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The theory of the laser linewidth is formulated to account for arbitrarily large output couplings and
spatial hole burning. We show explicitly that the linewidth can be interpreted in terms of either
spontaneous-emission noise or the amplification of vacuum field modes leaking into the cavity, depend-
ing on the ordering of operators in the correlation function determining the laser spectrum. This allows
us to derive the Petermann K factor associated with “excess spontaneous-emission noise” in a physically
transparent and mathematically simple way, without the need to introduce adjoint modes of the resona-
tor. It also allows us to straightforwardly include spatial-hole-burning effects, which are found to in-
crease the K factor and the linewidth in high-gain systems appreciably.

I. INTRODUCTION

It has been known since the earliest days of the laser
that spontaneous emission both initiates laser oscillation
and fundamentally limits the degree of monochromatici-
ty. Since spontaneous emission cannot be fully described
semiclassically, a rigorous theory of the fundamental
linewidth demands field quantization. Such a theory has
been available in various versions for many years [1,2].

In most lasers the fundamental quantum linewidth Aw
is too small to be of practical interest. In semiconductor
lasers, however, Aw is of considerable concern, largely
because they have very small lengths compared with oth-
er lasers, and also because they often have small mirror
reflectivities, thus giving them large cavity bandwidths
and, therefore, sizable quantum linewidths. Linewidths
~10-100 MHz are typical of semiconductor lasers. For
this reason there has in recent years been a resurgence of
interest in the theory of the laser linewidth.

Much of this interest has focused on deviations of Aw
from the so-called Schawlow-Townes linewidth, Awgr.
Petermann [3] deduced, from classical considerations of a
radiating dipole in a gain medium, that in gain-guided
lasers, where transverse gain variations serve to confine
the field, the spontaneous emission into a laser mode is
enhanced by an ‘“astigmatism parameter” K which multi-
plies Awgy. The essence of Petermann’s conclusion has
been confirmed by several other authors [4], and most re-
cently Siegman [5] has generalized the (semiclassical)
theory and related the K factor to the so-called adjoint
modes of lossy optical cavities. The existence of the K
factor, which has come to be associated with ‘“excess
spontaneous-emission noise,” is no longer controversial,
but in our opinion a clear physical understanding of its
origin has been lacking.

Another correction to the Schawlow-Townes linewidth
was suggested by Henry [6] in order to account for unex-
pectedly large linewidths observed in semiconductor
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lasers. This correction involves the change in the refrac-
tive index associated with a change in the gain coefficient.
Henry defined a parameter a as the ratio of the changes
in the real and imaginary parts of the refractive index,
and showed semiclassically that the Schawlow-Townes
linewidth should be multiplied by the factor 1+a2 The
theory of this enhancement of the laser linewidth will be
extended in a forthcoming paper based on the formalism
developed here.

The standard quantum theories of the laser linewidth
are restricted to the case of small output couplings (i.e.,
mirror reflectivities near unity). In this limit the field and
the gain coefficient are approximately spatially uniform,
thus simplifying the theory, and one obtains the
Schawlow-Townes linewidth. It is necessary to consider
arbitrary output coupling and nonuniform fields to go
beyond this limit, and to arrive at a physical and fully
quantum-mechanical understanding of the enhancement
of the Schawlow-Townes linewidth.

Another effect that is ignored in the standard quantum
theory of the linewidth is the spatial variation of the sa-
turated gain arising from the interference of counter-
propagating waves in a standing-wave laser. Spatial hole
burning causes a reduction in the output power, and its
inclusion in early semiclassical laser theory, but not in
quantum theory, was initially misperceived as a difference
between the semiclassical and quantum theories, and led
to at least one experimental investigation [7] before it was
realized that the difference was artificial [8]. To the best
of our knowledge the effect of spatial hole burning has
not previously been included in theories of the linewidth.
We find that spatial hole burning increases the linewidth,
as might be expected from the fact that it decreases the
output power and therefore the signal-to-noise ratio. Of
course spatial hole burning is washed out by atomic
motion in gas lasers, and is certainly mitigated by carrier
diffusion in semiconductor lasers. Such motional effects
are not included here but will be dealt with later.
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In recent work [9] the authors presented several results
concerning the quantum limit to the laser linewidth for a
one-dimensional resonator with arbitrary output cou-
pling. In particular, it was shown that the “excess” spon-
taneous emission into a longitudinal mode of the resona-
tor, which has been related to the nonorthogonal nature
of these modes and yields the Petermann K factor [4,5], is
given simply by the amplification of vacuum fluctuations
leaking into the cavity from the outside world. We then
showed how the K factor is modified when the effects of
saturation and spatial hole burning are included.

