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Squeezing limits at high parametric gains

Arthur La Porta and Richart E. Slusher
A Td'z T Bel/ Laboratories, 600 Mountain Avenue, Murray Hill, Xew Jersey 07974

(Received 30 January 1991)

The generation of squeezed light in a single-pass parametric amplifier pumped by Gaussian beams is
analyzed. Limits to the degree of squeezing that can be obtained are found that arise from spatial distor-
tion of the signal beam that is significant for parametric gains greater than 3 dB. It is found that squeez-

ing is limited to approximately 6 dB for typical experimental configurations. These limits severely con-
strain the design of quantum noise experiments unless high finesse cavities or waveguides are used.

I. INTRODUCTION

The initial squeezed-state experiments used
continuous-wave lasers to generate quadrature squeezing
of the electromagnetic field, either by four-wave mixing
or by parametric down-conversion [1]. Because the non-
linear susceptibilities available for both systems are small,
it was necessary to enhance both the pump field and the
squeezed field in a high-finesse resonant cavity in order to
obtain large squeezing. The purpose of the cavity is to in-
crease the pump intensity in the nonlinear medium, and
to increase the effective path length experienced by the
squeezed field. Another effect of the cavity is to enhance
selected transverse and longitudinal modes that are reso-
nant, and to suppress other modes that are not resonant.
Later, it was realized that pulsed squeezed fields could be
created and detected if both the pump field and the local
oscillator field were pulsed [2]. Taking advantage of the
extremely high intensities obtained from mode-locked [3]
and Q-switched [4] Nd:YAG (yttrium aluminum garnet)
lasers, experiments using a potassium-titanyl-phosphate
(KTP) parametric amplifier demonstrated large paramet-
ric gains from a single-pass, traveling-wave configuration.
This system is pumped by a second harmonic beam with
a Gaussian spatial profile and acts on an input mode with
a corresponding spatial profile. At large gains, and in the
absence of the spatial filtering effect of a resonant cavity,
the spatial variation of the pump mode causes the
parametrically amplified and deamplified quadrature field
components of the signal mode to assume strongly non-
Gaussian spatial profiles and to be distorted significantly
with respect to each other [5]. We analyze this distortion
in the classical limit for an input beam with a Gaussian
intensity profile and find that the gain measured by direct
or homodyne detection differs from that predicted by a
plane-wave analysis. In the quantum limit, the case of
squeezing is considered. It is found that in addition to
the classical effects, noise from higher-order spatial
modes is coupled into the Gaussian mode, which is mea-
sured by a homodyne detection scheme using a
Gaussian-profile local oscillator beam.

The final goal of the work is to calculate the gain, and
the level of squeezing that can be obtained in a thick
parametric amplifier, i.e., one in which the pump and the
signal fields diffract appreciably as they propagate

through the nonlinear medium. The results depend criti-
cally on the relative sizes and alignments of the pump
and signal fields. For this analysis, we assume that the
second harmonic pump is a Gaussian spatial mode which
comes to a minimum focus at the center of the nonlinear
medium. The input signal field is taken to be a Gaussian
mode focused at the same location in the crystal. The
minimum beam radius of the signal beam is taken to be a
factor of &2 larger than that of the pump beam, so that
the diffraction of the two beams will be the same, despite
the difference i.n wavelengths. In this configuration both
the &2 ratio of the mode sizes and the exact matching of
the phase fronts of the two modes are maintained
throughout the interaction region, as shown in Fig. 1.
This results in optimum coupling between Gaussian
pump and signal modes. For the homodyne measure-
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FIG. 1. A map of the confocal region of a parametric
amplifier in the x-z plane is shown for the pump and signal
fields. The x axis gives the axial distance in terms of the confo-
cal distance zo=mco~on/A, . The y axis gives the transverse dis-
tance in terms of the minimum pump radius co~a. The horizon-
tal curved contours are lines of 1/e power for the signal (outer
curve) and pump {inner curve) beams. Wave-front contours at
wavelength periods rnatch throughout the focal volume in order
to optimize the parametric gain. The thin sample analysis ap-
plies only for the nearly planar wave-front region near the
focus.
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ment analysis, it is assumed that the local oscillator is
matched to this input signal mode, and therefore mea-
sures the noise and amplitude of this mode. We will con-
sider degenerate squeezing so dispersion may be neglect-
ed [6], and we assume that the signal mode is weak com-
pared with the pump mode, so that the pump power is
constant throughout the interaction region.

The calculations reported in this article show that
there are severe limits to the amount of squeezing that
can be obtained for a single-pass parametric amplifier
pumped by a beam with a Gaussian spatial profile. If the
nonlinear medium fills more than an infinitesimal fraction
of the confocal mode volume the amount of squeezing
that can be obtained is limited to approximately a factor
of 4 in power. This will significantly impact the design of
quantum light experiments such as quantum nondemoli-
tion measurements [7], "Schrodinger's cat" generators
[8], and quantum frequency converters [9]. It also indi-
cates the importance of cavities and waveguide structures
in obtaining high gains and large squeezing. We first de-
scribe the case for a thin interaction region in Sec. II, and
then the thick interaction region, that includes diffraction
in Sec. III.

