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The intensity correlation functions C(¢) for the colored-gain-noise model of dye lasers are analyzed
and compared with those for the loss-noise model. For correlation times 7 larger than the deterministic
relaxation time t;, we show with the use of the adiabatic approximation that C(¢) values coincide for
both models. For small correlation times we use a method that provides explicit expressions of non-
Markovian correlation functions, approximating simultaneously short- and long-time behaviors. Com-
parison with numerical simulations shows excellent results simultaneously for short- and long-time re-
gimes. It is found that, when the correlation time of the noise increases, differences between the gain-
and loss-noise models tend to disappear. The decay of C(t¢) for both models can be described by a time
scale that approaches the deterministic relaxation time. However, in contrast with the loss-noise model,
a secondary time scale remains for large times for the gain-noise model, which could allow one to distin-

guish between both models.

I. INTRODUCTION

Statistical properties of dye lasers have been widely
studied due to their anomalous character, as shown by
the experimental results of Ref. [1]. Later experiments
[2] suggested that these anomalies are due to fluctuations
in the pump parameter. The standard theoretical model
of dye-laser fluctuations can be formally obtained by re-
placing the loss parameter by a fluctuating quantity, and
we will refer to it as the loss-noise model. A variety of
calculations and simulations exist for this model in the
literature, either in the white-noise limit [3] for the fluc-
tuating loss parameter or considering a finite correlation
time [4,5]. Experimental [6] and theoretical [7] work on
dye lasers have been recently reviewed, and it seems that
this model describes the experimental results and, in par-
ticular, intensity correlation functions [8,9], if a finite
correlation time is considered.

However, there exists [8] experimental evidence that
identifies the pump laser as the source of noise. The nat-
ural way to account for these fluctuations is by introduc-
ing a fluctuating gain parameter model [10-15]. It has
been shown [10] that in the white-noise limit the statisti-
cal properties predicted by loss- and gain-noise models
are very different. Most of the qualitative predictions as-
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sociated with colored noise in the loss-noise model can be
recovered within a white-gain-noise model [10]. Howev-
er, it seems that the decay of C(¢) does not show two
separated time scales [10-12], as observed in the experi-
ments [9]. Therefore, a colored-noise model is required
to describe the behavior of the intensity correlation func-
tion. In fact, this behavior can be obtained with both
colored-loss-noise [9] and gain-noise [11,15] models.
Numerical simulations have shown [15] that
differences between both models are masked by the corre-
lation time of the noise 7. The aim of this paper is to ana-
lyze the behavior of the intensity correlation function for
the colored-gain-noise model and to compare it with that
corresponding to the loss-noise model. We will consider
situations above threshold. The case of 7 much larger
than the deterministic relaxation time ?; is treated with
the Stratonovich adiabatic approximation [16]. Due to
the fact that ¢, decreases with the intensity, this case will
occur far above threshold. When 7 is smaller than ¢, we
use a method [17] that provides explicit expressions of
non-Markovian correlation functions to first order in 7.
This method contains two main ingredients, one dealing
with the non-Markovian nature and the other with the
nonlinearity of the process. The first one establishes the
connection between the non-Markovian correlation func-
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tion, C(t), and effective Markovian correlation functions.
The second step is the application of the double-
expansion method [18,19] for the calculation of these
functions. This procedure contains information of both
short- and long-time regimes. In this way, we get an ex-
pression for C(t) valid for the complete-time regime, in
contrast with earlier results that were only useful in the
short-time regime [20] or for the calculation of relaxation
times [21]. We show that the method for non-Markovian
correlation functions reproduces with great accuracy the
simulation results.

Once we can reproduce the correlation functions in the
complete regime, we make a detailed analysis of the
correlation functions of the gain- and loss-noise models.
Both the colored gain- [11,15] and loss-noise [9] models
describe correctly the experimental results [6], in particu-
lar intensity correlation functions [8,9]. Then, it seems
natural that they get closer when 7 increases, as simula-
tions indicate [15]. We show that when 7>>t,, the nor-
malized correlation functions for both models reproduce
that of the noise. When 7<t,;, we find that, as 7 in-
creases, the decay of C(¢) for times larger than 7 can be
described in both models by a time scale that approaches
the deterministic time. However, a difference remains be-
tween both models due to a larger time scale with a de-
creasing amplitude with 7 that is involved in the decay of
C (¢) for the gain-noise model.

