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We investigate the classical and quantum oscillator with time-dependent mass and frequency, in the
framework of the Lie group theory. Our analysis shows that both systems possess five time-dependent
Noether invariants, where only two of them are functionally independent. In the classical case, three of
these invariants form the su(1, 1) Lie algebra under the Poisson bracket operation, while in the quantum
case the corresponding invariants form the su(1, 1) Lie algebra under the commutator operation. Since
this algebra underlies the noncompact group SU(1,1), we are thus able to define unambiguously the
dynamical group related to the generalized quantum oscillator. Furthermore, the Hamiltonian of this
system can be expressed in terms of the Noether invariant operators satisfying the su(1, 1) Lie algebra.
This form is useful in the evaluation of the energy spectrum and in the study of coherence and squeezing.
Some particular cases are briefly illustrated. The other two Noether invariants can be interpreted as the
quadrature-phase amplitudes involved in the quantum nondemolition measurements and in the problem
of the generation of coherent and squeezed states.

I. INTRODUCTION

In certain problems pertinent to quantum optics [1,2],
acoustic and plasma physics, and other fields [3], some
processes occur that are described by time-dependent
Hamiltonians. These include, for example, the degen-
erate parametric amplifier [4], the quantum system corre-
sponding to the Kanai-Caldirola Hamiltonian [5—8], and
the quantum Morse oscillator in a single-mode classical
electromagnetic field [9]. Quantum-mechanical paramet-
ric devices are of interest also because they may generate
coherent and squeezed states [10]. It is therefore useful
to set up a theoretical framework where a general time-
dependent (mass and frequency) oscillator (TDO) may be
studied.

Following this line of research, in this paper we first
carry out a group analysis of a classical TDO governed
by the Hamiltonian

H=p /(2m)+ —,'men q

where the conjugate variables q and p are c numbers, and
m = m (t) and co=co(t) are given functions of time.

The Hamiltonian (1.1) gives rise to the equation of
motion

variants yield the general solution of Eq. (1.2). The
remaining three generators do not lead to Noether invari-
ants, but can be used to derive alternative Lagrangians
for Eq. (1.2) [11]. The algebra defined by the generators
of the symmetry group G is formally the same as that re-
lated to the oscillator (1.2) with M =0. The reader is re-
ferred to Ref. [11] for a discussion of the properties of
such an algebra. We notice that three of the five Noether
invariants admitted by Eq. (1.2) form the su(1, 1) Lie alge-
bra under the Poisson bracket operation. This fact allows
us to define unambiguously the dynamical group associat-
ed with the TDO (1.2), which turns out to be the Lie
group SU(l, l). This noncompact group is important in
evaluating the energy spectrum as well as the degeneracy
of levels of the quantum version of Eq. (1.2) [12].

Second, we extend our investigation to a quantum
model represented by a Hamiltonian II of the form (1.1)
where now q and p are replaced by two conjugate opera-
tors, Q and P, which can be expressed in terms of a pair
of time-dependent lowering and raising operators, a(t)
and a (t). In correspondence to the classical Noether in-
variants exhibited by Eq. (1.2), we obtain a set of Hermi-
tian operators I (j= 1,2, . . . , 5 ) such that

q+Mq+co q =0, (1.2)
(1.3)

where M =M ( t) =m /m (the dot means time derivative).
We find that Eq. (1.2) affords a symmetry group G of

Lie point transformations which consists of eight genera-
tors. Five of these, which are of the Noether type, pro-
vide as many invariants (constants of the motion) but
only two of them are functionally independent. Such in-

Three of these quantum invariants obey the commutation
relations defining the subalgebra su(l, l) underlying the
dynamical group SU(1,1). Thus, as a consequence of the
symmetry properties possessed by the quantum system
driven by H, a natural realization of the su(1, 1) algebra in
terms of a (t) and a (t) is furnished. The quantum Ham-
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II. THE LIE GROUP APPROACH

Let us consider a Lie group G of local point transfor-
mations, depending on one parameter e and with nonzero
Jacobian, acting on (t, q), namely,

t'=R (t, q;e),
q'=s(t, q;e),

(2.1a)

(2.1b)

where the functions R and S are differentiable with
respect to t, and the value e=O corresponds to the identi-
ty transformation t =R (t, q;0), q =S (t, q;0) [18].