II. THIN INTERACTION REGION

Before studying an experimentally realistic parametric
amplifier, we first consider the simplest case, where both
the pump and the signal fields are taken to be infinite
plane waves, so that all transverse variation of the pump
and signal fields is neglected. It is convenient to write the
classical optical field in terms of its phase quadrature am-
plitudes E„and E,

E(t)=E sin(Qt+P)+E cso(Qt +P),

E (L)=—E (0),=1 (2)

kE LG=e P =e

where 0 is the optical frequency. For proper choice of P,
the classical parametric gain in a nonlinear medium of
length L can be described by [10]

E„(L)=GE (0),

with a detector of perfect quantum efficiency, the ob-
served suppression of the quantum field fluctuations
would be equal to the parametric gain parameter G.

We can easily generalize to the case of pump and signal
modes having a Gaussian intensity profile if we assume
that the interaction region is sufficiently thin that no
diffraction of the beams takes place. This condition is
fulfilled if the propagation distance is very small com-
pared to m$ n/A, , where l is the width over which the in-
tensity of the mode varies significantly. For the input
mode, l is equal to the beam radius ~o. If the output
mode becomes distorted, l is the size of the smallest
feature of the distorted mode. If we consider a
sufficiently thin region at the focus of the mode volume,
the wave fronts will again be planar, but the pump and
signal fields vary as a function of the transverse radius
[11]:

—(r/~ )E (r)=E oe

—(r/~, )
E, (r) =E,oe

co~ =v 2cop

(4)

—(r/~ )'=exp(+N„, e ' ),
where +„& is the nonlinear phase shift at the center of the
mode, co is the Gaussian beam waist of the pump, and
the signs specify the gain for the amplified (+) and
deamplified (

—
) quadratures. Since we assume the

amplifier is sufficiently thin that no diffraction occurs, the
amplification is local, and the output field may be found
by pointwise multiplication of the input field by the gain.

where co and co, are the minimum beam waists of the
pump and signal beams and E,o and E o are the pump
and signal fields at the center of the mode. In this
configuration the pump field and the corresponding para-
metric gain vary over the area of the signal mode, result-
ing in an inhomogeneous amplification of the mode. The
gain still has the same dependence on the pump intensity
as shown in Eq. (3), but E varies as a function of radius,
so that the gain is given by

—(r/co )
G —(r)=exp[+kLE (r)]=exp(+kLE oe ~ )

where G is the parametric field gain, k is the nonlinear
coupling constant, E is the pump field, and 4„&=kE L
is the nonlinear phase shift. The plane-wave limit is the
most basic form of the parametric interaction, where the
gain is the same everywhere in the interaction region. In
this case the gain increases exponentially as the pump
field is increased. For an analysis of the parametric gain
of the system it is sufficient to consider the quadrature
amplitudes to be classical variables. A quantum analysis
in which the variables are replaced by corresponding
quantum field operators shows that the parametric
amplifier is capable of transforming the quantum fi'uctua
tions of the electromagnetic field quadratures according
to the same equations, producing a state in which one
quadrature has smaller fluctuations than the vacuum
state, i.e., a squeezed state. If squeezed state is observed

E,„,(r ) =E;„(r)G(r, 4&„i),

( i /2 )( r /& ) ( /
p

)E,„,(r) =(E,oe ~ )ex (p+4„,e ~ ) . (9)

E,„,(r) is the amplitude of the signal field as it leaves the
parametric amplifier, where we have used the fact that
the beam waist of the signal field mode is assumed to be
v'2 larger than that of the pump field. This output field
is shown as a function of radius for gains of 2 and 4 in
Fig. 2. For G(0) ~ 2, the signal mode is severely distort-
ed, and the amplified mode is no longer Gaussian. It is
noteworthy that the two quadratures of the mode are dis-
torted differently, so that the distortion is unlike any that
could be produced by a lens, or index gradient, or any
other optical device which is not phase sensitive. Since
the signal mode is not homogeneously amplified, (i.e., the
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In the limit that the gain is small, it appears that the gain
follows the plane-wave result, with an effective pump field
which is half E 0, the field at the center of the mode.
However, in the limit that %„1is large, the plane-wave ap-
proximation breaks down, and Gd approaches the
asymptotic form
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FIG. 2. Transverse profiles for the input signal (dashed) and
output signal (solid) fields are shown for gains G (0) of (a) 2 and
(b) 4. The sharply peaked signai curves correspond to the
amplified signal and the curves with the dips at zero radius are
deamplified signals.