The paper is organized as follows. In Sec. II we intro-
duce the gain-noise model, and an approximate expres-
sion for the stationary probability density is given. A
method that provides an explicit expression for non-
Markovian correlation functions to first order in 7 is
presented in Sec. III, and a comparison with numerical
simulations is also made. In Sec. IV we analyze the decay
of the intensity correlation function for different values of
T

II. GAIN-NOISE MODEL

The gain-noise model for a single-mode dye laser on
resonance is defined by the following stochastic equation
for the intensity [10,15]:

dI=I[—a,+a,/(1+1/a,)]

+[I/(1+T/a)]p(t) 2.1)

where we have neglected the spontaneous emission noise
because we consider situations above threshold, where it
has a very small effect [6,7]. Here a; and a, are the gain
and the loss parameters, respectively. p(¢) models fluc-
tuations of the gain parameter, and, as usual, it is taken
to be a Gaussian noise of zero mean and correlation:

1

(p(p(t))=—exp =]

T

) (2.2)

where 7 is the correlation time of the noise.

If the nonlinear terms containing (1+1/a,;)” ! are ex-
panded to first order in I, and the fluctuating saturation
term I%p(t) is neglected, we obtain an equation of the
form
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o, I=I(a—1I)+1Ip(t), (2.3)

where a=a,—a,. From a phenomenological point of
view, the fluctuating term Ip(?) can be understood as
arising from fluctuations of the loss parameter k. So, we
will refer to (2.3) as a loss-noise model.

The gain-noise model has, apart from the correlation
time 7, two independent parameters a;, and a,. The
loss-noise model has only one independent parameter,
a=a;—a,, that corresponds to the pump parameter res-
caled with respect to the noise intensity. The loss-noise
model is obtained taking the limit a;,a,— o with
a=a;—a, fixed. In the following we analyze the decay
of C(¢) for different values of the parameter a/a,. This
parameter gives information on the importance of satura-
tion effects in the fluctuations. When it is close to zero,
these saturation effects are negligible and we recover the
loss-noise model.

First, we give an approximate expression for the
steady-state probability density P (I) associated with
(2.1) and (2.2). The Fokker-Planck equation for the sin-
gle probability density P([I,?) is given for small correla-
tion time 7 by [22]

-a~P(I,t)=L(7-)P(I,t)
at
—_9 9 _n9
= aIv(I)P(I,tH— aIg(I) th(I)P(I,t) ,
(2.4)

with an effective Markovian Fokker-Planck operator
L (1), where

h(D=g()—r[v(Dg'(I)—+v'(Ig(I)] , 2.5)

v)=I[—a,+a,/(1+1/a,)] is the deterministic term,
and g(I)=1/(1+1/a,) is the term multiplying the noise
in Eq. (2.1).

The stationary solution of the Fokker-Planck equation
(2.4) and (2.5) is defined in the interval in which the
diffusion coefficient

a]I
a,+1

Ta,1
2

b(nH= o+ 1
1

(2.6)

is positive. When 7a,> 1, the approximation introduces
a spurious boundary at I, =a,/(ra,—1) (at I,=7""! for
any value of 7 in the loss-noise model). For sufficiently
small 7, I, becomes very large, and there are not impor-
tant effects due to the boundaries, but it can be interest-
ing to consider larger values of 7. There exists a pro-
cedure to explore larger values of 7 avoiding the anoma-
lous boundaries, consisting, essentially, in an exponentia-
tion of an expansion in 7 of Py [22]. However, this ap-
proximation gives good results only for negative pump
parameters [23], that is, below threshold. Another type
of approximation has been recently reported [24] that
gives remarkably good results for the loss-noise model
above threshold [23]. It can be even extended successful-
ly to the case where spontaneous emission is included
[23]. The basic idea is to extrapolate the diffusion
coefficient obtained to first order in 7 to larger values of
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7, in the following sense:

D)= ad Ta,l
| +I a,+1
a | ra, ] |7
T oy +I a,+1
- ail’ 2.7)
(o + Do+ (M +ra)I] :
For the loss-noise model this reduces to
2
D(N=I*(1—1I)~= (2.8)