In this paper we provide the theoretical foundation for
these results by presenting a general quantum-mechanical
calculation of the laser linewidth, valid for arbitrarily
large output couplings. We explore and exploit the inti-
mate connection between spontaneous emission and the
vacuum electromagnetic field, emphasizing the physical
origin of contributions to the linewidth.

We first give a derivation of Awgr and show explicitly
that it applies in the limit of small output coupling and
nearly uniform intracavity fields. We then go beyond this
limit, extending the analysis to arbitrary output couplings
and allowing for the amplification of both the field and
source fluctuations. We show that the quantum
linewidth may be attributed to spontaneous emission
alone or to both spontaneous emission and vacuum field
fluctuations. This is shown to be a consequence of vari-
ous possible orderings of operators in the first-order field
correlation function, which lead to different explicit con-
tributions from “external” and “internal” noise sources.
In Sec. III we choose a symmetric ordering and study the
external and internal contributions in both linear and sa-
turated regimes, allowing for directional gain and in-
terference between counterpropagating cavity fields.

In Sec. IV we demonstrate that the contributions to the
linewidth from vacuum field fluctuations (external) and
from source noise (internal) are equal in the linear re-
gime. Saturation of the gain medium modifies the inter-
nal contribution and increases the linewidth. Spatial hole
burning introduces directional gains that modify both
contributions and further increase the linewidth. We
show that measurements of the linewidth at either end of
a laser with two-sided output will yield the same result, in
spite of the spatial variations of the field amplitude and
phase within the gain medium.

Our approach allows the excess spontaneous-emission
factor (K) to be derived in a physically transparent
manner. In Sec. V we derive a modified enhancement
factor K' that accounts for saturation and spatial hole
burning. In high-gain systems K’ may differ appreciably
from the Petermann K factor.

In Sec. VI we focus attention on the physical origin of
the laser linewidth, and show that different operator or-
derings in the first-order field correlation function lead to
exactly the same result for the calculated linewidth. We
remark further on the physical origin of the K factor, and
point out that there is no ‘“‘excess spontaneous emission”
in the case of a single atom in a lossy cavity; the existence
of the K factor requires the presence of a background
gain medium, as in Petermann’s classical calculation or
Siegman’s semiclassical approach based on an
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“equivalent noise” treatment of spontaneous emission.
Section VII is a brief summary, and Appendices A and B
contain brief derivations of field and atomic noise correla-
tion functions used in the text of the paper. In Appendix
C we present a simple semiclassical argument for the
reduction of the above-threshold linewidth due to stabili-
zation of the field amplitude.

II. THE SCHAWLOW-TOWNES LINEWIDTH

As noted in the Introduction, the Schawlow-Townes
formula for the fundamental laser linewidth applies when
the field and the gain coefficient in a saturable medium
may be assumed to be spatially uniform. This is a good
approximation when the output coupling is small, i.e.,
when R;,R, =1 in Fig. 1 [10].

Let the positive-frequency (annihilation) part of the in-
tracavity field operator propagating to the right in Fig. 1
be denoted Ag(z,t)e '®!, where Ay is slowly varying
compared with the sinusoidal oscillation at frequency w.
For simplicity we assume for now that w is exactly reso-
nant with the transition frequency of a uniform distribu-
tion of two-level atoms comprising the gain medium. We
assume also that the gain medium fills the entire length d
of the cavity. Consider the field Az (d .,t+2d /c) at the
right mirror:

AR d<,t+—2:1 =AL(d<’t)(GRlG)1/2
+ Ag aol —d, (T G)'?
+ Ap voold . ,t(T,GR,G)'?
+Ag(d_,t) (1)
T, T,
R, R,
Z =
— -
/ /
- R -
R S e
Zk PRy =
s N L
= SRR e
-] o
% %
= =
z=0 z=d

FIG. 1. Schematic of the resonator.
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Here d . and d. correspond to points just inside and
outside, respectively, the mirror at d. R j and Tj denote
mirror power reflection and transmission coefficients, and
VG is the amplitude amplification factor associated with
a single pass through the gain cell. Subscripts R and L
label right- and left-going fields, while ‘“vac” labels
source-free vacuum fields. Finally A, stands for the
contribution from spontaneous emission, as opposed to
the contributions from stimulated emission involving the
factor V'G.

The first term on the right-hand side of (1) arises from
the propagation of the left-going field at d . through the
gain medium (V'G ), reflection off the mirror at z=0
[(R;)'?], and a second pass through the gain medium
(V'G ). The second term arises from the transmission of
the external vacuum field through the mirror at z =0
[(T;)!/?], followed by amplification of this field as it
propagates to the mirror at z=d (V'G ). The minus sign
in  Ag ,,(—d,t) merely indicates that the right-
propagating field reaching d . at time ¢ +2d /c is, except
for the effects of transmission and gain, the right-
propagating field at d . —2d = —d at the retarded time
(t+2d /c)—2d /c. Similarly the third term results from
the transmission of the left-going vacuum field through
the mirror at z=d [(T,)'/?], amplification (V'G ) and
reflection [(R,)!/?], and a second pass through the gain
cell (V'G ). The term A, is discussed below.

Equation (1) expresses a basic kinematical relationship
that holds regardless of whether the field is quantized or
treated semiclassically. In the latter case the last three
terms on the right may be treated as classical noise
sources with statistical properties chosen to mimic their

quantum counterparts. Throughout most of this paper
the field is treated fully quantum mechanically.

Equation (1) has contributions only from vacuum fields
that have passed at least once through the medium. This
expresses the fact [or, at the heuristic level of Eq. (1), the
assumption] that the vacuum fields are transmitted and
amplified just as are fields of “real” photons. Similarly,
successive passes of the vacuum fields through the medi-
um need not be explicitly accounted for: because of the
threshold condition for steady-state oscillation, there are
no modifications of (1) from successive round-trip passes.

It is convenient to convert (1) to a first-order
differential equation by making the approximation [11]

2d

d .
d<,l+7

Ag EAR(d<,t)+zTAR(d<,t). 2)

In Eq. (1) we can also write A;(d_,?)
=(R,)? Ax(d _,t); note that the contribution from the
transmitted vacuum field is already included in the third
term in Eq. (1). Thus we can replace (1) by

Ag(d o, 1)=-"[G(R\Ry)*—1]4g(d 1)
+ o [ A e —do(GT )

+ Ay yaeld 5 ,1)G(R, T,)'?]
.
2d

In the “Schawlow-Townes limit” of small output cou-
pling and nearly uniform intracavity fields we have

+Ad 1) (3)

G(R,R,)'?—1=(RR,)"%®¥—1=(R,R,)"*+gd(R,R,)"*—1

2
- zln(R1R2)1/2+§d=———g(%yc)+g‘d:%(zic§—%yc) . @)
[
1 [2d |* veP
Here g§=(1/d)InG is a “mean” power gain coefficient (Asp(t’)AIp(t"W:—z- = ﬁ(s(t'-t") , @)
and y,=—(c/2d)In(R|R,) is the cavity power damping ¢ 2 1

rate. Thus

Agld _,t)=1cg—y,)Ag(d _,1)

£

+2d

[ AR vacl —d,1)(GT, )72

+ Ay uld s, 1)G(R, T,)'?]

<

+2d

Ag,(d 1) . (5)

We show in Appendix A that

’;/CPZ
pP,—P,

2d

(4

(Azp(t')Asp(t”»: &8(¢'—1t"), (6)

1
2

where P, and P, are the steady-state upper- and lower-
level probabilities, respectively.