1/2 f E,„,(r)r dr

f E;„(r)rdr
0

fr.„,da

f r,„d~
(10)

Using the input and output fields from Eqs. (9) and (5),
we obtain

—(r/co ) —(r/~ )

Gd
—=

2 f (e )exp(+2@„&e
"

~ )r dr
COp

nle
d 24„1

1/2

Gd =
1/2

nl

nl 2@
(12)

where Gd+ and Gd are the gains for the amplified and
deamplified quadratures. Clearly the gain as measured by
direct detection does not exhibit the simple exponential
dependence on the pump field that is obtained from the
plane-wave analysis. Furthermore, the gains for
amplification and dearnplification are no longer sym-
metric. Particular attention should be paid to the
deamplification gain Gd, since this is closely related to
the expected squeezing. In the limit that N„& is small Gd
can be approximated as

—(1/2)+„l —(1/2)kI E 0 (13)lim Gd ——e
0

entire signal field is not multiplied by a constant factor)
the meaning of the gain of the system is no longer clear.
The apparent gain of the system will depend on the
method used to measure it. We will consider two possible
methods of measuring the gain, direct detection and
homodyne detection.

For direct detection, the entire signal mode is collected
on a photodetector, and the total photocurrent is mea-
sured. This gives a current which is proportional to the
photon flux, or the total power of the beam. This quanti-
ty is calculated by integrating the optical intensity over
the area of the beam. The power gain may be defined as
the ratio of the photocurrents of the input and output
modes, and the effective field gain Gd is the square root of
the power gain. The field may therefore be written

' 1/2

As the pump becomes large, it is found that the
deamplified signal, as measured by direct detection, does
not decay exponentially with E~0, but decreases much
more slowly with the squeezed root of E 0.

In squeezed-state experiments, the gain is more often
measured by balanced homodyne detection. In this case,
a 50% beam splitter is used to interfere the signal mode
with a strong local oscillator Geld whose spatial mode is
adjusted to correspond with that of the signal mode. The
mixed fields are measured with photodetectors and the
currents from the detectors at the two output ports of the
beam splitter are subtracted. The homodyne signal is the
beat between the signal and the local oscillator, and is a
measure of the wave-front overlap of the signal field with
the local oscillator mode. It can be interpreted as the
projection of the signal mode on the spatial mode of the
local oscillator. The balanced hornodyne signal is given
by the integral

fEdet ~d~ —fEde~ad~

f (E, +E„o)dA —f (E, Eto) dA-=1

=2f E,ELor dr .
0

(15)

nl nle "—1 e "—1
h

n&
nl@

where Gh+ and Gh are the gains obtained when the para-

Ed„~ and Ed„~ are the a~plit~d~~ of the total Gelds in-
cident on the two photodetectors. E, and E„o are the
complex amplitudes of the signal and local oscillator
fields incident on the homodyne beam splitter. Note that
the complex product of E, and EIo only measures the
component of E, which is in phase with ELO, so by vary-
ing the phase of ELo the two quadrature amplitudes of
E, can be independently measured. The gain as mea-
sured by homodyne detection can be defined as the ratio
of the homodyne signals obtained for the input and out-
put signal fields.

EoutELQP d7
6 0 (16)f E)IELor dr

0

where it has been assumed that the local oscillator phase
has been adjusted to give the maximum signal. Substitut-
ing as before for the input and output fields, one obtains

—(r/~ ) —(r/~ )
Gh =

2
e ' exp +e.&e

~ I'dr,
COp
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metric amplifier pump phase is set for amplification and
deamplification, respectively. Again, the gain as mea-
sured by homodyne detection has lost its simple exponen-
tial form. In the low gain limit, the homodyne gain is the
same as the direct gain

beam which occurs in the parametric amplifier. The dis-
torted, non-Gaussian output mode of the parametric
amplifier must be interpreted as a superposition of
higher-order generalized Gaussian beam modes [11].
These are defined by

—(1/2)4„)
lim Gh ——e —e

N„)~0

—
( 1/2) kLE o

( )
2 H 2x ~ 2y —[(z +y )/~ I

mn ~» m
CO

However, in the limit that 4„& is large the asymptotic lim-
it of the homodyne gain is given by

1 1
lim 6& ——

e„, ~ N i kI E 0
(20)

As before, the plane-wave analysis is approximately
correct at low gains, but breaks down when the gain be-
comes large. Figure 3 shows the gains calculated for the
homodyne and direct measurements [Eqs. (12) and (18)],
along with the plane-wave extrapolation from the low
gain limit [Eq. (13)]. For gains less than 3 dB, all three
calculations of the gain are indistinguishable. For gains
greater than 6 dB, there are substantial difFerences be-
tween the actual gains and the extrapolation of the
plane-wave result. The differences between these gains is
very significant in the design of experiments. The plane-
wave calculation predicts that a factor of 3 increase in
pump field, a factor of 9 in pump power, is required to in-
crease the gain from 3 to 10 dB. In the case of measure-
ment by homodyne detection, a factor of 25 increase in
power is actually needed; for direct detection a factor of
50 in power is needed. The plane-wave analysis underes-
timates the pump power requirements in this example by
factors of 2.8 and 5.5.

