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This is the first of two papers studying multiphoton ionization (MPI) in superintense, high-
frequency laser fields. They are based on a general iteration scheme in increasing powers of the
inverse frequency. To lowest order in the frequency, i.e. , the high-frequency limit, the atom was
shown to be stable against decay by MPI, though distorted. To next order in the iteration, an ex-
pression for the MPI amplitude was obtained. In the present paper, we present general developments
from this expression, valid for arbitrary polarization, binding potential, intensity, and initial state.
First we analyze the symmetry of the angular distributions of photoelectrons determined by this
expression for the MPI amplitude. This expression can explain the asymmetries in the angular dis-
tributions of photoelectrons occurring in the case of elliptic polarization that were recently reported
in experiments. In the radiation regime where our theory applies these asymmetries are, however,
weak. In certain instances our theory yields asymmetries in cases where lowest-order perturbation
theory (LOPT) fails to predict them. We prove that at low intensities our expression for the MPI
amplitude yields results in agreement with LOPT evaluated at high frequencies. An important part
of this paper consists, however, of the derivation of an alternative form for the MPI amplitude of
atomic hydrogen, which is substantially simpler, though somewhat less accurate. We study the con-
sequences of this simplified expression for the case of linearly polarized fields in the following paper
[Phys. Rev. A 44, 2171 (1991)J.

I. INTRODUCTIQN

Ambitious plans to construct laser systems, which are
expected to attain intensities many orders of magnitude
higher than the atomic unit, are now pursued by sev-
eral laboratories throughout the world [1]. (The atomic
unit of intensity, Ip ——3.51 x 10is W/cm, is defined
as the intensity of a linearly polarized electromagnetic
plane wave with an electric-field amplitude equal to the
electrostatic field of the proton on the first Bohr orbit
of atomic hydrogen. ) With the possibility of experimen-
tal tests in sight, the theoretical description of atomic
behavior in radiation fields well beyond the atomic unit
of intensity becomes a fundamental problem of primary
interest. This is the first of two papers that study multi-
photon ionization of atoms under these extreme radiation
conditions.

We will adopt the framework of a theory developed
by Gavrila and Kaminski [2, 3]. The Gavrila-Kaminski
theory applies to stationary decay in a monochromatic
plane wave (Floquet description). It is based on an it-
eration scheme proceeding in increasing powers of the
inverse frequency, with a certain parameter 0.0, a com-
bination of the intensity and frequency, kept fixed. This
iteration scheme was shown to be convergent (in a prag
matic sense) under conditions that the photon energy is
high tvith respect to the ionization potential of the atom
in the field. To lowest order in the frequency, i.e. , the
high-frequency limit, the atom is stable against decay by
multiphoton ionization. Its structure is then described
by a Schrodinger equation containing a modified atomic

binding potential, the "dressed" potential Vo, which de-
pends on the frequency and intensity only as combined in
the parameter no. So far, the theory has been applied to
atomic hydrogen and its radiative distortion and ac Stark
shifts have been analyzed in great detail for the ground
state and its lower-lying excited states, in particular for
the case of linear polarization [4] (for atomic hydrogen
in circularly polarized fields, see Ref. [5]; for applications
to scattering, see Ref. [6]). Among other things, we have
found a drastic reduction of the ionization potential and
a dramatic deformation of the electron cloud with 0.0,
i.e. , with increasing intensity at fixed (high) frequency.
For 0.0—30, a value that can presently be realized in the
laboratory, the drop of the ionization potential amounts
to about a factor of 10. This reduction has favorable
repercussions on the range of validity of the theory. For
intermediate values of 0;0, we find radiative stretching
of the electron cloud in the direction of the polarization
axis. (The corresponding increase in the atomic size can
be two orders of magnitude for existing lasers. ) It culmi-
nates in its splitting into ttoo disjoin, f parts separated at
high np by a distance of 2cip ("dichotomy") [4].

To next order in the iteration, an expression for the
multiphoton ionization amplitude was obtained in which
the initial and final state are bound and scat tering
eigenstates of the dressed potential, respectively. In
the present work we will be concerned with multipho-
ton ionization occurring in superintense, high-frequency
laser fields. In contrast to our second paper we will
here present general developments; we will assume arbi-
trary polarization, intensity, binding potential, and ini-
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tial state, and we will take as a starting point this expres-
sion for the multiphoton ionization (MPI) amplitude of
the high-frequency theory. In Sec. II we will recapitulate
the basic equations of the Gavrila-Kaminski scheme.

Recent experiments on angular distributions of pho-
toelectrons have attracted special attention because of
an unexpected asymmetry occurring in the case of ellip-
tic polarization. In Sec. III we analyze the symlnetry of
the angular distributions of photoelectrons for the case
of arbitrary polarization and atomic binding potential,
starting from the result for the multiphoton ionization
amplitude obtained to lowest order in the iteration in

. Part of our findings agrees with well-known results
obtained from lowest-order perturbation theory (see, e.g. ,

[7]), but because of its nonperturbative nature, our the-
ory leads, in general, to more complicated angular de-
pendences. We find that the high-frequency theory of
Gavrila and Kaminski does provide for the aforemen-
tioned asymmetries, although they will be weak in the
radiation regime where it applies. In certain instances
the present theory predicts asymmetries in cases where
lowest-order perturbation theory fails to predict them.

Although our main interest lies in the nonperturba-
tive radiation regime, we have deemed it worthwhile to
show in Sec. IV that the high-frequency theory yields, at
low intensities and high frequencies, angular-dependent
decay rates which are in agreement with standard lowest-
order perturbation theory. For simplicity, we will restrict
ourselves, however, to the case of single-photon ioniza-
tion.