1+

In this case, D (I) given by (2.7) and (2.8) is always posi-
tive, avoiding the appearance of spurious boundaries. In
the general case, this approximation consists of replacing
h(I) of Eq. (2.5) by h,()=gI)/{1—7g(D[v(I)/
g(I)]7'}. This reproduces the approximation of Ref.
[25]. In this way we get an effective Markovian process,
well defined for any value of the intensity. The stationary
solution of the resulting Fokker-Planck equation is given
for the gain-noise model by

P (D=N I [1+(1+70,)I /a,]

Xexp | [(247ay) % —1 |1
a
(l_a/al) 2
————(1+7ay)] (2.9)
2(11
and for the loss-noise model by
—1 TIZ
P (I)=N,(1+7I)I“ ‘exp (ar—l)I——2~— , (2.10)

where N, and N, are normalization constants.

It has been shown that the approximation given by
(2.10) for the loss-noise model reproduces simulation re-
sults when the spontaneous emission noise can be neglect-
ed [23]. This corresponds to situations above threshold.
Regarding the gain-noise model, we have compared the
values of the mean intensity (I ) and the normalized fluc-
tuations (81)%) /(I )? calculated with (2.9) with numeri-
cal simulations, obtaining a good agreement. Our results
indicate that the mean intensity is nearly independent of
the value of 7. In fact, {I) is the same in the white-noise
limit as in the limit 7— oo (see Sec. IV), and it coincides
with the deterministic result. This expression, given by

(Iy=-—%— | 2.11)
1—a/a;

can be then used as a good estimation of the mean inten-

sity. We have also obtained that fluctuations become

smaller with increasing 7.

Before ending this section it is convenient to consider
the linearization of Eq. (2.1) around the deterministic
steady state Io=a/(1—a/a,;). We use this approxima-
tion to compare with numerical simulations in the next
section, and to interpret the results of the last section.
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Then, we approximate the solution of (2.4) by I =1,+8I,
so that the linearized Langevin equation for 81 becomes

3,(8I)=—t;'8I+ap(t), (2.12)
where
ty=la(l—a/a)] '=[{I)1—a/a;)?]"', (2.13)

which we call deterministic time. In this linear approxi-
mation the correlation function A(z) defined by

_ {I()1(0))—«(1)?

At 2.14
(1) ()2 (2.14)
becomes
A= (1—a/a))
(= (1+7/t)(1—7/ty)
X |tyexp |—— |—Texp |—— (2.15)

The validity of this linear approximation has been ana-
lyzed in Ref. [15]. Generally speaking, the linearization
is valid when fluctuations are small, that is,

201 2
A0)= ti(l—a/ay)
td +7
1

TN+ (1 —a/a)?]

«<1. (2.16)

The range of validity then becomes wider with increasing
Tand (I).

III. ANALYTICAL CALCULATION
OF NON-MARKOVIAN CORRELATION FUNCTIONS
AND APPLICATION TO THE GAIN-NOISE MODEL

A. Method

In this paper we will apply an analytical method for
the calculation of steady-state correlation functions for
general processes driven by colored noise with small
correlation time. The method has been discussed in de-
tail in Ref. [17], and provides systematically explicit ex-
pressions of correlation functions approximating simul-
taneously short- and long-time regimes. The non-
Markovicity is reduced to an effective Markovian formu-
lation. This allows the systematic treatment of the non-
linearities by means of double expansions in high and low
frequencies, as a generalization of the method introduced
in Refs. [18 and 19] for the white-noise case.

We will consider a general process defined by the
Langevin equation

g=v(q)+g(q)p(t), (3.1)

where v and g are general nonlinear functions of ¢, and
p(t) is an Ornstein-Uhlenbeck noise whose correlation is
given by Eq. (2.2).
The non-Markovian correlation function C(z) is
defined by
C(1)= lim (8q(t+1')8q(t')) ’
' ((89)*)

(3.2)
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where 8q(t)=q(t)—(g) and {(gq") are the steady-state
moments. To first order in 7, C(¢) can be expressed as
(17]

C(t)=Cy(t)+7|1—exp |—— | |7oCh(t)+o(7?),
(3.3)
where y,=—({8qL T8q))/[{(8¢g)*)] and
(8q(1)8q )y
Cylt)y=——— (3.4)
M ((8)?)
and
(8q(t)L T (7)8q )
cLn= 3.5
) L (159 (.3

are correlation functions associated with an effective
Markovian process defined by a Fokker-Planck operator
L(7) given by Egs. (2.4) and (2.5).