Up to this point we have only considered the evolution
of the semiclassical amplitude of a coherent state. We
now consider how the parametric amplifier acts on the
quantum fluctuations of the electromagnetic field to pro-
duce a squeezed state. In order to do this, we must at-
tach a new interpretation to the distortion of the signal

(21)

Eo(r)=E~( yx) .

The next few modes are

(22)

E2(r) Epp( xy )+EO2(x,y ),
E4(r) =E~Q(x,y )+2E22(x py )+E()4(x,y ) .

The mode of order 2n is given by
n a

E(2n)( ) g n (2g)(2g —2g)(xty )
a=0

(23)

(24)

(2&)

where H (z) is the Hermite polynomial of order I, x
and y are the two transverse dimensions, and co is the
mode radius. The prefactor has been chosen to satisfy
the normalization condition fE dA = 1. This set of spa-
tial modes is sufficient to express the distorted signal
mode because the inhomogeneous amplification which
takes place in the parametric amplifier modifies only the
intensity profile of the signal mode; the phase fronts of
the signal beam remain planar. The symmetrical
geometry of the parametric amplifier implies that the out-
put mode must be radially symmetric. It would therefore
be useful to have a more restricted basis of modes which
depend only on r and which are complete and orthogonal
on the interval Jr dr. Such a set of modes E (r) can be
constructed from linear combinations of the generalized
Gaussian beam modes. The lowest-order mode is, of
course, the fundamental Gaussian mode

ca
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where ('„) is the binomial coefficient. (There are no
modes of odd order, since these modes would be antisym-
metric in radius. , If the input and output signal modes
are expanded in this basis of spatial modes, the gain pro-
cess can be thought of as a transformation that scatters
the modes of the input field into the modes of the output
field. Although the parametric amplification arises from
a nonlinear coupling of the signal modes to the pump
mode, the transformation of the signal mode is linear,
and may be represented by the following matrix equation:

-io

-30
I I I

6
Pump Field (Relative Units)

10

Eo
g00 g02 g 04

g 20 g22 24

g40 g42 g 44

E;„
0
0 (26)

FICs. 3. The gain measured by direct (solid lines) and homo-
dyne (long-dashed lines) detection is compared to that obtained
from a plane-wave (uniform gain) analysis. The pump field is
normalized so that a field of 1 unit corresponds to a gain of 3 dB
in the plane-wave case.

Here the components of the input and output field vec-
tors are the amplitudes of the various spatial modes for
one quadrature of the field. The matrix element g „
gives the coupling between the nth-order input mode and
the mth-order output mode, and is defined by
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g „=J E (r)G(r, &„()E„(r)rdr, (27)

where G(r, g„() depends on the pump field, and is taken
from Eq. (7) above. For example, the first three matrix
elements would be given by

2 oo —(r/co )
—(r/m )

goo =
2

(e ~ )exp(@„(e ~ )r dr,
COp

(28)

g02 = 2 ~ —(I'/~ )
(e ~ ) 1—

CO COp

—(r/co ) rdr,X exp(4„,e (29)

2 oo —(&/u ) P
g04 = e ~ 1 2

CC)p COp

2
1 r+—
2 cop

4

X exp(4&„(e
—(r/co )

(30)

E2

(g
2 +g

2 +g
2 + )

1 /2

nle "'—1

2N„)

' 1/2
nl

nl2@
(31)

The integral calculation of the gain by direct detection
[from Eq. (12) above] then gives an analytic solution for
the quadrature sum of the first row of the amplified or
deamplified gain matrix.

To determine the squeezing which can be obtained
from the parametric amplifier we must determine how

where we have used the fact that to, =&2co . It is clear
from the definition that g „=g„,and the gain matrix is
symmetric. Furthermore, as long as the alignment of the
pump and signal modes is preserved, the gain matrix de-
pends only on @„&=kl.E 0. As written, the equation de-
scribes the parametric amplification of the signal beam; if
the pump phase were shifted by ~, we would take
N„)= kLE 0, a—nd the signal field would be deampliped
The vector on the right side in Eq. (26) represents the in-

put field, and has only one nonzero element because the
input mode is assumed to be a coherent state with a pure
Gaussian spatial mode, which has no higher-order spatial
components. The other matrix elements are simply set to
zero because in the analysis of the parametric gain we are
only concerned with the coherent amplitudes of the
fields. The direct and homodyne measurements of the
parametric gain may be identified in this matrix formula-
tion. The homodyne detector measures the amplitude of
the lowest-order spatial mode, and the gain is the ratio of
the output amplitude to the input amplitude of this mode
so that the gain is given by GI, =g00. The direct detector
measures the total output power in all spatial modes.
Since the spatial modes are orthogonal, this is equal to
the sum of the squares of the component amplitudes
(Eo+E2+E4+ ). The gain as measured by direct
detection is then the sum of the contributions of the ma-
trix elements of the first column, since

the gain matrix acts on the vacuum state. Squeezing in a
parametric amplifier is described by

r

~ ~ ~

g00 g02 g04
0

E2 g20 g22 g24

4 g40 g42 g44

Vo

V2

V4
(32)