For the remainder of this paper, we narrow the dis-
cussion down to atomic hydrogen. In Sec. V we analyze
the behavior of the Gavrila-Kaminski expression for the
multiphoton ionization amplitude for the case of high fre-
quencies (irrespective of the value of the parameter np).
We derive an expression in which only the values of the
initial (deformed) bound state enter that pass over the
proton during its oscillation (like a free electron) in the
laboratory frame of reference. This could be done for
the case of arbitrary polarization. This approximation
represents a considerable simplification over the Gavrila-
Kaminski expression. It enables us to calculate impor-
tant quantities which can be inferred from experiment,
such as the lifetime of the atom, the angular distributions
of photoelectrons, and the peak pattern of the energy
spectrum of the ejected electrons. These issues will be
studied in detail for the case of atomic hydrogen, placed
in a superintense, high-frequency field of linear polariza-
tion in the following paper.

dipole approximation [8]. With an appropriate choice of
the initial phase (this can be done without aff'ecting the
generality of our results), the electric-field vector in the
case of arbitrary polarization can be taken as

(
1 8@P + V(r+ n(t)) 4 =ih

2m t

In this equation cx(/) denotes

(2)

ct(t) = Ap[ei cos set + e2 tan(Z/2) sin ~t],

in which o, o is a combination of the frequency and the
intensity of the field:

o.p
—— = I ~ (u cos(g/2) (a.u.),

where the atomic unit of intensity Io —— 3.51 x
10 W cm . Recall that we have defined the atomic unit
of intensity by the intensity of a hnearly polarized plane
wave with an amplitude equal to the electrostatic field
due to the proton on the first orbit of atomic hydrogen.
Equation (2) describes in fact the dynamics in a frame of
reference (henceforth called the "Kramers frame of refer-
ence") which oscillates along with a classical "free" elec-
tron driven by the electric field, whose position is pointed
to by the tip of the vector n(t). Consequently, in the
Kramers reference frame the center of force appears to
oscillate according to —n(t) [13].

Since the Schrodinger equation Eq. (2) has time-
periodic coefIicients, as usual, a "quasienergy" solution
of the Floquet, -type [14] was sought:

E(/) = Ep[ei cos ~$ + e2 tan(y/2) sin ~t].

The system of unit vectors (ei, e2, es) is chosen to be
right-handed, with ea in the propagation direction. If
y = 0' we have linear polarization, whereas if y = +90'
we have circular polarization. The case 0' & ~y~ & 90'
corresponds to the case of elliptic polarization. If y is
positive we call the polarization left-handed, whereas if
y is negative it is called right-handed [9].

The starting point of the theory is the so-called "space-
translated" Schrodinger equation, originally proposed by
Kramers [10] in the general context, of quantum electro-
dynamics (see also Pauli and Fierz [ll]) and rediscovered
by Henneberger in the context of laser-atom interactions
[12]:

II. THE HIGH-FREQUENCY THEORY
OF ATOMIC BEHAVIOR

IN INTENSE LASER FIELDS

The general formalism [2, 3] will be illustrated for a
one-electron model atom with binding potential V(r).
We will assume that it is of a realistic but otherwise ar-
bitrary form, i.e., Coulomb or with a Coulomb tail (e.g. ,

a pseudopotential for the optically active electron of an
alkali-metal atom). For the description of the laser field
we take a classical, monochromatic plane wave in the

We shall associate the n = 0 case with the initial chan-
nel of energy E (ReE & 0). Assuming that np is the
smallest (positive) integer for which ReE„)0, the chan-
nels for which n ( no are closed, whereas the channels
for which n & no are open.

Thus the following conditions on the asymptotic be-
havior of the Flo quet comp onents 4„appearing in
Eq. (5) were set:
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dr„
dQ

"lJ'„(o.p, u&r)l (open channels),

if the solution of Eq. (2) is properly normalized. One
may also define the angle-integrated n-photon ionization
rate by

I'„= „no,u; r" dr" open channels

and the total decay rate I', which is obtained by summing
the partial decay rates I'„over all open channels.

Having set the boundary conditions, we now proceed
with the solution of Eq. (2) (see Refs. [2, 3]). Following
the Floquet analysis of the wave function Eq. (5), we
Fourier analyze the potential V(r+ n(t)):

V(r+ n(t)) = ) V„(np, r)e

The (time-independent) coefficients V„(np, r) can be ex-
pressed as

1
V„(np, r) =

27r
e'"~V(r+ n(Q))dP,

where we have loosely written n (P), since it does
not depend on the frequency, instead of n (P/u) [see
Eq. (3)]. The insertion of Eqs. (5) and (10) into the
space-translated Schrodinger equation Eq. (2) leads to
an (infinite) set of coupled difFerential equations for the
Floquet components 4„.

1t was shown by Gavrila and Kaminski that this system
can be solved by successive approximations. To lowest
order in the iteration, they obtain

@),n —- @~~,O, (12)

in which C p is a bound state of the "radiation dressed
potential" Vo, with energy Wp.

P + Vp l
c') = ~) c'i.1

2m

r ez(knr 'Yn ln 2knr)
J~ (Ao) 4)) 7' )

(open channels)
0 (exponentially)

(closed channels)

where f„ is the n-photon ionization amplitude. Here we
have considered the case of an ionic potential V(r) with
asymptotic charge Z (in the case of a short-range poten-
tial Z = 0) and we have defined the dimensionless quan-
tity p„= Zez—m/h k„. The momenta p„= Tik„are
related to the quasienergy E of the initial state (associ-
ated with the channel n = 0) by the generalized Einstein-
equation

2
A (7)

2m.

representing conservation of energy. Note that the
boundary conditions as given in Eq. (6) are of the Siegert
type [15].