Two remarks about the general features of Eq. (3.3) are
in order. First, it contains the characteristic initial pla-
teau, associated with the vanishing first derivative at
t=0, of any non-Markovian correlation function
[5,26,27]. Second, for t >>r, it corresponds to the decay
of the correlation function of a Markovian process with
an effective initial condition.

The next step in our procedure consists of the applica-
tion of the double-expansion method [18,19] to C,,(¢) and
CALl(t). The basic idea is to consider, for any Markovian
correlation function, two expansions of the Laplace
transform, both for high and low frequencies w:

k
13 4|1
— — 3.6)
() kE’O“M w (
CM(CU)= © ( -1 )k
> ' T o* , (3.7
k=0 k!

where the coefficients of the expansions are related to the
derivatives at t =0, u%,, and the relaxation moments 7§,
as

P
#M::i_t—kCM(t”[:o ’ (3-8)
T1{;=f0°°cM(t)tkdt . (3.9)

Explicit expressions for these quantities are given in
Refs. [17] and [19]. These coefficients contain informa-
tion on the small and large time scales, respectively. The
goal of the method is to combine simultaneously informa-
tion from both expansions by means of Padé interpola-
tion in the w space. As discussed in Refs. [17] and [19],
an approximation for C,,(¢) containing in an exact way n
derivatives and m relaxation moments (“ndm¢”’ approxi-
mation) is given by a superposition of N exponentials of
the form

N —A,t
Cu(t)= S ae "

n=1

(3.10)
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where n +m +1=2N, Cﬁ(O)‘: 1, and

N

S a; (A =(—=1Dkuk, (k=0,1,...,n), (3.11)

i=1

N Tk
za,.(x,.)—k*‘=k—”" (k=0,1,...,m—1). (3.12)

i=1

B. Application and comparison with simulations
of the gain-noise model

Here we discuss some different orders of approxima-
tion of the method for C(¢). From Eq. (3.3) one can ar-
gue that CL(¢) only contributes essentially for long times,
whereas Cy,(?) is important both in the short- and long-
time regimes [17]. Therefore, at the lowest order, impos-
ing the condition for the first derivative on C,,(¢) and the
zeroth-order relaxation moment (the relaxation time) on
CH (1) we get

t

Clty=e " dryl—el /M) 10" (3.13)

This approximation contains the exact first derivative of
the non-Markovian C(t). To get the right relaxation
time of C(¢) to order 7 and the same exact derivative, the
next simplest approximation is

ci=[ae M4+(1—ae ]

t — ot
—L ]| Yo ,
-

where a,, A;, and A, are determined by imposing one
derivative and two relaxation moments of Cy,(¢).

In order to apply the method to the gain-noise model
we will consider an effective Markovian Fokker-Planck
operator L, in which the diffusion coefficient is given by
Eq. (2.7). In this way the spurious boundaries are avoid-
ed.

In Fig. 1 we compare the approximations (3.13) and
(3.14) for the gain-noise model with a/a;=0.2, (I)=1,
and 7=0.25. We plot the correlation function A(?) given

+71y, |1 —exp (3.14)

0.8

)

FIG. 1. Intensity correlation function A(#) for the colored-
gain-noise model with a/a,;=0.2, {I)=1, and 7=0.25. The
value of 7/t; is 0.16. , simulation; — — —, 1d0¢ approxi-
mation; —- —. —- , 1d2t approximation;- . . ., linearization.
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0.1

0 2 4 6

FIG. 2. Intensity correlation function A(z) for the colored-
gain-noise model with a/a;=0.5, (I)=1, and r=0.5. The
value of 7/¢, is 0.125. , simulation; — — —, 1d0¢ approxi-
mation; —- —- —., 1d2¢ approximation; - . - ., linearization.

by (2.14), i.e., Mt)=C(t)({I*) —(I)*)/{I)* We see an
excellent agreement between the simulation [28] and ap-
proximation (3.14) for the complete-time regime. Even
for this relatively low order of approximation, the
method contains the nonlinear effects accurately, as we
see by comparison with the linear approximation (2.15).
On the other hand, the approximation (3.13) also con-
tains the correct initial plateau but only describes
correctly the decay at short times.