The input vector on the right represents the vacuum state
incident on the parametric amplifier. The amplitude of
each spatial mode of the vacuum is represented by an in-
dependent noise term V„. Each amplitude has a mean
value of zero, but is assumed to be Auctuating indepen-
dently of the other amplitudes with a variance o.z, corre-
sponding to the quantum uncertainty of the vacuum field.
When we measure the squeezing, we measure the vari-
ance of the spatial mode that matches the spatial mode of
the local oscillator, which in this case is the variance of
the amplitude E0. The primary function of the paramet-
ric amplifier is to deamplify the Auctuations of the funda-
mental mode. However, the inhomogeneity of the gain
distorts the fundamental mode, scattering its amplitude
and Auctuations into higher-order modes by the elements
of the first column of the gain matrix. But, the paramet-
ric amplifier also acts on the higher-order modes, deam-
plifying them, distorting them so they are no longer or-
thogonal to the fundamental mode, scattering their am-
plitude and Auctuations into the fundamental mode by
the elements of the first row of the gain matrix. The vari-
ance of the fundamental mode is therefore found by com-
bining the Auctuations which are coupled into this mode
from all of the spatial modes. Since the noise sources
which model quantum Auctuations of the input modes
are independent, the noise fields add incoherently. The
variance of E0, denoted by o.E, is related to the variance

0

of the vacuum field o. z by

~ Eo ( ~ Vg Oo +~ Vg 02 +~ Vg 04 +2 2 2 2 2 2 . . . 1/2

=a v(goo+go2+go4+ (33)

The noise power squeezing 5 is given by the square of the
ratio of the variance of the output state to the variance of
the vacuum state.

(trE, )'
g 00 +g 02 +g 04 +

(~v)2
(34)

Comparison of Eq. (31) with Eq. (34), using the symmetry
of the gain matrix (g „=g„),reveals that the expres-
sion for the squeezing is identical to the square of the ex-
pression for the parametric gain measured by direct
detection. The direct measurement of gain measures the
coupling of the fundamental mode into all of the modes,
the squeezing measures the coupling of all the modes into
the fundamental modes, and the symmetry of the gain
matrix corresponds to the fact that these reciprocal cou-
plings are equal. As a consequence, the expression which
was derived above for the gain by direct detection also
applies to the observable squeezing. To reiterate, the
quadrature power squeezing which can be observed from
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24„i
eS= (35)

a parametric amplifier pumped by a Gaussian mode with
the symmetry we have specified is given by co (z) =coo 1+ A,z

mcoon
2

2

III. THICK NONLINEAR INTERACTION REGION

The method which we have applied to the parametric
amplifier is not valid if the propagation distance is
sufficiently large to allow diffraction of the signal field to
occur in the interaction region. In this case the profile of
the output mode cannot be found by pointwise multipli-
cation of the input mode and the gain. This is because
the effect of a change in field at a point on the wave front
will not be confined to that point after the wave has pro-
pagated a finite distance. In fact the effect of a change in
a region of width l will only remain confined to that re-
gion after a propagation distance short compared to
~/ n/A, . The behavior of a thick parametric amplifier
can be calculated by dividing the interaction region into
layers which are su%ciently thin to be approximated as
diffractionless and compounding the effect of the layers.
For each layer, the input state must be transformed to
reAect the parametric gain which occurs in the layer, and
to reAect the evolution of the non-Gaussian signal mode
as it propagates from layer to layer.

The gain matrix described above specifies how the vari-
ous spatial modes evolve under the inAuence of the gain
interaction. We must now describe the evolution of the
spatial modes as they propagate from layer to layer. This
evolution is found by considering the generalized Gauss-
ian mode in three dimensions [8].

2 &2x &2yEmn«y»= (,)
Ifm (,)

IIn (,
T

X exp
x +y ik(x +y ) +.k+ ~kz
co~(z ) 2R (z )

—i(m + n + 1)q(z)

where

iq(z) =tan
%coon

2
mcoon

R(z) =z 1+
A,z

e "'2C

There are several points that should be noted here. For
nonlinear phase shifts of more than 1 rad the observable
squeezing is dramatically degraded from what is predict-
ed by a plane-wave analysis. Furthermore, even with a
perfect homodyne detector, the degree of squeezing pre-
dicted is substantially less than the parametric gain as
measured by homodyne detection.

cos%' sin% EmX—sin% cos% E (37)

where E z and E ~ are the X and Y quadrature ampli-
tudes of the spatial mode of order m.