The angular decay rate for n-photon ionization corre-
sponding to Eq. (6) is given by

Thus, in the limit of high frequencies, the atom becomes
stable against decay by multiphoton ionization. How-
ever, it may be strongly deformed, since at high o, o the
eigenvalues Wp and the eigenfunctions 4'p may diA'er ap-
preciably from their unperturbed versions (at np ——0).

To next or der in the i ter ation, they found

~~ » Ill~(~p)l (16)

where W&(np) is the lowest eigenvalue of Eq. (13) within
the manifold of states which are radiatively coupled to
the initial state 4~. (For a more specific statement, see
Sec. III.) Under condition Eq. (16), Eqs. (13) and (15)
represent good approximations of the exact values. The
convergence of the high-frequency iteration scheme was
tested on one-dimensional model atoms, which allow an
exact numerical solution, by Bardsley and Comella [16]
(for the case of scattering see Bhatt, Piraux, and Burnett
[17]). There are no restrictions on np (except for being
kept finite), i.e. , the theory applies as well for np « 1,
which is the realm of perturbation theory, as for o.o ) 1
where the theory is nonperturbative. It is in this latter
case that we shall be primarily interested.

Equation (13) was obtained earlier via other methods
by Henneberger [12], and Gersten and Mittleman [18]
(see also Mittleman [19]). Gersten and Mittleman were
the first to realize its high-frequency character [20].

In the following we will use atomic units in which h =
m=lel= l.

III. THE SYMMETRY
OF THE ANGULAR DISTRIBUTIONS

OF PHOTOELECTRONS

As is well known, the angular distributions of electrons
produced in multiphoton and excess-photon ionization

Here GE+& denotes the Green's function associated with
the Hamiltonian II = 2P + Uo. By analyzing in coor-
dinate representation the large lrl behavior of Eq. (14)
and comparing this with Eq. (6), the following expres-
sion for the multiphoton ionization amplitudes in terms
of solutions of Eq. (13) was obtained:

fi (~D ~ . «) = —,+i 'I&.l@~)2xh

Here C» is the scattering solution of Eq. (13) for the(k)

energy E„=R'p + nb~, behaving for large distances as
a (modified) plane wave with momentum hk„plus an
incoming or outgoing spherical wave for the superscripts
(—) and (+), respectively. We assume it to be normalized
to unit asymptotic amplitude. Note that the fi „—
and therefore also the n-photon decay rates defined by
Eq. (15)—are in fact u dependent, because of the energy
conservation relation Eq. (7) relating the initial and final
states.

It was argued that the iteration procedure of the high-
frequency theory converges (in a pragmatic sense) under
the condition
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exhibit certain definite symmetries, depending on the po-
larization of the laser light used [7]. Recently Bashkan-
sky, Bucksbaum, and Shuhmacher [21] reported on an
(unexpected) asymmetry in the case of elliptically po-
larized light (see below). It has even been stated that
theories that do not provide for this asymmetry are in a
certain sense incomplete [22]. This stimulated us to ana-
lyze the symmetry of the angular distributions of photo-
electrons on the basis of the expression for the n-photon
ionization amplitude, Eq. (15), where the coupling po-
tentials are given by Eq. (11).

I et us now define our choice of coordinate system, i.e.,

our choice for the (right-handed) system of unit vectors
(ei, e2, es) of Eqs. (1) and (3). Recall that es was chosen
in the propagation direction. In the case of elliptic or cir-
cular polarization, we will choose our coordinate system
with the z, y, and z axes along eq, e~, and e3, respec-
tively. In the case of linear polarization we choose the
z axis along ei and the z and y axes along e2 and e3,
respectively.

In order to investigate the symmetry of the angular
dependences of photoelectrons we need to know the be-
llavlor of the n-photon ionization amplitude under spatial
transformations. In our case [in view of Eq. (15)] we have

to examine the transformation properties of C k, V„, and

4 g. Since 4g and 4& are eigenstates of the dressed po-
tential, the transformations pertaining to them are those
which leave Vo invariant.

Henceforth we will assume the atomic binding poten-
tial to be spherically symmetric. It is easily seen from
Eq. (11) that the full symmetry group of Vo is then in
fact identical to the one which carries the figure (line
segment, ellipse, or circle) described by the tip of the
electric vector, over into itself [23]. As one can easily
check, the full symmetry group (consisting of rotations,
the inversion, reflections, and rotary reflections) of Vo can
be generated by combining (a) rotations about the z axis,
(b) refiection in the origin (inversion), and (c) refiection
in the zz plane.

The transformation properties of the scattering eigen-

function 4&~ ~, specified uniquely by its boundary condi-
tions, are the simplest. If 0 is a symmetry mapping of
Vo we have

@k '(& '&) = c'I k'(&)

i.e. , the wave vector of the new state is simply the trans-
formed old wave vector.

I et us first consider rotations about the z axis [case
(a)], denoting rotation by the angle p about the z axis
as Z&. For /inear and circular polarization the dressed
potential is axially symmetric about the z axis and hence
we can associate a magnetic quantum number m with the
initial state

@p(7z 'r) = e ' 'icg(r).

Also, we have from Eq. (17)

e'„-)(z. ) = e(-)„( ).
It is easily shown from Eqs. (11) and (3) that

t V„(r) (linear polarization) (20)
V„('R 'r) = &

e+'"&V„(r) (circular polarization), (21)

where the upper (lower) sign corresponds to left (right)
circular polarization. Using these transformation rela-
tions in Eq. (15), we obtain

'e ' ~fg„(r)
(linear polarization)

e—5(tm+A)'7 f (f)
l (circular polarization).

(22)

(23)

Equations (22) and (23) imply rotational symmetry
about the z axis of d I'~ „jdQ.