The transformations (2.1) are generated by the
infinitesimal operator (vector field)

v=g(t, q)a, +p(t, q)aq,

where a, =alat, a~ =alaq, and

g t, q = '
, t, q =aR(t, q;~) as(~, q;~)

@=0

(2.2)

(2.3)

Regarding e as a perturbative parameter, Eqs. (2.1) yield
the infinitesimal transformations

t'=t+eg(t, q), q'=q+eP(t, q),
at the first order in e.

With respect to (2.4), q changes as

q'=q+eP',
where q' =dq'/dt',

0'=0, + [0, (4, +k,q)]q—
and subscripts denote partial derivatives [11].

(2.4)

(2.5)

(2.6)

iltonian H can be written as a linear combination of the
generators of the group SU(1,1). This feature is impor-
tant in the study of the mechanism of generation of
coherent and squeezed states associated with the su(1, 1)
Lie algebra [13,14].

Another results that seems noteworthy is that two of
the five quantum invariants I may be identified with the
so-called quadrature-phase amplitude operators, which
play a basic role in the treatment of some optical devices
[10,15] and in the context of quantum nondemolition
measurements [16]. As a matter of fact, by means of the
variances of these operators one can formulate an uncer-
tainty relation that allows one to distinguish a squeezed
state from a squeezed coherent state [17].

This paper is organized as follows. In Sec. II we devel-
op the group-theoretical technique that is applied, in Sec.
III, to derive the symmetry group and the Noether in-
variants for Eq. (1.2). Section IV is devoted to get a set of
five invariant operators for a system related to the quan-
turn Hamiltonian H corresponding to the classical one
(1.1). The quantum Hamiltonian is expressed in terms of
the invariant operators which obey the su(1, 1) commuta-
tion relations, and some applications to certain physical
cases are considered. In Sec. V some final comments are
reported, while the Appendix contains details of the cal-
culation.

The finite transformations corresponding to Eqs. (2.4)
and (2.5) take the form

t'=[exp(ev)]t, q'=[exp(ev)]q,
q' = [exp(ep" ' V) ]q,

where

p'"v= v+p'a

(2.7)

(2.8)

is the first prolongation [19]of the vector field V.
The group G of transformations (2.1) is called a sym-

metry group of a second-order ordinary differential equa-
tion,

q =F(t,q, q), (2.9)

p' ' V[q F( t, q, q )—]=0, (2.10)

whenever q F(t, q, q ) =—0, for every infinitesimal genera-
tor Vof G.

The operator&' 'V, defined by

p"'v = v+ y'a. +y"a..
q q

(2.11)

is the second prolongation of V, where P' is given by (2.6)
and

20"= „,, (0 kq)+kq . —

Equation (2.10) can be explicited to yield

(2.12)

(0, 2kt 34' q )F—P'~—4F, — —
—[P, +(P —g, )q —g q ]F, +P„

+(2P, —g„)q+(P —2$, )q —
g q =0 .

(2.13)

Equation (2.13) can be regarded as the starting point to
obtain all the Lie point symmetries for a given differential
equation of the form (2.9). We notice that these comprise
also the so-called divergence symmetries, which lead to
the constants of motion of the Noether type for the equa-
tion under consideration [19].

The divergence symmetries, whose generators form a
subalgebra of the Lie algebra corresponding to G, called
Noether symmetry algebra, can be singled out in the fol-
lowing manner. Let us suppose that Eq. (2.9) coincides
with the Euler-Lagrange equation which can be derived
from the variational integral (action)

S= J X(t,q, q)dt, (2.14)
1

where F is a given function, if q'(t') =goq(t') is a solu-
tion of Eq. (2.9) for g H G so that go q is defined whenever
q(t) satisfies Eq. (2.9). (The symbol && denotes composi-
tion of functions. )

The symmetry group G, which transforms solutions of
Eq. (2.9) to other solutions, can be obtained via an algo-
rithmic procedure. This allows us to write down the Lie
algebra of vector fields as Eq. (2.2), underlying the Lie
group G. In such a way we can determine the coefficients
g and P, which come from the relation
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where X is the (density) Lagrangian. Then, a vector field
V of the form (2.2) is said to be an infinitesimal diver-
gence symmetry of S if there exists a function B (t, q) so
that

(p'"V)r+u g= B
dt dt

(2.15)

d I =0,
dt

where

(2.16)

for all t, q.
The set of all the vector fields V obtained by (2.15) is

called the Noether symmetry group G& exhibited by Eq.
(2.9). This is a subgroup of the (complete) symmetry
group G. If Eq. (2.9) admits a Noether symmetry group,
then the conservation equation

tions (3.4), let us put in Eq. (3.4a)

(3.5)

where A =A(t). Then Eq. (3.4a) reproduces the Hill
equation

3+0'W =0,
with Q=Q(t) given by

0 =—4'(4' —2M —M ) .