Now we can specify an algorithm for calculating the
gain and squeezing of a thick layer. First we divide the
interaction region into n layers, such that diffraction is
negligible in each layer. Since the modal dispersion intro-
duces a coupling between the two phase quadratures, we
can no longer write separate equations for each quadra-
ture. We therefore define a state vector which specifies
the field amplitudes for both phase quadratures of each
spatial mode. To represent the gain of the ith layer we
multiply the input state by a matrix which transforms the
amplitudes of one quadrature by a single quadrature gain
matrix calculated using 4„&=k5zE (z, ), and transforms
the amplitudes of the other quadrature by a single quad-
rature gain matrix using 4„~= k5zE (z; ), where z; and-
5z, are the center and thickness of the layer, and E (z) is
the center mode pump field as a function of z. The two
phase quadratures remain segregated during this opera-
tion. This matrix is given by

As the modes propagate along the z axis, the parameters
rI(z), R(z), and co(z) evolve. The intensity profiles of the
modes are determined by the Hermite polynomials and
the real part of the argument of the exponentiation. In
both of these factors, the transverse dimension scales
linearly with the beam waist co(z) without any depen-
dence on the mode order. As a result the intensity
profiles of all the modes retain a fixed relationship and
the amplitudes of the modes do not mix during propaga-
tion. The curvatures of the wave fronts all evolve with
R(z), and also remain equal as the modes propagate.
However, the term i(m+n+1)g(z) in the exponential
introduces an overall phase shift between the spatial
modes as they propagate through the interaction region.
In the distance that it takes for the mode to expand by a
factor of &2 from its minimum beam radius, the second-
order mode has undergone a phase shift of ~ with respect
to the fundamental mode. The result of this is that as the
non-Gaussian signal mode propagates through the in-
teraction region, its intensity profile will change because
the phases of the spatial components are constantly shift-
ing with respect to each other. The key point is that only
the phases of the modes evolve; there is no exchange of
energy among the spatial modes. In the parametric
amplification process, the consequence of this mode
dispersion is that the quadratures of the spatial mode of
order m are rotated with respect to the fundamental
mode by an angle 4 =m[g(z) —rI(z+5z)] as the field

propagates through a slice of thickness 6z. The quadra-
tures of the various spatial modes are therefore
transformed according to
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where g „and h „are the single quadrature gain matrix elements for 4„&=+k6zE„(z,). The. number of terms which
must be retained in this calculation will depend on the strength of the interaction. For small squeezing, only the
lowest-order term is significant, and this corresponds to the reversion to the plane-wave result which is found in the low
gain limit. For observed squeezing exceeding 3 dB additional terms are needed In general we must retain enough
terms that the highest-order spatial mode amplitude remains negligible compared to the other amplitudes throughout
the propagation. After the action of the gain matrix, the state vector is multiplied by a matrix that rotates the quadra-
tures of each spatial mode by an angle + =m[g(z;) —g(z;+&)], where m is the order of the mode. The spatial mode
remains segregated during this operation. The transformation may be written

E"=R (%)E', (4O)
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where

C =cos(V ), S =sin(% ) .

P(P~, coo, L ) = + R (%(z, ) )G( C&„,(z, ) ) .
I' =0

(42)

The elements of this matrix would give the coupling of
each quadrature of each spatial mode of the input state to
each quadrature of each mode of the output state. Al-
though the combined matrix explicitly depends on the
pump power, the minimum beam waist, and the interac-
tion length, there are in fact only two independent pa-
rameters. The dispersive phase shift (which determines

The final output of the parametric amplifier is calculated
by multiplying the state vector by the gain and dispersion
matrices computed for each layer. Of course, it is con-
venient to take advantage of the associative property of
matrix multiplication and multiply the matrices
representing the gain and dispersion of all the layers to-
gether to form a combined matrix P representing the
thick parametric amplifier.

R) and the spreading of the Gaussian mode (which deter-
mines G) scale identically with the confocal distance
~cupn/A, . All that is needed to specify the matrix is the
pump power at the center of the mode, and the ratio of
the length to the confocal distance. Once the combined
matrix has been computed the observables of the
amplifier can be immediately obtained. The squeezing, in
particular, is again the quadrature sum of the first row of
the total matrix, but in this case there are twice as many
terms as there are for the thin parametric amplifier. This
corresponds to the fundamental difference between the
thick and the thin amplifier. In the thin amplifier the
spatial modes of each quadrature were mixed, but the two
quadratures remained uncoupled. In the thick amplifier,
the modal dispersion mixes the two quadratures, and the
amplitudes of both quadratures of all of the spatial modes
are coupled into the squeezed quadrature. An additional
subtlety is introduced as a result of the mixing of quadra-
tures in the thick parametric amplifier. In this case it is
not necessarily true that the maximally squeezed quadra-
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FIG. 4. Parametric gain and squeezing in a thick medium are
shown as a function of pump field normalized as in Fig. 3, The
solid curve applies for squeezing while the long-dashed line and
short-dashed lines correspond to a homodyne measurement of
the gain and the plane-wave (uniform gain) case, respectively. A
half interaction length of 20% of the confocal distance is used
in this illustration.