For the case of elliptic polarization we may examine
the transformation properties for rotation by 180' about
the z axis. From Eqs. (11) and (3) we have

V~('Risp. r) = (—1)"V„(r). (24)

Thus we see in particular that Vo is left invariant by a
rotation about the z axis by 180'. Consequently, the
initial state may be chosen such that it is symmetric or
antisymmetric under this operation, i.e.,

@~(&iso.~) = (—I)"@~(~),

and we also have

@(—)(~ . ) c,(-) ( )

(25)

From these relations it is easily shown that

f~, (&iso r) = (—I)"+"f~, (r). (27)

Consequently, dI'g „/dA is symmetric with respect to a
rotation through 180' about the z axis.

Returning to the case of arbitrary polarization, let us
now consider reflection in the origin [case (b)]. From Eqs.
(ll) and (3) we have

V (-~) = (—1)"V (r)

Furthermore, from Eq. (17) we have

~' '(-r) =C' (~)

and for bound states we have

(28)

@~(—r) =(—1) C'~(&)

with P the parity quantum number. From these relations
it is easy to show that

f, (-r) =(-1)"+ f, (~).

Equation (31) implies that the angular distribution of
ejected electrons is invariant with respect to reflection in
the origin, independent of the polarization.

The above-discussed transformation properties of fp „
have some interesting side results concerning the vanish-
ing of the electron Aux in the polar and equatorial di-
rections. 1'or example, combining Eq. (22) for p = 180'
with Eq. (31) in the zy plane, we find that for linear

polarization
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dI'p „
d

'" (8 = 90') = 0 for m+ n+ P odd.

This issue is discussed further in Ref. [24].

Let us finally examine case (c). Denoting the reHection
in the zz plane by 8, we have from Eqs. (11) and (3)

V (») = [&-(r)1' (33)

From this relation we see that the dressed potential is
invariant with respect to a reflection in the zz plane if it
is complex conjugated at the same time. This invariance
property of Vo implies [25]

@(—)(g ) C,(+) (r) (34)

Compatible with the transformation properties under ro-
tations about the z axis and under reflection in the origin
(see above), we may impose on the bound states the fol-
lowing transformation behavior under reflection in the zz
plane:

c'~(») = [c'~(&)l'.

Consequently

(35)

fi (~) =
I

—. ~
(@'+s'~. I&olo~) I f If& ( »)](. —

(36)
the inequality being due to the difFerence in ingoing or
outgoing wave boundary conditions on the final state. By
combining this with Eq. (31), it follows that dI'~ „/dQ
for elliptic polarization is in general not symmetric with
respect to a reQection in a plane which passes through
the major (or minor) axis of the ellipse described by the
tip of the electric-field vector (perpendicular to the plane
of polarization).

Recently Bashkansky, Bucksbaum, and Shuhmacher
[21] reported on the appearance of this asymmetry, which
occurs only in the case of elliptically polarized light, and
noted that it could not be explained within the stan-
dard Keldysh-Faisal-Reiss (KFR) model [26—28]. Note
that our theory does not have this deficiency. However,

if we replace 4» by a plane nave, it then follows from
Eqs. (31) and (36) that the asymmetry does not occur.
[In this case the inequality sign in Eq. (36) becomes an
equal sign. ] This situation is similar to the KFR the-
ory, in which the final state interaction of the ejected
electron is disregarded [29]. However, our theory does
not apply to the experiments carried out by Bashkansky,
Bucksbaum, and Shuhmacher since the frequency condi-
tion, Eq. (16), is not fulfilled. At high frequencies the
final-state interaction is weak and may be neglected be-
cause the electron is ejected with large momentum (see
Sec. V of this paper). Thus we predict that in our radia-
tion regime the above-mentioned asymmetry may occur,
but will be weak. For a discussion of the findings of the
experiment of Ref. [21] in the framework of lowest-order
perturbation theory (LOPT), see Refs. [22] and [30].

In the case of linear polarization, the orbital angular
momentum component along the polarization axis is con-

served and therefore we can assign a definite magnetic
quantum number to the decaying state, Eq. (5). [This is
an alternative route to prove Eq. (22) from Eq. (6).] In
the case of elliptic or circular polarization, the Floquet
component 4g „(r) of the decaying state gets multiplied
by (—1)"+" (i = m in the case of circular polarization)
when the decaying state is rotated by 180' about the z
axis [see Eqs. (6) and (27)], while it gets multiplied by
(—1)++"when the decaying state is reflected in the origin
[see Eqs. (6) and (31)]. Consequently, the full decaying
state has a definite parity equal to r'+ P when both oper-
ations are combined. Since a rotation about the z axis by
180O combined with a reHection in the origin yields a re-
flection in the xy plane, we see that for elliptic or circular
polarization the parity associated with reflection in the
zy plane is conserved for the atom decaying in the field
[31]. Knowing now which manifolds of states are left un-
coupled by the radiation field, we can be somewhat more
specific about the condition of validity, Eq. (16), namely
about the question of which manifold of states —with
lowest energy eigenvalue W&o(n(i) —should be considered
in Eq. (16). It will now be clear that, in the case of linear
polarization, this is the manifold of states with the same
magnetic quantum number as the initial state, whereas
for circularly or elliptically polarized fields, it is the man-
ifold of states with the same parity with respect to a
reflection in the polarization plane as the initial state.