(3.6)

(3.7)

Equation (3.6) is formally solved by

A =g(c, cosa+ czsina ), (3.8)

where c& and cz are arbitrary constants, and the func-
tions r) =g(t) and a=a(t) are defined by

I =(gq —P)B.X gX+B— (2.17) 2=1j+0'g —— (3.9)

holds, if and only if the action integral (2.14) is invariant
with respect to 6&. This is an extended version of the
original Noether theorem [20]. The conserved quantities
(2.17) are called Noether invariants.

III. CLASSICAL THEORY

!3.10)

Taking account of (3.8), after some manipulations Eqs.
(3.4) yield the following expressions for the quantities a i,
a~, b„and b~:

X=
—,
' m ( q

—co q ) . (3.1)

Then, substituting the quantity F = —m q
—Mj into

(2.13) and equating the coefficients of powers of q to zero,
we are led to the expressions

In this section we shall look for the (complete) Lie
point symmetry algebra associated with Eq. (1.2). To this
aim, we notice first that such an equation can be derived
by the Lagrangian density

a, =m ' r)(c, cosa+ czsina),

a z
= cr (ci cos8+c6sin 8+c7 ),

b) =c5 M p 1o.o. — o cosO ——sinO
2 2

+c o.o. — o. sinO+ —cosO
M p . 1

2 2

(3.1 la)

(3.11b)

/=a, q +a&,

P=(a, —Ma, )q +b, q+b~,

(3.2)

(3.3)

M
+c7 0 o o' +c8

2
(3.11c)

where a &, az, b &, and bz are time-dependent functions of
integration which obey the constraints

a, —Ma, +(co —M )a, =0,
2b& —a&+Ma&+Ma& =0,
b, +Mb, +2' a~+2cocoa~ =0,
b~+Mb~+co b~ —0 .

(3.4a)

(3.4b)

(3.4c)

(3.4d)

In order to handle the system of linear differential equa-
I

g'=m 'r g(c, cosa+c~sina)q+cr (c&cos8+c6sin8+c7),

bz =m '~ r)(c3cosa+c4sina), (3.11d)

1o.+0 o-=
4o.

8=f ', dt.

(3.12)

(3.13)

Inserting (3.11) into (3.2) and (3.3), we deduce

(3.14)

where c3, . . . , c8 are arbitrary constants and the func-
tions cr =a (t), 8=8(t) are such that

P=m c 7/ 7J cosa siila +cM 1

7l
2

M . 1 2'g 'g sino! + cosA 'q
2 rl

M p 1~o.— o. cosO ——sinO +c
2 6 o o o slnO+ cosO

M p . 1

2 2

+c~(ocr — cr )+cs q+m 'r
g. (c3cosa+c4sina) .

2
(3.15)
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Looking at Eqs. (3.9) and (3.12), we infer that the func-
tions a, O and g, o. are mutually dependent, in the sense
that

mI2= CT q CT

2
M q

q
— .S1n0

2 4o.

a=O/2, il=&2o . (3.16)

V, =cr (cosO)B, + o o.— o. cosO ——sinO qB~,2 M 2 1

Thus, by introducing Eqs. (3.14) and (3.15) into Eq. (2.2)
we can write the general expression for the generator of
the (complete) Lie point symmetries related to Eq. (1.2).
Then, by choosing ci =1, c =0 (j%1), c2=1, c =0
(j%2), and so on, we obtain that the Lie point symmetry
algebra for Eq. (1.2) is spanned by the eight vector fields

I3=

(3.18b)

(3.18c)

I4 =&2m —o q+ o—M 0 q . 0o. q cos—— sin —-,
2 2 20 2

(3.18d)

m . 1 . M
qq

——d — o. q cos0,
2 0 2

2
M qoq — 0 — o q +
2 4o.

Vz =o (sinO)B, +

(3.17a)

o.o. — o. sinO+ —cosO qB
M 2 . 1

2 2 q

(3.17b)

I, =&2m . 0 q 0—cTq+ cT — o. q sin —+ cos—. .
2 2 2cT 2

(3.18e)

MV3=o 0, + o.o. — o qB

0
V4 =I ' +2o cos —B~,

0
V5 =m '~ /2cr sin —Bz,

(3.17c)

(3.17d)

(3.17e)

In other words I&, . . . , I5 are such that

dI. aI,= II,H]+ =0,

aw M
Bp Bq

where the symbol I ] denotes the Poisson bracket

8 c4 clB

Bq Bp

(3.19)

(3.20)

0
V6

——v'2m o. cos—qB +

0V7=V2m o sin —qB, +

V, =qa, .

