction and then to bring in the electrostatic
interaction as a corrective term. Such a procedure is ap-
plicable only for channels that are open for decay (corre-
sponding to unbounded motion of the electron), but not
for the closed ones (corresponding to bounded motion).
These latter ones are, however, essential for the descrip-
tion of the distorted initial state. This was later realized
by Mittleman (private communication). It is therefore
not surprising that, the results of Janjusevic and Mittle-
man are in sharp convict with mine, presented in this
paper; see, however, Refs. [18,19] of paper I.

[16] I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Se-
ries and Products (Academic, New York, 1980), formula
8.402.

[17] I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Se-
ries and Products (Ref. [16]),formula 8.451.

[18] G. Leuchs and H. Walther, in Multiphoton Ionization of
Atoms, edited by S. L. Chin and P. Lambropoulos (Aca-
demic, New York, 1984), Chap. 5.

[19] II. J. Humpert, H. Schwier, R. Hippler, and H. O. Lutz,
Phys. Rev. A 82, 3787 (1985).

[20] B. Wolff, H. Rottke, D. Feldmann, and K. Welge, Z.
Phys. D 10, 35 (1988).



2170 MARCEL PONT

[21] Note that whereas the wiggle energy of a free electron is a
purely classical quantity (it does not depend on Planck's
constant), the photon energy obviously is not. In the limit
that Planck's constant goes to zero (the classical limit),
Eq. (17) is automatically satisfied. One might therefore
think that in the highly nonperturbative radiation regime
our theory becomes classical. This conclusion is, however,
incorrect, for in order for the Gavrila-Kaminski theory
to be applicable, the high-frequency condition must be
fulfilled. . As is easily shown, this latter condition excludes
the classical doma. in.

[22] P. Kruit, 3. I&imman, H. G. Muller, and M. 3. van der
Wiel, Phys. Rev. A 28, 248 (1983).

[23] P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. 3.
McIlrath, and L. F. DiMauro, Phys. Rev. Lett. 56, 2590
(1986).

[24] R. M. Potvliege and R. Shakeshaft, Phys. Rev. A $8,
6190 (1988); M. Dorr and R.M. Potvliege, ibid. 41, 1472
(1989). The relevance of shadow states in the passage
from low to high intensities at fixed low frequency is dis-
cussed in M. Dorr, R. M. Potvliege, D. Proulx, and R.
Shakeshaft (unpublished). This work is particularly in-
teresting, since a comparison of our high-frequency data
with accurate Floquet calculations was made for atomic
hydrogen. The applicability of their method is, however,
restricted to relatively low values of np (private commu-
nication) .

[25] Compare in this context Eq. (40) with the corresponding
expression for circular polarization, Eq. (12) of M. Pont
and M. Gavrila. , Phys. Rev. Lett. 65, 2362 (1990).

[26] The energy eigenvalues for the cases no = 400 and
1000 for the ground state of atomic hydrogen were not
given in Ref. [2]; these values amount to —0.01031 and
—0.005 588, respectively.

[27] The convergence of the Gavrila-Kaminski theory was
tested on one-dimensional model atoms with short-range
potentials, both for multiphoton ionization and scat-
tering. The case of i oui zati on was considered by J. N.
Bardsley and M. J. Comella, Phys. Rev. A 39, 2252
(1989). The Floquet system of equations was solved nu-
merically and compared to the single Floquet-channel
calculation based on Eq. (15) of Ref. [4]. The results ob-
tained for the (real part of the) high-frequency eigen-
values agree remarkably well with those predicted by
Eq. (15) of the preceding paper, even at the relatively low

photon energies 2.5 ( u/IEo(no)I ( 5, where IEO(no)I
is the binding energy of the ground state. R. Bhatt, B.
Piraux, and I&. Burnett, Phys. Rev. A 37, 98 (1988),
considered the case of scattering (free-free transitions).
Again, by solving numerically the Floquet system in the
Kramers frame of reference, they obtained results for the
multiphoton transition amplitudes and compared their
magnitudes to the elastic amplitudes [corresponding to
Eq. (15) of Ref. [4]]. The results indicate the decrease at
high frequencies of the former with respect to the latter
one [see their Fig. (5a)], as required by our high-frequency
theory.