Let us finally note that the well-known selection rule
in LOPT, which states that each absorbed photon is as-
sociated with a change of the orbital angular momentum
of the atom by one unit, does not apply to the present
situation, since (unlike the dipole operator in LOPT) in
the Gavrila-Kaminski theory the transition operator V„
is not a spherical tensor operator of rank 1. The fact that
this rule does not apply to the present theory is a direct
consequence of its nonperturbative nature. As a conse-
quence, the distributions of photoelectrons predicted by
our theory generally possess a more complicated angular
dependence than that obtained in LOPT. For example,
according to LOPT, single-photon ionization from an s
state leads to outgoing electron waves of p-type only. In
our case, ionization from the (radiatively deformed) ini-
tial state which (adiabatically) develops from it leads to
outgoing electron waves consisting of p, f, h, etc. partial
waves. In fact, in t, his particular example of single-photon
ionization, LOPT predicts a "fourfold" symmetry for the
angular dependence of photoelectrons created by an el-
liptically polarized light source of low intensity (see Sec.
IV). However, in more intense fields this fourfold symme-
try will be broken. This feature (an example of a typical
nonperturbative feature, i.e. , which LOPT fails to pre-
dict) is contained in the Gavrila-Kaminski theory.

IV. THE CONNECTION
WITH PERTURBATION THEORY

In this section we demonstrate that for low intensities,
the Gavrila-Kaminski theory yields angular-dependent
decay rates that are in agreement with LOPT, evaluated
at high frequencies, in accordance with what was said in
Sec. II of this paper. We will demonstrate this in the
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following for the simpler case of single-photon ionization.
The more general case will be considered in Ref. [32].

In LOPT (choosing the velocity gauge) the single-
photon ionization amplitude fp(r) is given by

)'" "( )= ("' 'I' PI ) (37)

Here ug and uk represent eigenstates of the (unper-(—)

turbed) Hamiltonian Hp —P /2+ V at energies Wg(0)
and I' /2 = Wg(0)+u, respectively. In the general case of
arbitrary polarization, the polarization vector e is com-
plex and given by

in agreement with the high-frequency form of the LQPT
expression [35]. In Sec. V we will generalize this well-
known result to the case of (arbitrarily) strong fields

Let us finally remark that, in LOPT, single-photon ion-
ization from an 8 state leads to an angular dependence
given by ~e ek~ for any spherically symmetric atomic
binding potential. [This notion can be easily checked by
making a partial wave analysis of Eq. (37).] For elliptic
polarization we find that the angular dependence of pho-
toelectrons is given by dI'/dQ oc sin 0[cos (y/2) cos P+
sin (y/2) sin P]. Note that the angular distribution of
photoelectrons created by elliptically polarized light has
a fourfold symmetry (refiection symmetry with respect
to a plane perpendicular to the polarization plane and
passing through the major or minor axis of the ellipse
described by the tip of the electric-field vector).

e = ei cos(y/2) + ieq sin(y/2). (38)
[Note that it follows from Eq. (38) that e is of unit length
in the generalized sense, i.e., e e' = 1.]

In order to make the connection with the Gavrila-
Kaminski expression, Eq. (15), we cast Eq. (37) in the
so-called acceleration form [33]

f»" "(»)= —4, (»» 'I('~)&I») (»)
Let us now compare Eq. (39) with the Gavrila-

Kaminski expression, Eq. (15). In order to make the

connection we first replace 4g and 4& by their versions

at np —0, u&, and ui, , respectively. (Note that at low(—)

enough intensity, we have np (( 1.) Next we replace the
transition operator Vi by its low-np form [34]

V. THE BEHAVIOR
OF THE MULTIPHOTON IONIZATION
AMPLITUDE AT HIGH FREQUENCIES

(ATOMIC HYDROGEN)

In this section we will derive an asymptotic expression
for the angular-dependent multiphoton ionization ampli-
tude f& „ofEq. (15), valid in the limit of high frequencies
(say u ~ oo), irrespective of the value of o(p. Henceforth
we will assume that the atomic binding potential is of
Coulomb form, i.e. , V(r) = —I/~r~. On the other hand,
no assumptions about the state of polarization are made.

In order to obtain the asymptotic behavior of Eq. (15)
for high frequencies, we first replace C»~ ) by a plane
wave. Thus

fi, = — ( IV I@),) (43)

The replacement of 4» by a plane wave requires some
comments. In the first place, we would like to remind
the reader that our calculations are carried out in the
Kramers frame of reference, oscillating along with the
classical free electron in the radiation field. In fact, in
the laboratory frame of reference our plane wave corre-
sponds to the exact solution of the Schrodinger equa-
tion for a free electron driven by the oscillating electric
field, commonly referred to as the "Volkov solution" [37].
Therefore the replacement of the final state by a plane
wave fully accounts for the interaction of the electron
ejected from the atom with the radiation field. This ap-
proximation for 4& represents in fact the Born approx-
imation to the scattering wave function. The physical
reason for making this approximation is that, because of
the high frequency, the electron is ejected with large mo-
mentum [see the energy conservation equation Eq. (7)].
Due to the short interaction time during which the elec-
tron leaves the atom, the attraction by the dressed po-
tential on its way out (the final-state interaction) can be
neglected Our exp.ression Eq. (43) is therefore exact in
the limit of high frequencies, irrespective of the value of
0,'O.

A practical range of the validity of our approximation
Eq. (43) is difficult to assess. Taking the ionization po-

dI' Ik ~ I
dQ 2m~

(41)

and the corresponding angular-integrated decay rate
yields

g3/2 I—3~9/2 ' (42)

Vi ~(e .»V')V . (40)
24)

With these substitutions Eq. (15) becomes identical to
Eq. (39). Thus we conclude that for single photon-
ionization, the Gavrila-Kaminski theory yields angular-
dependent ionization decay rates in exa ct agreement
with LOPT, irrespective of the frequency, provided ~ )
~W&(0)~. This is related to the absence of Green's func-
tions in the general LOPT expression for the MPI am-
plitude if n = 1. However, in the case of absorption of
more than one photon, Green's functions do occur in this
expression and the Gavrila-Kaminski theory agrees with
results obtained by LOPT only for high enough frequency
[see Eq. (16)].