FIG. 5. A comparison of squeezing as a function of the
square root of the pump power is shown for three geometries.
The half interaction lengths are 20% (solid line), 10%%uo (long-
dashed line), and 5% (short-dashed line) of the confocal dis-
tance. As the pump focus expands and the confocal distance be-
comes larger compared to the interaction region, the degree of
squeezing that can be achieved increases, but higher pump
power is required.

ture is the one with zero phase difference from the pump
field. However, if it is required that the modes reach
their minimum radius at the center of the interaction re-
gion, the symmetry of the dispersive phase shifts implies
that the quadrature with zero phase shift is the maximal-
ly squeezed one, as is verified by computation.

A calculation of parametric gain and squeezing in a
thick parametric amplifier is shown in Fig. 4. The pa-
rameters have been chosen to represent a realistic KTP
squeezer where the interaction length is 20% of the con-
focal distance. The finely dashed line is the extrapolation
from the small gain limit based on the plane-wave
analysis. The dashed line is the homodyne measurement
of the parametric gain, which is not significantly affected
by the modal dispersion. The solid line is the squeezing
which is predicted for this geometry. Note that the
squeezing reaches an optimum level of 5.8 dB at a rela-
tive pump field of 2.3, and becomes worse if the pump in-
tensity further increased, despite the fact that the para-
metric gain is still improving. This is because the mode
dispersion of the thick amplifier mixes the squeezed mode
with both the squeezed and the antisqueezed quadratures
of the higher-order modes. This is different from the thin
amplifier, where the squeezed field is coupled only to
weakly squeezed higher-order modes of the same quadra-
ture. At low gains, the mixing is small, and the effect is
negligible. As the gain is increased, noise power in the
antisqueezed higher-order modes increases rapidly, and
the strength of the coupling to these modes also in-
creases. The product of these two factors increases faster
than the deamplification of the fundamental mode, result-
ing in a degradation in squeezing. Eventually, both quad-
ratures will become antisqueezed. Figure 5 compares
squeezing calculations for several geometries. The three
sets of curves represent the squeezing predicted for suc-
cessively shorter interaction distances. As the interaction
length is reduced the quadrature mixing becomes weaker

and the optimum squeezing improves, although more
pump power is needed. A similar result is obtained if the
confocal distance is increased by enlarging the pump
beam radius. In the limit that the interaction region is
infinitely thin compared with the confocal distance, the
curve will revert to the thin parametric amplifier calcula-
tion, shown in Fig. 3, and the obtainable squeezing will
again become unbounded. Figure 6 shows the optimum
squeezing level as a function of interaction length nor-
malized to the confocal distance. The optimum squeez-
ing is at its worst when the interaction length is on the
order of the confocal distance. The optimum squeezing
increases painfully slowly as the amplifier is made
thinner. In order to obtain 10 dB squeezing, the thick-
ness can be no more than 1% of the confocal thickness.
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FIG. 6. Optimum squeezing levels are shown as a function of
the log of the interaction length normalized to confocal dis-
tance. The power required to achieve optimum squeezing in-
creases dramatically as the optimum squeezing increases.
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This implies that the beam can only be allowed to spread
by one part in 10 to preserve 10 dB squeezing. For a
35-pm pump, this would require to an interaction length
of only 120 pm.

IV. DISCUSSIQN

The results presented in this paper should be viewed as
an upper limit on the squeezing that can be observed in a
single-pass parametric amplifier. There are other effects
which can degrade the squeezing obtainable in a pulsed

experiment. In order to obtain optimum squeezing it is
necessary to have a local oscillator field which is tem-
porally much shorter than the pump pulse [2]. This con-
dition is typically not satisfied in experiments. Unless
some method is employed to shorten the local oscillator
pulse, the green pump pulses which are produced by the
second harmonic generator and hence the squeezed
pulses will be shorter than infrared local oscillator pulses.
In addition, parametric oscillators based on KTP suffer
beam walkoff. This occurs because the pump and signal
fields must propagate at an angle with respect to the prin-
ciple axes of the crystal lattice in order to fulfill the phase
matching condition. For KTP used with a Nd:YAG
laser the phase matching angle is 26 and the two polar-
ization components of the signal beam separate by an an-
gle of 0.23'. As a result of this the squeezing obtained
would be further degraded if the mode separation due to
walkoff is not negligible compared with the mode size.
Finally, the linear loss in the beam transport optics and
deviation of the photodetector from unity quantum
efficiency will also degrade the squeezed state.