0
g — 0 cos—

2 2

1 . 0
sin —

q 8
2o- 2

M . 0o. sin—
2 2

+ cos—q 0
1 0

2o- 2

(3.17f)

(3.17g)

(3.17h) I, =—'(I I5), I2=I4I5—, I3= '(I +I )—(3.21)

with A and B any pair of dynamical variables depending
onq, p, and t.

We point out that even if the vector fields V6, V7, and
V8 do not lead to Noether invariants, they are neverthe-
less important in the construction of alternative Lagrang-
ians for Eq. (1.2). All these Lagrangians give rise to the
same classical equation of motion, but may correspond to
different quantum-mechanical versions of the system un-
der investigation. A recent account on this interesting
problem, which is beyond the purposes of the present pa-
per, is contained in Ref. [21].

We observe that only two of the Noether invariants
(3.18) are functionally independent, in the sense that the
relations

2

-cosO
4o

m . . MI = crq — o. — o q1

Each operator (3.17) generates a one-parameter subgroup
of Lie point symmetries for Eq. (1.2). The commutation
relations satisfied by V&, . . . , V8 are the same as those
corresponding to the oscillator (1.2) with M =0 (see Ref.
[11]). Here we omit them for the sake of brevity. Among
the vector fields (3.17), we can select those of the Noether
type by resorting to the relation (2.15). In doing so, let us
introduce in Eq. (2.15) the density Lagrangian (3.1). We
find that the generators of the Noether type are V, , V2,
V3 V4 and V5 ~ These yield the constants of the motion
(see Appendix):

2

0 . 0
q =&2/m o I5cos I4 sin——— (3.22)

while the conjugate momentum p =mq can be written as
1/2

m 1p= 20 0
2 0

M 0
5 4cr I —I cos—

M 0
2g cT — g I +I sln—

2 ' ' 2

hold. Furthermore, Eqs. (3.18d) and (3.18e) provide the
general solution of the equation of motion (1.2), namely

m . 1 . M+ qq
——o — o q sinO,

2 0 2
(3.18a)

(3.23)

The constants of the motion (3.18) fulfill the relations
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II„I2J =2I3, II2, I3 ] 2I1 II3,Ii I
= —2I2,

tI4, I» [ 1

II1,I4] Is tI1 IS) =I4, tI2, I4I = I—
4

II 2Is] =Is II3,I4] = Is tI3,I5] =I4 .

(3.24a)

(3.24b)

(3.24c)

The main result emerging from the analysis of Eqs. (3.24)
is that the Noether invariants I, , I2, and I3 form a Lie
algebra under the Poisson bracket operation [see (3.24a)].
The algebra turns out to be su(1, 1), underlying the non-
compact group SU(1, 1). As we shall show in Sec. IV, this
fact is important because it allows us to define unambigu-
ously the dynamical group associated with the TDO sys-
tem (2.1).

I =m.
2

o . MP —c'r — o Q
m 2

sinO
4o.

I =m
3

2
cr . M QP — o — o Q +
m 2 4o.

J4=3/2m . P+d Q cos—— sin-cr . 8 Q . 8
m 2 2o 2

0
,'Mcr—Q—cos—

1 1 . M 2 iA
QP ——o — cr Q — cos8,

m o. 2 2m

(4.5b)

(4.5c)

(4.5d)

IV. QUANTUM THEORY I, =3/2m P+o Q sin —+ cos-o . . 8 Q 8
m 2 2o 2

A. Noether invariant operators and dynamica1 group

The quantum theory of the classical TDO (1.2) can be
described by the Hamiltonian operator

H=P /(2m)+ —,'mai Q (4.1)

where Q is a canonical coordinate, P is its conjugate
momentum, and

O
2

——'McrQ sin —' .
2

(4.5e)

Q =(A'/m)' o(a+a ), (4.6a)

A direct calculation shows that the quantities (4.5)
satisfy Eq. (1.3), where H is given by (4.1). The operators
I (j =1, . .. . , 5) can be written in a simpler form by us-

ing [see (4.3)]