Let us recall that for the case of atomic hydrogen, the
eigenfunctions up and ul& are known in closed form and
Eq. (37) can then be evaluated analytically [35]. The
high-frequency behavior of the decay rate can be ob-
tained directly from Eq. (37) [36]. For high frequencies,
the Coulomb final state in Eq. (37) can be replaced by
a plane wave (Born approximation), since in that case
the photoelectron is ejected with high speed (neglect
of "final-state interaction"). An elementary calculation
from Eq. (37) then yields
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tential as a measure of the strength of the dressed po-
tential, we will assume its applicability under circum-
stances where the photoelectron energies are large with
respect to a characteristic binding energy of the atom in
the field. (The fact that for frequencies high with respect
to the ionization potential the Anal-state interaction can
be neglected was illustrated in Sec. IV for the case of
single-photon ionization from the ground state of atomic
hydrogen in weak fields, i.e. , for which ns « 1.) However,
our starting point Eq. (15) is already subject to the con-
dition of validity, Eq. (16). We will assume the applica-
bility of Eq. (43) whenever condition Eq. (16) is satisfied.
As ao increases, the dressed potential gets progressively
weaker. This is clearly rejected by the steep decrease of
the ionization potential with o, o that we have seen earlier
(see Ref. [4] for a discussion of this phenomenon). Note
that, because of this decrease, the high-frequency condi-
tion Eq. (16) is much easier to satisfy at high ns than at
low values of ao.

In view of Eq. (11) we may write Eq. (43) in the form

1
f~,

27r
e'"~F),(k„,—n(P))dP, (44)

where we have introduced the "generating function"
F), (k, g ) by

1
Fg(k, g) = (45)

[In Eq. (11) we have set V(r) = —1/lrl. ] In order
to obtain the high-frequency behavior of the multipho-
ton ionization amplitude we need the high-k behavior
of F~(k, g ) in Eq. (45). To extract this limit, we cast
F~(k, g ) in the form

e-ik. Q

Fg(k, g ) = e —ik.r
C), (r+ g)dr.r (46)

(48)

This expression is exact in the limit of high k.
Let us now derive a practical estimate of the range

of validity of the above relation. In order to replace
the integral in Eq. (47) by its high-k limit, the ratio of
4p((' k + (' ) and 4q(g ) should not differ too much
from unity as ( increases from zero to values for which
the integrand still contributes significantly to the inte-

The high-k behavior of Fg(k, i, ) can now be obtained by
scaling the integration variable r with k. Thus setting
r = (' k ' in Eq. (46) yields

e ""~C ((k '+g)
@~(& )

(47)

where ey denotes the unit vector in the direction of k.
Note that if k ~ oo the ratio of Cig(( k + g ) and
4p(g ) simply plays the role of a factor of convergence
in the above integral, which in this limit yields 4'. With
this value F~(k, g) becomes

gral, say for values of g of a few times unity. Since in
Eq. (44) (' is in fact restricted to the orbit described
by the proton in the Kramers reference frame, we may
express this condition in more physical terms as follows:
The wave function of the initial state should practically
stay unaltered if excursions of the order of the wavelength
of the ejected electron from this orbit are made. We will
be interested mainly in ionization from the ground state.
We may estimate for this case the characteristic distance
of variation of the wave function by IWO(no)l i~2. If we
require Eq. (48) to hold for all open channels, we find
that the present estimate again coincides with the high-
frequency condition Eq. (16) [38].

By substituting Eq. (48) into Eq. (44), we finally ob-
tain the following expression for the high-frequency be-
havior of the n-photon ionization amplitude fi „.

e'"~e' E~&'""C ( —n(P))dP (49)

in the form of a one-dimensional integral. It is interesting
to note that the prefactor in Eq. (49) is in fact the Fourier
transform of the Coulomb potential. This indicates that
it is possible to generalize the expression of Eq. (49) to a
class of atomic binding potentials (singular at r = 0) by
replacing the prefactor in Eq. (49) by the Fourier trans-
form of the atomic binding potential under consideration.
We will not explore this issue any further here and focus
our interest on the case of atomic hydrogen.

Let us briefly comment here on the relation of Eq. (49)
to LOPT. Since Eq. (49) is valid for any value of no,
provided that the frequency satisfies w )& IW&(o.o)l, it
should be possible to recover Eq. (41) in the limit of
vanishingly small intensities. Let us demonstrate this
here. For low enough intensities, no is small and we have

~.(- -(~)) = C.(0), (5o)

where C g(0) denotes the value of the unperturbed initial
state (which we assume here to be of s symmetry) at the
origin. Since also o.ok„(( 1, we may expand the expo-
nential in Eq. (49) in powers of n(P) k„. Making these
replacements, Eq. (49) with n(P) given by Eq. (3) yields
(retaining only the lowest-order term in powers of the
intensity, which corresponds to single-photon ionization)

dA k cos2(y/2)
e «I'IC' o)I'

,], Ie «I'I@(0)l'.I
(51)

In the last step we have made the replacements o, o
Ii~zu ~ cos(y/2) [see Eq. (4)] and k +2ur [we used
Eq. (7), i.e. , k = +2[E(no) + nu] for the case of single-
photon ionization, and invoked the condition of high-
frequency ~ )& IW&(no)l]. For s states of atomic hydro-
gen, we have the well-known relation I4(0)l = 1/xn,
where n denotes the principal quantum number. Note
that for principal quantum number n = 1, Eq. (51) is
identical to the high-frequency form of the LOFT re-
sult, Eq. (41). This demonstrates that if nok„« 1 and
no « 1, Eq. (49) yields results that are in agreement
with LOPT.
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For further analysis of Eq. (49) (as well as for numerical
evaluations) it is preferable to express it as an (infinite)
sum of Bessel functions. This can be done by substi-
tuting into Eq. (49) the Fourier series of the periodic
C (--(~)):

fp „= —i"+ J„y (nok„sin 0)C'p( —noe )e+'&"+
k~

(6o)

and the corresponding angular-dependent ionization de-
cay rate becomes

This yields

(52) dI'g „4= —Z„~ (nok„sin 0) ~4p( —ooe~)
~

.2 (61)