A. Laser linewidth as a consequence of spontaneous emission

We are interested in expectation values of Heisenberg-
picture operators over an initial state [¢) in which there
are no photons in the field. For such a state
Ap e —d, D)= Ap oold D)= Ag(d _,0)[$) =0
and therefore, from (5),

2
(Af(0Ag(n)= Jlav [lar¢al,an @)

£
2d

Xey(t’+t"42t) , (8)
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where ¥y =1(y.—cg). Since the intracavity field is essen-
tially uniform in the “Schawlow-Townes limit,” we have
written Ay (2) instead of Ax(d .,t). Equation (6) implies

P2 Ye
=T 9
(AkAr ). 2 P,—P, |2y ©
for the steady-state value of { 4 }; Ag). Thus
P
C§=7’c __i 2 Ye , (10)

2 PZ_Pl <A;AR)SS

so that the steady-state gain coefficient is actually slightly

less than the loss coefficient [12]. The difference between

¢g and y, is obviously a consequence of spontaneous

emission, which puts photons into the lasing mode (at a

rate proportional to P,) and therefore lowers the gain

necessary to realize a steady-state cavity photon number.
From (5) and (6) we also obtain

(AF(DAR(t+71)=( A} Ag e 77, (11)

in steady-state laser oscillation (yt>>1). This implies
the linewidth [full width at half maximum (FWHM)]

(ApAf+my= |5
2d
C;i ft—t—‘rdt”(Asp
Here
V(t)= Ag yool —d,1(GT)'?

+AL,VaC(d> ,t)G(Rsz)l/z . (15)

Since (AR vacl —d, 1) A} ae(—d 1)) and (A . (d 1)
X A} Lvac(ds,1)) are not zero, the vacuum field leaking
into the cavity from the outside contributes explicitly to
(14). This is in sharp contrast to the previous calculation
of the linewidth based on the normally ordered correla-
tion function, where the vacuum field made no explicit
contribution and the linewidth could be interpreted solely
in terms of spontaneous emission.
We show in Appendix B that

(AR yacl —d 1) AL ac(—d,t""))
= (A e o1V 4] eld s 1Y =S80 =),
(16)
so that
(vt vi(t")=(GT, +G?R, T2)—8(t —t"), (17

while the corresponding normally ordered correlation
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Ap=2y=y —cg=— (12)
Y=Y €8 2P,—P, (4 ; A
In the Schawlow-Townes  limit (A} Ag)

=(A]} L AL )= 1ng, where ng is the steady-state intra-
cavity photon number expectation value, and the output
power P, =y fion,. Then the fundamental laser
linewidth due to spontaneous emission is

P, fiw

A -
@St p,—p, | P

ve . (13)

out

Actually this linewidth is reduced by a factor of 1 when
the laser is oscillating in the nonlinear, above-threshold
regime. Since this correction has no real import for our
purposes in this paper, we relegate further discussion of
this point to Appendix C.

B. Role of vacuum field fluctuations

The first-order correlation function (11) is normally or-
dered, but it is not difficult to conceive of detection
schemes that would measure, say, the antinormally or-
dered correlation function [13]

f dt’ thTdt”(V VT tu)>ey(t +t"—=2t—7)

(t1:)>e‘}/(t'+t"*2t~‘r) . (14)

[

function of course vanishes. Since they correspond to
different, uncorrelated vacuum field modes, the left- and
right-going vacuum fields do not make an “interference”
contribution to (17). In the Schawlow-Townes limit,
GT,=e®(1—R

)=1—R,=—

InR, , (18)

G’R\T,=e®R,(1—R,)=1—R,=—InR, , (19

and
(v wie)y=— i(lnR R,)8(t'—1t")
__.l E r__ 4t
e Yot —1t") . (20)

Equations (7), (14), and (20) then give

1,1 P Ve | _
Ag(DAft+7)= |-+ —1— rT
(Ar(Ddg(e+7) 2 2P,—P, 2y ¢
P
=12 e l-v
2 P,—P, |2y
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where the two terms in large parentheses in the first
equality arise from V and A, respectively, i.e., from
vacuum and source fields. Since { Ag(1)A}(r))
=( A} Ag ) +1=n+1=ng in steady-state laser osc111a-
tion, Eq. (21) implies the result (10) and therefore the
“Schawlow-Townes” linewidth (13). But according to

J

X(T)EMA}Q(:)AR(HTHAR(t)A,’;(t+r)> :

this calculation, the fundamental laser linewidth is attri-
butable to both vacuum and source fields.