[Q,P]=iA . (4.2)

1 /2

l
20

o. . MP o — cr Q—
m 2

(4.3a)

To build up a set of invariant operators of the Noether
type for the quantum oscillator governed by (4.1), it is
convenient to introduce the time dependent lowering and
raising operators a =a (t) and a =a (t), defined by

1/2
m Q . o . M

a = +i P o — cr —Q2o. m 2

i . M——+o. o — o. a
2 2

i . M+ —+o. o. — a
2 2

a

I3=A(a a+ —,'),

In fact, inserting (4.6) into (4.5) we obtain

I, = —(A/2)(e' a +e ' a )

I =(iA/2)(e' a —e ' at )

(4.6b)

(4.7a)

(4.7b)

(4.7c)

(4.3b)

where o. fulfills the nonlinear ordinary differential equa-
tion (3.12) with 0 given by (3.7). The operators a and a
obey the commutation relation

[a,at]=1, (4.4)

I =m.
1

o. . MP — o — o Q
m 2

2
.cosO

4o

because of (4.2).
A set of time-dependent invariant operators of the

Noether type for the quantum-mechanical system driven
by the Hamiltonian (4.1) can be determined from the
classical constants of the motion (3.18) by adopting the
prescription q —+ Q, q ~P /m. In doing so, we obtain

~ (A/2)1/2(ei( 29)/a e
—ie/2a 't)

4

I (A/2 )1/2(e i 8/2 + —ie/2 $
)

(4.7d)

(4.7e)

I3 = '(I4+Is ) . — (4.8)

We can see straightforwardly that I„.. . , I5 obey the
commutation rules

[Ii,I2 ]=2i AI3, [I2,I3 ]= —2i A'I 1,

[I4,Is]=iA,

[I3,I, ]= —2iA'I2,
(4.9a)
(4.9b)

Similarly to what happens for the classical case, the in-
variant operators I], I2, and I3 can be expressed in terms
of I4 and I5, namely

A A2 A2 A A A A A
Ii = ,'(I4 Is ), I2 = ,—'(I4I—s+IsI4), —

1 1 . M 2 i'fi
QP ——c'r — o. Q — sin8, (4.5a)

m o 2 2m

[I„I4] =i AIs,

[I2,Is ]=i AIs,

[I1,Is ]=i AI4, [I2,I4]= i AI4, —

[I3 I4 ]= —i A'I s, [I3,Is ]=i AI4 .
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We note that Eqs. (4.9) are the quantum-mechanical ver-
sions of Eqs. (3.24), i.e., the former come formally from
the latter by the substitution

tors of the Noether type I„I2, and I3 [see (4.7a) —(4.7c)],
represent a natural realization of the Lie algebra of
SU(1,1).

(4.10)

Looking at Eqs. (4.9a), we see that the Noether invari-
ant operators I&, I2, and I3 satisfy a set of commutation
relations defining the noncompact Lie algebra su(1, 1). As
we have already established in Sec. III, the corresponding
classical Noether invariants I&, I2, and I3 expressed by
(3.18a), (3.18b), and (3.18c) are also elements of an su(1, 1)
algebra (under the Poisson bracket operation). This
property is noteworthy in as much as the su(1, 1) algebra
is related to the noncompact group SU(1,1), which can be
identified as the dynamical group associated with the sys-
tem under consideration [12,22]. This statement is
motivated by the following reasons. Dynamical groups
are essentially noninvariance groups whose generators do
not all commute with the Hamiltonian of a dynamical
system. They yield the energy spectrum and the degen-
eracy of levels and can be used to build up the transition
probabilities between states [12]. Dynamical groups and
their algebras are important in many branches of physics,
ranging from nuclear and particle physics to condensed-
matter physics, quantum optics, and field theory [23].
Notwithstanding, the concept of a dynamical group does
not appear to be defined uniquely in the literature. A
way to remove this ambiguity was proposed by Dotan in
Ref. [24], where the definition of the dynamical group of
a given system is based on the symmetry group of the
corresponding quantum-mechanical equation of motion
for the system. Recently, Castanos, Frank, and Lopez-
Pena [23] showed that Dotan's definition arises naturally
from the quantum version of time-dependent Noether
symmetry transformations. The starting point of the
above considerations is a remark by Malkin and Man'ko
[25], on the ground of which if g(q, t) is a solution of the
Schrodinger equation