+oo

fi, =k, ).
fA =—OO

(53)

where we have defined the integrals X by

1 imP iu(P) k„dy
2x (54)

Note that the n-photon ionization amplitude f~ „given in
Eq. (53) depends on the polarization through the C'& 's

and X~ s.
By making use of the well-known integral representa-

tion of the Bessel functions of integer order [39]

1 imP ix cos Pdy
27ri

(55)

we may express the integral X —with n(P) given by
Eq. (3) —into a Bessel function of order m. In the
general case of elliptic polarization (0' & ~y~ & 90') X
becomes

X = i™e' ~J (nok„sin 8 os~ p + sin &p tan2(y/2)),

(56)
where we have defined the angle P by

= arg,
cos p + i sin p tan(y/2)

cos~ p + sin p tan (y/2) )
In the case of circularly polarized light, (y = +90') this
reduces to

X = i e+' "J (nok„sin 0), (58)

where the upper (lower) sign corresponds to left- (right-)
handed polarization. In the case of linear polarization
(g = 0') Eq. (54) becomes

X = i J (o.ok„cos 0). (59)

Note that Eq. (59) does not connect continuously with
Eq. (56) as the angle y goes to zero, because of our choice
of coordinate system.

Among the possible states of polarization, the case of
circular polariza]io~i takes a special position. Indeed, we
see that for an initial (deformed) bound state of definite
magnetic quantum number rn only one term in the ex-
pansion of Eq. (52) survives: 4'p, , = 6, +~4&g( —noe~).
Thus we find from Eqs. (53) and (58) that the n-photon
ionization amplitude fg „ takes the particularly simple
form

dl g, (8 = 0', 180') 4

dQ ks (62)

whereas for linear polarization this relation becomes

dl'g, „(8= 90') 4
dQ ks

From Eq. (60) we see that in the case of circularly po-
larized light, the ionization amplitude factorizes into a
product of a term which derives from the atomic bind-
ing potential, the probability amplitude to find the elec-
tron on the circle of charge (with radius no) generating
the dressed potential and a Bessel function. It is inter-
esting to note that a similar factorization occurs in the
celebrated Kroll and Watson theory connected to a differ-
ent but to some extent related physical situation, namely
that of free-free scattering in intense, low-frequency ra-
diation fields [40].

Equation (53) is an important result and forms a
considerable simplification over the original Gavrila-
Kaminski expression Eq. (15). [For example, in Eq. (61)
only the amplitude to find the electron at the circle of
charge and the binding energy (namely via the final mo-
mentum k„) enter as unknown. ] At the same time, it
has essentially the same range of validity, but it is ob-
viously less accurate at high, but finite frequencies. It
does not, for example, yield the (weak) asymmetries in
the angular distributions of photoelectrons which occur
in the case of elliptically polarized light, as discussed in
Sec. III. Once the initial-state wave function has been cal-
culated, the extraction of the Fourier components 4p „
defined in Eq. (52) followed by the evaluation of Eq. (53)
is a straightforward numerical exercise. Moreover, it is
a very useful starting point for studying analytically the
general behavior of angular dependences of photoelec-
trons, branching ratios for decay by multiphoton ioniza-
tion of the atom as a function of the number of photons
absorbed, etc. , under certain special radiation conditions,
in particular when the interaction of the light field with
the atom becomes highly nonperturbative (see the fol-
lowing paper) [41].

From Eq. (54) we have the relation X = b 0, valid for
k„orthogonal to n(P). From this notion and Eq. (53) we
find a particularly simple relation between the angular-
dependent rate for electrons ejected in a direction per-
pendicular to the plane of polarization for elliptically or
circularly polarized light (or in a direction perpendicular
to the axis of polarization for the case of linearly polar-
ized light), and the nth Fourier component of 4&(—n(P))
of Eq. (52). Thus we find for elliptic or circular polariza-
tion
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4'), (r, t) = dr' dt'go~+i(r, r', t —t') pp(r', t'), (64)

with

4„(—n(t)) exp( —i W), t)
r+ n(t)~

(65)

In Eq. (64) we have denoted by Qo (r, r', t) the time-
dependent (retarded) Green's function for a free electron.
Our interest in Eq. (64) lies in the fact that it represents
an approximation for the open-channel part of the decay-
ing state of Eq. (5) [43]. Indeed, one can easily convince
oneself [by Floquet analyzing the approximation Eq. (64)
and determining the asymptotic behavior of its Floquet
components for large ~r~, following Eq. (6)], that the mul-
tiphoton ionization amplitudes associated with Eq. (64)
coincide with those given in Eq. (49).

From Eq. (64) we see that 4g{r, t) represents a super-
position of outgoing waves, created (at any time in the
past) by the source density p~(r, t) given by Eq. (65).
Thus the amplitude of the outgoing waves is propor-
tional to the strength of the electrostatic interaction be-
tween the electron and the proton [= —I/(r+ n(t) ( ] and
the amplitude for finding the electron at the momentary
position of the proton in the Kramers reference frame
[= e ' "4?g{—n(t)) ]. This suggests that, under con-
ditions of high frequency, outgoing electron waves, cor-
responding to ionization of the atom, are created in the
near vicinity of the proton.