In Fig. 2 we take {(I)=1, 7=0.5, and a/a,;=0.5, so
we are going away from the loss-noise model. We again
find a good agreement between simulation and approxi-
mation (3.14). The linear approximation in Figs. 1 and 2
suggests that the nonlinear effects are reduced when a/a;
increases.

For the range of parameters we are considering in this
paper, above threshold, a criterion for the range of validi-
ty of the small-r approximation introduced in Eq. (3.3) is
given by the ratio 7/t; << 1, where t; is the deterministic

0.5 1.5 2.5 3.5
<M

FIG. 3. Time scales corresponding to the three exponentials
used to describe the normalized intensity correlation function
C(?), rescaled with the deterministic time t,, vs the mean inten-
sity {I), for the loss-noise model, a/a,=0,: Yota (both curves
in the middle), time scale corresponding to Ci(t); A¢, (both
curves on the bottom), dominant time scale of Cy,(¢); and Az,
(curves on the top), dominated time scale of Cy,(¢). In the three
cases the values of 7 are ,0.1; — — —,0.25.
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0.8 - . ‘
0.5 1.5 2.5 3.5
M

FIG. 4. Time scale y, rescaled with ?;, ¥4, vs the mean in-
tensity (1), for a/a;=0.2 and different values of 7: ,0.1;
- — —,0.25; —e—. —. , 0.5.

relaxation time given by the linear approximation [see
Eq. (2.13)]. For Figs. 1 and 2, 7/, is 0.16 and 0.125, re-
spectively. We have checked that the approximation
(3.14) is valid when 7/t;<0.3. This criterion implies
that an increase of {(I) reduces the range of validity of
the small-7 approximation (3.3), due to the fact that it
also implies a decrease of t; [see Eq. (2.13)], despite the
fact that the nonlinear effects are reduced in this case [see
Eq. (2.16)].

We have also checked that the approximation (3.14)
gives good results for small 7 for the colored-loss-noise
model.

IV. DECAY OF THE INTENSITY
CORRELATION FUNCTIONS

First, we analyze the limit 7>>¢;. In that case, we as-
sume 3,/ =0 in Egs. (2.1) and (2.3) (adiabatic approxima-
tion [16]). With this approximation, we get

I(O=a/(1—a/a;)+(1—a/a,) " 'p(t) (4.1)

for the gain-noise model. Then, the normalized correla-
tion function C(z) [see Eq. (3.2)] is the same for both
models, and it coincides with the one corresponding to
the noise. This result agrees with experimental observa-
tions [8] and numerical simulations [11].

1.2

0.8 ) . .
0.5 1.5 2.5 3.5

)
FIG. 5. Time scale y, rescaled with t,, yt,, vs the mean in-
tensity (I), for a/a;=0.5 and different values of 7 ,
025, — — —,05; ——.—. , L.
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FIG. 6. The amplitude a, of the first exponential used to ap-
proximate the effective Markovian correlation function C,,()
vs the mean intensity {I) for a/a;=0 (loss-noise model). The
amplitude of the second exponential is (1—a;). Same parame-
ters as in Fig. 3.

Now, we analyze the decay of C(t) for correlation
times smaller than the deterministic time 7<t¢;. For
that, we use Eq. (3.14) from the method presented in Sec.
III. We have shown in Sec. III that the method gives ex-
cellent results when 7<<t,;. In the following, we analyze
the behavior of the time scales involved in the decay of
C (t) with increasing (1) for different values of a/c; and
7. Due to the decrease of ¢; with {(I) [see (2.13)], it is
clear that the validity of the method is reduced when (I )
increases. In our analysis of the decay of C(¢) we will
focus on qualitative results. In this sense, our conclusion
remains valid even when 7 approaches ¢,.

We consider three values of a/a;: 0 (loss-noise model),
0.2, and 0.5. Regarding the correlation time, it can be
seen from Eq. (2.13) that ?; increases when a/a; does.
Then, larger correlation times are required to have non-
negligible non-Markovian effects when a/«;, is increased.
We have considered the following values of 7: 0.1 and
0.25 for a/a;=0, 7r=0.1, 0.25, and 0.5 for a/a,;=0.2,
and 7=0.25, 0.5, and 1 for a/a;=0.5.