[28] Ultrafast Phenomena VI, edited by T. Yajima, K. Yoshi-
hara. , C. B. Harris, and S. Shionoya (Springer-Verlag,
Berlin, 1988) .

[29] By an ideal experiment we mean an experiment that sat-
isfies the assumptions of our theory.

[30] From Eq. (33) we have for nc sufficiently high Iu(0)I
2no14(~ro)I . For ao ——1000 we find IC(no)I = 0.00261

and we thus obtain Iu(0)I = 0.0136. The numerical val-
ues of the constants Ci and Cz of Eq. (36) can be calcu-
lated from Eqs. (30) and (31). This yields, for ao suffi-
ciently large,

a.lid

By evaluating the indicated integrals for no ——1000, we
obta. in Cq ——1,07 and C2 ——2,71.

[31] N. R. Walet, Phys. Rev. A 41, 3905 (1990). For higher
u the agreement is not as good. This is likely to be as-
cribed to the fact that at high frequencies the final-state
wave function oscillates rapidly in space. In the latter
case a rather small mesh size is needed in order to ob-
tain good convergence and this could not be handled
in the reference given above. This problem was realized
by this author, however, and is also apparent from his
"~ = oo" point, which should yield zero, but yields in-
stead a nonzero value because of the limited accuracy of
his computation (see his Fig. 9).

[32] R. M. Potvliege and R. Shakeshaft, Phys. Rev. A 40,
3061 (1989).

[33] C. I&. Rhodes (unpublished).
[34] D. L. Matthews and M. D. Rosen, Sci. Am. 12, 60 (1988).
[35] P. Lambropoulos, Phys. Rev. Lett. 55, 2141 (1985).
[36] Due to the large centrifugal barrier associated with the

rotation of the electron about the polarization axis if m.

is high, the probability of finding the electron near the
polarization axis is very small. As we have seen in Sec. V
of the preceding paper, ionization in high-frequency fields
is initiated very close to the nucleus. Although we have
worked out the case of cr states only, our physical argu-
ments in Sec. V of the preceding paper do apply to non-o.
states as weil. [This can be shown from formulas similar
to Eq. (67) of Ref. [4], valid for non-o states. ] Combining
these two notions leads to our above-stated conjecture.

[37] A. ten Wolde, L. D. Noordam, A. Lagendijk, and H. B.
van Linden van den Heuvell, Phys. Rev. Lett. 61, 2099
(1988).

[38] F. H. M. Faisal, Theory of Multiphoton Processes
(Plenum, New York, 1985), Chap. 12.

[39] M. Gavrila, in Collision Theory of Atoms and Molecules,
Vol. 196 of NATO Advanced Study Institute, Series 8:
Physics, edited by F.A. Gianturco (Plenum, New York,
1989), p. 139.

[40] A. Weingartshofer, 3. I&. Holmes, 3. Sabagh, and S. L.
Chin, 3. Phys. B 10, 1805 (1983).

[41] L. Langhans, 3. Phys. B 11, 2361 (1978).
[42] M. Gavrila and 3. Z. I&aminski, Phys. Rev. Lett. 52, 614

(1984).
[43] 3. van de Ree, 3. Z. Kaminski, and M. Gavrila, Phys.

Rev. A 37, 4536 (1988).
[44] L. Dimou and F. H. M. Faisal, Phys. Rev. Lett. 59, 872

(1987).
[45] P. F. Byrd and M. D. Friedman, Handbook of Elliptic

Integrals for Engineers and Scientists (Springer, Berlin,
1971), formula 241.00.

[46] I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Se-



MUI.TIPHOTON IONIZATION IN. . . . II. 2171

ries and Products (Ref. [16]),formula 6.574.
[47] The relation g(m+ ~ ) = @(—m+ 2 ) confirms that the ex-

pression (C3) is indeed symmetric in m, so that it suffices
to establish the proof of Eq. (C3) for m ) 0. This read-

ily follows by induction, making use of the well-known
recurrence formula @(z+1) = Q(z) + 1/z.

[48] M. Pont, Ph. D. thesis, Vniversity of Amsterdam, 1990
(unpublished).