Ij
Xi = — =

—,'(J +J+ ),
I2X2= (J —J+ ),

I3X3= =J
2a

X4 = —
—,'(2/A')' I4 = —(i/2)(e' a —e ' a t),

i(2/g)i/2I —i(eie/2a +e ie/2at)
5 e

(4.13a)

(4.13b)

from which

J+ =X +tX2 =—'e ' a1

Jo =X3=
—,
' (a a +—')

J =X& —iX2= —'e' a

(4.14)

Then Eqs. (4.9a) and (4.9b) imply

[J+J ]=—2Jo, [JoJ+ ]=J+, [JoJ ]=—J
(4.15)

and

[X5,X4]=i/2 . (4.16)

By virtue of (4.6a) and (4.6b), the Hamiltonian (4.1) can
be written in terms of the SU(1, 1) Noether invariant
operators Jo, J+, and J, namely

&=yiJo+y2J++yz J—
where y i and y2 are the time-dependent functions

(4.17)

B. The TDO quantum Hamiltonian in terms
of SU(1,1) Noether invariant operators

For practical purposes, such as for instance in the
problem of evaluating the energy spectrum and in the
study of SU(l, l) coherent and squeezed states of quantum
devices described by the Hamiltonian (4.1), it is con-
venient to introduce the notation

then K(q,p, t)g(q, t) is also a solution, where K is a gen-
erally time-dependent conserved quantity, i.e., it is such
that

y =2k. 1 1+4a 0.— 0.M
4~2 2

+CO 0 (4.18)

dK
dt

'„[su]+', =0. (4.12) 1 . . M
y =4 l +20 0 CT

40. 2
+co 0 .e (4.19)

Dotan proposed to adopt as a definition of dynamical
group, that group whose generators are provided by Eq.
(4.12). Anyway, one had to solve the problem of finding
explicitly the invariant operators K related to the system
under investigation In Ref. [.23] this question was han-
dled resorting to a technique proposed by D'Hoker and
Vinet [26] in the context of spectrum-generating su-
peralgebras. In this paper we have followed a more
direct procedure, which can be exploited algorithmically
and can be applied to any system of the form (1.2) and its
quantum version. Our main result is that the existence of
the dynamical group SU(1,1) is dictated by the Noether
symmetry properties of Eq. (1.2), and the invariant opera-

The form (4.17) of the Hamiltonian (4.1), which is Hermi-
tian, is that usually employed to solve the energy spec-
trum problem [12]. In addition, we point out that (4.17)
belongs to the class of the most general Hamiltonian
preserving an arbitrary initial SU(1,1) coherent state un-
der time evolution, that is [14]

H=f, (t)Ko+f2(t)K++f2 (t)K +f3(t), (4.20)

where fi(t), f2(t), f3(t) are arbitrary functions, and
Ko, K+,K are the generators of the SU(1,1) group,
satisfying the commutation relations
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which define the Lie algebra su(l, l). This algebra admits
the Casimir operator

C =Eo —
—,'(%+K +K K+ ) . (4.22)

Thus, the operators Jp, J+, and J expressed by (4.14)
constitute an invariant realization of the su(1, 1) Lie alge-
bra (4.21). In this case the Casimir operator (4.22) takes
the constant value C = —

—,', . We recall that in the study
of SU(1,1) coherent states exhibited by quantum models
described by the Hamiltonian (4.17), one is interested
mainly in the unitary irreducible representations D +

( k ),
known as the positive discrete series, where k is the Barg-
mann index. Since the Casimir operator (4.22) has the ei-
genvalues k(k —1), we obtain k(k —1)=—

—,'„yielding
k =

—,
' and k = —,', which corresponds to the even states

and odd-parity states, respectively [14].
Some cases of particular physical relevance are con-

tained in the generic Hamiltonian (4.17). For example,
let us choose (i) M =0, co =p~p =const; (ii)
M =Mp =const, co=coo (with Mp (2coo); and (iii) M =0
(m =mp =const), co (t) =coo[1+Acos(2vpt )] where A, and
vp are constants.

In case (i), Q=coo, o =I/2coo, 8=2(copt+8o), where
ep is a constant of integration and y &

=2i6cop P2 =0. The
Hamiltonian (4.17) becomes that of the simple quantum
harmonic oscillator, i.e., Pi =y iJo = irido(a a + —,), where
the operators a and a are furnished by (4.3a) and (4.3b)
with o =1/+2coo.