Another important issue is whether a different
geometry could be devised to avoid or mitigate the effects
described in Sec. III. One strategy might be to try to find
a different spatial mode for the local oscillator which
would yield better squeezing. In fact, the extra noise
which is coupled into the fundamental spatial mode by
the parametric amplifier is partially correlated with the
noise which is present in the higher-order spatial modes.
In principle, it would be possible to build a local oscilla-
tor out of a superposition of spatial modes which would
cancel this correlated extra noise. In this way, it may be
possible to measure squeezing levels closer to the homo-
dyne gain measurement. If the diffraction effects in the
amplifier are not negligible it would be necessary to
manipulate both the phase and the amplitude of the
different modes that would constitute the compound local
oscillator. Making such a local oscillator would be tech-
nically difficult, and the adjustment of the amplitudes and
phases of the spatial components would likely be very
sensitive to changes in the parametric amplifier gain and
alignment. An alternate approach would be to use a
non-Gaussian pump to optimally squeeze the fundamen-
tal Gaussian spatial mode, but this would be a much
more difficult problem to solve. The gain is exponential
in the pump field, so finding the optimum pump is not a
linear problem.

Another possibility is to relax the requirement that the
pump and signal modes come to identical Gaussian
focuses in the interaction medium. One strategy which

has been tried [12] is to make the pump beam very large
compared with the signal beam, making both beams
sufficiently large that the diffraction in the interaction re-
gion is weak. In this case the intensity of the pump does
not vary substantially over the signal mode and uniform
amplification is expected. However, in order to achieve
the greater uniformity of pump intensity, the absolute
phase front matching of the pump and signal is sacrificed.
In the thin parametric amplifier limit the improved pump
uniformity of this scheme will make the difference be-
tween the squeezing and the plane-wave result smaller.
But for finite thickness the quadrature mixing will be
stronger and the optimum squeezing level will be poorer
than if the pump were matched to the signal. The
method we have described can be generalized to deter-
mine the squeezing for this alternate geometry, although
the calculation of the gain matrix will be more complicat-
ed, since the function G(r, &b„&) must be generalized to
take into account the relative phase of the signal and the
pump. Although we plan to perform the calculation for
other pump geometries, we anticipate that for a given sig-
nal mode size the most favorable squeezing limit will be
obtained by matching the pump mode to the signal mode.

We believe the strong constraint on the interaction
length is weakened when using a high finesse resonator to
enhance the squeezed state. In this case the squeezed
state effectively makes many passes through the nonlinear
medium, coherently accumulating a small parametric
gain for each pass. The higher-order spatial modes are
still present, but unless the resonator is exactly confocal
they will not be resonant at the squeezed frequency. As a
result, even though these modes are still coupled into the
squeezed mode by the inhomogeneous pump intensity,
their noise content will not be high and they will cause a
much less severe degradation of the squeezing than
occurs in the single-pass configuration. Efforts are in
progress to generalize this method to the calculation of
squeezing in a cavity. Waveguides also offer the potential
for improvement. Higher-order spatial modes in a
waveguide would be coupled together in a similar way,
but the modal structure depends on the details of the
waveguide. It is possible that the waveguide could be
designed to have a modal structure which minimizes this
coupling.

It should also be noted that the effects described here
are applicable to experiments which use a local oscillator
to measure electric field quadratures. We have not con-
sidered experiments in which the photon counting statis-
tics of the parametric amplifier output are measured. In
photon counting experiments one normally considers the
signal and idler channels, whose field amplitudes evolve
as hyperbolic sine and cosine functions of the pump field.
The quantum parametric amplifier emits one photon into
the idler channel for each photon which it adds to the
signal channel, making it possible to observe nonclassical
photon correlations between the beams. The channel
which we refer to as the signal channel is actually a linear
superposition of the signal and idler channels. Our signal
is quadrature squeezed by the parametric amplifier, and
its field amplitude evolves as a pure exponential function
of the pump field. We expect the effective gain experi-
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enced by the signal and idler channels in a photon count-
ing experiment to behave in a manner similar to the
quadrature amplification gain, which continues to in-
crease exponentially with the pump field even in the high
gain limit. The dramatic loss of correlation that we pre-
dict at high gain in quadrature squeezing experiments
arises from the phase sensitivity of the homodyne detec-
tor, and would not be observed in photon counting exper-
iments.

V. CONCLUSION

It has been demonstrated in this paper that the amount
of quadrature squeezing that can be generated in a
single-pass parametric amplifier is absolutely bounded.

Under the constraint that the pump and signal modes are
matched, the bound depends only on the ratio of the in-
teraction length to the confocal distance of the pump
beam. If the interaction length is of the same order as
the confocal distance, the squeezing cannot exceed a fac-
tor of 4 in power (6 dB). To substantia11y improve the
squeezing limit the interaction length must be made very
short compared with the confocal distance, and this
makes the single-pass pulsed squeezer a less attractive al-
ternative to a cavity resonator squeezer. If the paramet-
ric amplifier is used in other nonclassical light experi-
ments, such as back action evading measurements, gen-
eration of "Schrodinger's cat" states, or quantum fre-
quency conversion, similar limits will apply to the corre-
lations that can be observed.
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