It is interesting to note here that such an outcome
is also obtained from a classical consideration. [We
leave here aside under what conditions a (semi-) clas-
sical approach to our problem is valid. ] As we have seen,
in the Kramers frame of reference the electron is sub-
ject to the electrostatic force exerted by the (harmoni-
cally oscillating) proton. Suppose that during one cy-
cle of the oscillation, the electron position vector r(t)
appearing in Newton's dynamical equation of motion
d2r(t)/dt2 = —VV(r(t) + cx(t)) can be replaced by a
constant on its right-hand side. It is t,hen easily shown
that, within this approximation, the electron motion is
dictated by the time-averaged interaction potential (the

Here we have used the expression for the angular-
dependent rate in terms of the n-photon ionization ampli-
tude, Eq. {8).By inspecting the behavior of Cg( —m(P))
in Eq. (52) under the increase of P by n, we find that 4~ „
is identically zero for gerade states if n is odd, whereas it
vanishes in the case of ungerade states if n is even. Con-
sequently, we find that for elliptically or circularly polar-
ized light, dl'p „(0= 0', 180')/dQ vanishes for n odd in
the case of gerade states and for n even in the case of
ungerade states. The same applies to dl'q „(8= 90')/dQ
in the case of linearly polarized light [42].

In Eq. (49) only these values of 4p enter that during
the oscillatory motion of the (distorted) electron cloud in
the laboratory frame of reference pass over the position
of the proton. This is in itself a remarkable result. Equa-
tion (49) can be given an interesting dynamical physical
interpre/ation. To this end consider the following expres-
sion:

dressed potential) with a periodic oscillatory motion su-
perposed on it (not to be confused with the jitter motion
of a free electron in the laboratory frame of reference)
and consequently the atom is stable (T. he energies of the
electron before and after one cycle are the same. ) De-
viations from this description lead to instability of the
electron trajectory, i.e., to ionization. Of course, the va-
lidity of the picture sketched above relies on the follow-
ing assumptions: (a) the frequency is sufficiently high,
(b) the electron moves sufficiently slowly, and (c) the
atomic binding potential is suKciently smooth. It thus
follows from the above discussion that, for a given high
frequency, it is only during times when the electron passes
close to the proton that it can pick up significant amounts
of energy with which it can eventually leave the atomic
system (ionization).

One should be aware that our result that only the be-
havior of the initial-state wave function near the proton is
relevant for the ionization process is typical for the high-
frequency regime that we are studying and can by no
means be generalized to the case of arbitrary frequency
[except for the obvious case of an atomic binding poten-
tial of a (very) short range].

Equation (49) obviously yields zero if the initial-state
wave function 4p vanishes on the distribution of charge
creating the dressed potential. In the linear case this hap-
pens for states with m g 0, while in the elliptic or circu-
lar case this happens for states which are antisymmetric
with respect to a reflection in the plane of polarization.
It is self-evident that to these cases Eq. (49) [or Eq. (53)]
does not apply; the leading term in u of fg ~ is appar-
ently of higher order. Equation (49) can be generalized
to these cases. The high-k behavior of I"p(k, g ) in the
more general case can be obtained by setting r = g k
in Eq. (46), as above. The expansion of C&($ k i + g )
in a Taylor series about the point g then yields F~(k, g )
in the form of an asymptotic series in k . The high-u
behavior of fp „can be obtained by retaining only the
lowest nonvanishing term of this series and by the in-
sertion of this into Eq. (44). For the case that V' 4p is
nonvanishing on the distribution of charge, this leads to

e-ik Q

E),(k, g ) = V' C), (g )

4e —ik Q

ei VC'~(q ). (66)

Thus the n-photon ionization amplitude becomes

e'"~e' ~~& ""ej„. V'C&), ( —n(P))dg.
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Sec. 21. When expressed in our quantities and units one
obtains for ionization from the ground state the well-
known result

[43]

considerations (see Ref. [24]), if we take into account that
the validity of Eq. (53) is restricted to initial states of
m = 0 in the case of linear polarization and of r + P
even in the case of elliptic or circular polarization. If
these conditions are not satisfied, 4q( —n(P)) vanishes
for all P and Eq. (53) yields an angular decay rate iden-
tically zero (see below). For circular polarization we find
from Eq. (52) C}z „=C}q +~b„+~, so that according to
Eq. (63) the flux in the polar directions vanishes when
m + n is nonzero, in agreement with what follows from
general symmetry considerations.
To next order in the iteration of the Gavrila-Kaminski
scheme (in increasing powers of u ), the Floquet-
components of the decaying state of Eq. (5) are given
by

}Pg,„=C}gb'„,p + (1 —b„p)(W), ~ n~ —H + ic) 'V 4)„
with H = P /2 + Vp [see Eq. (14)]. By carrying out
the Floquet synthesis defined by Eq. (5) to obtain the
decaying state @q(r, t), we may write:

iI}'g(r, t) = C}g(r) exp( —iWgt)

+ dr' dt'g~+1(r, r', t —t')

x V(r' + n(t')) —Vp(r')

x exp( iW), t')C}p—(r')

Here g~+ (r, r', t) denotes the time-dependent Green's
function associated with the Hamiltonian H = P /2+Vp.
For atomic hydrogen the atomic binding potential V(r)
equals —1/~r~. If one is interested only in the open-
chonnel part of 4'p, we may omit the first term in the
above equation and we may omit the subtraction of Vo

in the integral. Furthermore, if the frequency is sufB-
ciently high, the (time-dependent) Green's function for
the open-channel part of the decaying state (correspond-
ing to electrons ejected out of the atomic system with
high speeds) can be replaced by the free-particle Green's
function. If we assume that (in the Kramers frame of ref-
erence) only the amplitude to find the electron at the
momentary position of the harmonically oscillating pro-
ton —cr(t) is relevant for the ionization process, we may
replace 4'z(r) in the above equation by iI}z( —u(t)). If
these replacements are carried out, we obtain Eqs. (64)
and (65).