C. Remarks

It is interesting to consider also the ‘“‘symmetrically”

ordered correlation function

=1l|c T T(e! " Nyt y(t'+1" =2t —1)
X(n)== |55 fdtf dt" [V W)+ v e
1 + B
5 £ fo’dt'fo‘ At (AL () A (1)) (A1) AT (1)) et T2
O N U I 23 S O it W ) IV s
2 (2 |2y 2 | P— 2y
:l P2_Pl +P2+Pl k _')/T=.l_ P2 ')/c e—'y‘r (22)
4 P,—P, 2y 2 P,—P, |2y ’

where we have used the approximations (18) and (19) and
the fact that P,+P;=1. The resulting expression (22)
leads once again to the condition (10) and the linewidth
(13).

This symmetric ordering is noteworthy because it un-
derlies standard approaches to the theory of the laser
linewidth, where the intracavity field operator A (z) is
written as (ng)!"%e ~'¢ and the phase is taken to have the
equation of motion (see Appendix C)

21¢———A *——I—A (23)

One then calculates the phase diffusion coefficient and
finds that both field and atomic noise sources contribute
to the laser linewidth. Thus Lax, for instance, obtained
the bracketed term in the last line of (22) and concluded
from this that the linewidth “depends on both photon and
atomic noise sources” [1]. Such an interpretation is im-
plicit also in the treatment of Sargent, Scully, and Lamb
[2]. We have shown, however, that it is possible to elimi-
nate any explicit contribution from the field noise source
by choosing a normal ordering.

Our approach also enables us to identify the field noise
source as precisely the vacuum field leaking into the cavi-
ty from the outside. This vacuum field can be amplified
by the gain medium but, in the “Schawlow-Townes limit”
that we have just treated, amplification of the vacuum
field is in effect neglected by the replacement of G by 1 in
(18) and (19). In the following section we go beyond this
approximation and allow for the amplification of vacuum
field fluctuations or equivalently, when a normal ordering
is employed, the amplification of spontaneous-emission
noise.

The interpretation of various operator orderings has an
important (and related) antecedent in the theory of spon-
taneous emission [14]. There, and in related problems of

radiative corrections and intermolecular and Casimir
forces [15], the normal ordering procedure eliminates ex-
plicit contributions from the vacuum, but there is no or-
dering in which the source contribution can be complete-
ly suppressed. The same statements apply in the theory
of the laser linewidth just presented.

III. BEYOND THE SCHAWLOW-TOWNES LIMIT

For the purpose of treating spatial hole burning it will
be necessary to distinguish between gain factors for left-
and right-going waves, denoting them by G, and Gy, re-
spectively. Thus we rewrite (1) as

Ag d<,t+% =A;(d_,t (G GrR)'?

+ AR yael —d,t (G T)'?

+ AL vacld 5 ,1)(GLGRR, T,)'?

+Ag(d 1) (24)
and consequently replace (3) by

AR(d<’ t)=—yAg(d_,t)

(4
+ _[ AR,vac(

2 —d, t)(GrT)"?

+ AL vacld 5 (G Gg R T, )172]

+ 5 d Ayd 1), (25)
where now y =(c /2d)[1— (G, GxR R ,)"?].