In case (ii), we obtain Q=Qo= —,'(4coo —Mp)'
o. =1/2Qo, 8=2(Qo+8o), y, =2k'(coo/Qp), and

yz= i ( Mi'—/p2)exp[2i(Q tp+ 8 )]p.
The Hamiltonian (4.17) takes the form

[X+ E ]= 2ICo [Kp E+ ]=X+ [Ko X ]= E
(4.21)

states [27].
Case (iii) is of interest in many physical areas, for ex-

ample, in quantum optics and generally in the field of
parametric interactions [1,28]. The classical Hamiltonian

2

H = +—mo pio(1+ A, cos2vot )q
2mp

provides the equation of motion

q+ co o[1 +A, cos(2vot ) ]q =0,

(4.28)

(4.29)

which is of the Mathieu type. The quantum-mechanical
Hamiltonian corresponding to (4.28), in terms of the
operators a and a, is [see (4.17)]

1 (1+4o o )+2' o (a a+ —,')
20

1 (i+2oo) +co o at
40.

1
( i+—2cro ) +co a a

4o

1
cr +coo[ 1 +A cos(2vor ) ]o' =

40.
(4.31)

In order to find an approximate solution to this equation,
we shall regard X as a perturbation parameter. By work-
ing to first order, we let

o(t) = op(. t)+ Acr, (t) . (4.32)

Substituting (4.32) into (4.31) and equating the
coefticients of I, and A, to zero, yields

(4.30)

where co =coo[l+Xcos(2vpt)], and o fulfills the non-
linear ordinary difFerential equation [see (3.12)]

COO AMOP=iri (ata+ —') —i (at —a ),
Qp

' 4

whose classical partner reads

—Mpt p Mpt mp~pH=e +e
2mp 2

where

(4.23)

0p— 0 (—
't/ 2cop

3/2
COp

cos(2vot ) .
4 2(coo —vp)

120 p+ COpCT p—
4~3

1
o &+4pipo'i = — —cop cos(2vpt) .2 3/2

2

Solving these equations, we find

(4.33)

(4.34)

(4.35)

Mptm(t)=moe (4.25) Therefore, from (4.32) we have

This Hamiltonian, which gives the equation of motion
of the ordinary damped harmonic oscillator

10— 1 —A.

1/ 2cpp

2
COp

cos(2vpt )
4(~2 v2 )

(4.36)

q +~pq +~oq (4.26)
and [see (3.13)]

2 1H = +—m (t)cooq
2m (t) 2

(4.27)

is a particular case of the Kanai-Caldirola Hamiltonian 3
COO

8=2(coot +8o)+A, sin(2vot ),
2vo(~o vo)

(4.37)

with m(t) given by (4.25), where the damping is ex-
pressed by Mpt. Finally, we notice that (4.23) can be con-
sidered as a prototype for the generation of squeezed y, =2iricoo[ 1+ ,' Leos(2vot)], — (4.38a)

where Op is a constant of integration. Furthermore, in-
serting (4.36) into (4.18) and (4.19) we obtain
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k)pVp
y2 = —Kiri [vocos(2vot ) —icoosin(2vot) ]e '

2(coo vo)

(4.38b)

at the first order in A, .
Hence, the Hamiltonian (4.30) takes the approximate

form [see also (4.17)]

COpVp
irico—(a a+ —')—

A,A'
2

Q)p Vp
2 2

X [ [vocos( 2vot ) i coosln( 2vot ) ]a f2

+ [vocos( 2vot )

spectively.
The quadrature-phase operators are also important in

the theory of squeezing exhibited by certain quantum-
mechanical systems and optical devices, such as, for ex-
ample, the two-photon device [10]. At this stage we
point out that in dealing with quantum oscillators in
which the mass and frequency may be time dependent,
definition (4.41) should be replaced by (4.43). In this case,
one of the basic properties of the theory of squeezing, i.e.,
the uncertainty relation involving the variances of the
quadrature-phase amplitudes [10, 14, 29], should be for-
mulated generally in such a way that A, and 32 are re-
placed by X5 and X4, respectively.

where

+ l cooslil(2vot) ]a ] (4.39)
V. CONCLUDING REMARKS

co-=coo[1+—,
' 1,cos(2vot) ], (4.40)

and the operators a and a are expressed by (4.3a) and
(4.3b) with cr given by (4.36).

The Hamiltonian (4.39) resembles that appearing in the
context of electromagnetic and acoustic parametric in-
teractions [28]. In this case, 2vo plays the role of a driven
frequency [see Eq. (4.34)].