For times shorter than 7, the only aspect that plays an
important role is the initial rounding off of the intensity

1.0

9

FIG. 7. The amplitude a, of the first exponential used to ap-
proximate the effective Markovian correlation function C,(2)
vs the mean intensity (I) for a/a,=0.2. Same parameters as
in Fig. 4.
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1.0

0.5 1.5 2.5 3.5
<M

FIG. 8. The amplitude a, of the first exponential used to ap-
proximate the effective Markovian correlation function C,,(t)
vs the mean intensity (I) for a/a,;=0.5. Same parameters as
in Fig. 5.

correlation functions. Then, in order to analyze the de-
cay of C(t) we consider times ¢ >>7. In Eq. (3.14) three
time scales appear, and we first consider the last term.
For t >>7, the amplitude of the third term is y 7. If this
amplitude is very small, it can be neglected, and the be-
havior of C(t) coincides with that of Cy,(?), but when 7
increases it is necessary to take Cjy(¢) into account. We
represent in Figs. 3, 4, and 5 y rescaled with ¢;. In the
loss-noise model (Fig. 3), y, ! approaches t; when the
mean intensity increases. For the gain-noise model, it is
observed from Figs. 4 for a/a=0.2 and 5 for a/a;=0.5
that y, ! approaches z, when 7 and {I ) increase.

In the following we analyze the decay of Cy(¢), which
is given by the time scales A, A,, and their amplitudes a,
and (1—a,), respectively. We compare both models as 7
increases. We show in Figs. 6, 7, and 8 a, for a/a=0,
0.2, and 0.5, respectively. For the loss-noise model, a,
grows with (I) and 7. This means that the dominant
time scale tends to be A,. In the other two figures, for the
gain-noise model, we see, in contrast to the white-noise
case [12] and to the loss-noise model, that when 7 and
(I) increase, a, decreases, so for 7 or {I) large enough

3

FIG. 9. Time scales corresponding to both exponentials used
to approximate Cy,(?), rescaled with #;, vs the mean intensity
(I) for a/a;=0.2: Ayt;, dominant time scale (three curves on
the top), and A,z;, dominated time scale (three curves on the
bottom). In both cases, the parameters are as in Fig. 4.
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FIG. 10. Time scales corresponding to both exponentials
used to approximate C,,(?), rescaled with ¢,, vs the mean inten-
sity (I) for a/a;=0.5: A,t;, dominant time scale (three curves
on the top), and A,t;, dominated time scale (three curves on the
bottom). In both cases, the parameters are as in Fig. 5

the dominant time scale is A,.

In Figs. 3, 9, and 10 we represent the dominant time
scales of both models, that is, A; for the loss-noise model
and A, for the gain-noise model, in all cases rescaled with
t;. In Fig. 3 we see that A; ! approaches t, when 7 in-
creases. The same situation is observed in Figs. 9 and 10
for the dominant time scale A, of the gain-noise model.
Therefore, in all cases, the dominant time scales ap-
proach the deterministic time #; and, in this sense, the
differences between the gain- and the loss-noise model
tend to disappear with 7, in agreement with simulation
results [15]. As we have shown above, the third time
scale y, behaves in a similar way. Then, it does not
modify essentially the decay of C(¢) when the mean in-
tensity and 7 increase.
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Now, we analyze the dominated time scale, that is, A,
in the gain-noise model and A, in the loss-noise model.
We represent these scales in Figs. 3, 9, and 10, again re-
scaled with r;. We see in Fig. 3 that A,t; is always larger
than 1, and increases when 7 does. So, A; ! is always
smaller than ¢;, and it can be seen that it is also smaller
than 7. Then, we can consider that the main contribution
to the decay of C(#) comes from the time scales A; and
Yo, Which approach z; when the mean intensity and 7 in-
crease. On the contrary, in Figs. 9 and 10 we observe
another tendency: Az; is always smaller than 1 for
a/a;=0.2 and 0.5. The conclusion is that as 7 increases,
a difference remains between both models, and that is
given by the dominated time scale. This time scale is
larger than t; in the gain-noise model, so the decay of
C (1) is slower in this case than in the loss-noise model, in
which the dominated scale is smaller than ¢,.

Our findings concerning the decay of the intensity
correlation function can be summarized as follows.
When 7>>t, (far above threshold), the correlation func-
tions of both models are determined by the pump noise.
For correlation times smaller than #;, the decay of C(z)
for both models can be described with increasing 7 and
(I) by a time scale that approaches the deterministic
time. However, a larger time scale remains for the gain-
noise model, which could allow us to distinguish between
both models.
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