C. Generalized quadrature phase amplitude operators

a =(A, +iA2)e (4.41)

where cop is a constant, and correspond to the real and
imaginary parts of the oscillator complex amplitudes.
The quadrature-phase operators are Hermitian, are con-
stants of the motion, and obey the commutation relation

[A i, A2]=i/2 .

Since from (4.13b) we have

(4.42)

(4.43)

In Sec. IV A we saw that the Noether invariants Ii, I2,
I3 can be regarded as a natural realization of the genera-
tors of the dynamical group for the quantum system de-
scribed by the Hamiltonian (4.1). Here we show that also
the remaining Noether invariants I4 and I~ [or,
equivalently, X4 and X~ given by (4.13b)], have a physical
interpretation. Precisely, X4 and X5 can be identified
with a generalized version of the operators called
"quadrature-phase amplitudes, " which are involved, for
instance, in the quantum nondemolition (QND) measure-
ments and in the problem of the generation of squeezed
states by certain quantum-mechanical systems and opti-
cal devices [10]. In fact, in QND measurements a funda-
mental class of oscillator variables are the "quadrature-
phase" operators, defined by

We have obtained the symmetry properties of both the
classical and quantum oscillator with time-dependent
mass and frequency, using an algorithm based on the Lie
group theory of point transformations. We have found
that the classical system allows a set of five time-
dependent Noether invariants, where three of them, I],
I2, and I3 given by (3.18a)—(3.18c), form the su(1, 1) Lie
algebra under the Poisson bracket operation. This
feature is shared by the corresponding Noether invariant
operators I„I2, and I3 [see (4.7a) —(4.7c)], related to the
quantum version of thegeneralized oscillator under con-
sideration. In this case I„I2, and I3 form the su(1, 1) Lie
algebra under the commutator operation. This result is
noteworthy because the su(1, 1) Lie algebra underlies the
noncompact group SU(1, 1), which in this way can be
identified unambiguously with the dynamical group ad-
mitted by the generalized oscillator. In other words, the
existence of the dynamical group SU(l, l) is a natural
consequence of the Noether symmetry properties of the
system.

Also the Noether invariants I4 and I5 have an interest-
ing physical interpretation. In fact, they can be regarded
as the quadrature-phase amplitude operators that occur,
for example, in the context of quantum nondemolition
measurements and in the theory of squeezing.

Furthermore, our formalism can be used to write the
Hamiltonian of the generalized quantum oscillator in
terms of (Noether invariant) generators of the dynamical
group. This is important in the evaluation of the energy
spectrum of the system and in the study of coherent and
squeezed states.

To conclude, we observe that the group approach we
have followed is quite generally valid and could be ap-
plied, say, to coupled time-dependent oscillators as well
as to nonlinear systems in more than one dimension.
This might be a challenging subject of a future investiga-
tion.

where a is defined by (4.3a), and X5 and X4 satisfy condi-
tion (4.16), it follows that X~ and Xz can be considered as
a generalization of the operators 3, and A2. In particu-
lar, if we refer to the oscillator with constant mass and
frequency, X~ and X4 coincide just with A, and 32, re-
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APPENDIX: THE NOETHER INVARIANTS

Here we outline the procedure to derive the Noether
invariants (3.18). To this aim, we need to exploit Eq.
(2.15) by using the expressions (2.8) and (3.1). In this way
we find

( —,'mq ,'rh—co—q mco—coq )g m—co qP

where the functions g and y=y(t) satisfy the constraints

g+ 4Q g+ 4QQg'= 0,
y+My+co y=O,

(A4)

(A5)

with Q defined by (3.7).
The general solutions of Eqs. (A4) and (A5) can be

written as

+I/, +[Pe —(g, +g q)]q]mq+( —,'mq ,'m—co—q )

X(gt+g q)=B&+Bqq . (Al)

Equating the coefficients of power of q to zero, Eq. (Al)
provides

g=o (k, cos8+k2sin(9+k3),

0 . 0o. k4cos —+k5sin—

(A6)

(A7)

2k
—

2 4 q+X

B = (g Mg—Mg—)q +rnjq, '

4

(A2)

(A3)

where o obeys Eq. (3.12), 9 is given by (3.13), and
k„.. . , ks are arbitrary constants. The invariants (3.18)
arise from (2.17) taking account of (A6), (A7), (3.1), and
(A3), by setting k, = 1, kj =0 (j&1),k2 = 1, kl =0 (j%2),
and so on.
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