In this section we will work with the symmetrically or-
dered correlation function X(7) used in Eq. (22). From
(25) we obtain formally the same expression as in the first
equality of (22):
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_1]c T e t " o Y+t =2 —1)
x(n== |- f ' KVTavan) +(vavie)le
1 + iy
+5 |5y f di [Tdr (AL 1) Ag(d ) (A d 1) Al (d e)) Jer e
=X (M) + X (7)), (26)
f
with — U
V(D)= Ag yucl —d51 (G T})2 Apld )= 3 | Ay |21 = |[Gr(d,z))]
= ,vac 4 J
+ Ap yacld 5, t)(GLGrR T,)' % . (27) 4 d+z;
Z;,t
Since the first term on the right side of (26) arises from * ¢
the vacuum field external to the laser cavity, we shall in
this section call it “external.” Similarly we call the X[GL(0,z))]"4R,Gg)?| . (29)
second term ‘“‘internal.” !
The evaloatlﬁn of tl:lo exterpal coptrxb;lltlon t(; (26) Ag(z;,t—(d—2z;)/c) is the contribution from an atom
tprocseds Tslér)l t :lprece ng s;:ch:)n,dusmg t 1? cotrret a>t;oln at zj, whose ﬁeld at z=d involves the retardation time
unctions and assuming the steady-state imit y ) (d—z;)/c as well as the amplification factor

4

57 |(GRT1+GLGrR Ty)e 7. (28)

1
Xext(’r):g

Note that, unlike the treatment of the ‘“Schawlow-
Townes limit,” we now allow for the amplification of the
vacuum field by the gain medium. That is, we do not as-
sume that the gain factors G; and Gy are close to unity.

The evaluation of the internal contribution to (26) is
more complicated than in the preceding section because
now we also want to allow for the amplification of the
source noise fields generated within the gain medium. We
begin by writing A4,,(d .,t) as the sum of contributions
from all the atoms comprising the gain medium:

[GR( d zZ; )]'7? associated with propagation from z; to d.
Slmllarly Ay, (z;,t —(d+z;)/c) is the contribution from
an atom at zj whose field propagates to the left, towards
the mirror at z=0, and in the process undergoes
amplification by the factor [G(0,z; )]1/2. After reflection
from the mirror at z =0, it undergoes amplification by
the factor (Gg)!/>=[Gg(d,0)]'/? as it propagates to the

mirror at d. This field involves the retardation time

2z;/c+(d —z;)/c=(d+z;)/c.
From Eq. (A8) of Appendix A we have
(c/2d)Ay(z;,t)=(D /B )Fg(z;,t), and we assume that

the noise operators Fg(z;,7) for dlﬂ'erent atoms are un-
correlated. Then [16]

2 2
£ 1 ' my= | | L L P’ A P AP >G d
~d (Ajd 1) Ag(d 1)) ~d 2? <Asp z;,t - s | r(d,z))
d+z; d+z;
t " J "__ J
+<Asp Zj,t c sp zj’t c >
XR,GrG.(0,z)) | ,
or
2
2d (Al (d_,t)A,d. t”))——z—ﬁzz(Fs(z ,t')Fg(z;,t"))[Gg(d,z;)+ R Gr GL(0,z;)]
[3 E[GR(dZ +R GRGL(OZ )]Pz(z S(t _t”) (30)

where we have used Eq. (A3) of Appendix A and written P,(z;) for the steady-state upper-level probability for an atom

at z;. Similarly
2

£
2d

(Agd_,thald., "))=%2 Ggr(d,z))+RGg G, (0,2;)]P,(z;)8(¢' —1") . (31)
J
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As in Appendix A we can replace D2/ by 1y./N(P,—P,),, where now (P,—P,), is the (z-independent) threshold
population inversion and N is the number of atoms [17]. Then in the steady state (y¢ >>1),

Xy m=-b | [IRRDTE L S o R, GeGy (0,2 (32)
_ = | < — . ,2Z; ,
int{ 7T 8y |2d (P,—P,), N%’ rld,z; 1GrGL(0,2;) e
where we have used P(z;)+P,(z;)=1and y,= —(c/2d)InR | R,.
For a continuous and uniform distribution of atoms we can make the replacement
1 1 pd
FE [GR(d,zj)+R1GRGL(O,zj)]—>ng dz[Gg(d,z)+R GrG.(0,2)] , (33)
J
and
1 [4 ln(Rle)*l/2 el rd
X, = | &£ | 1727 -yl )
W= 150 | B - J d206Gr(d,2)+ R Gx GL(0,2)] (34)

We can write Gp(d,z)=Ig(d)/Ig(z) and G(0,z)
intracavity laser intensities. Then

=1;(0)/I;(z), where I and I; are the right- and left-propagating

In(R,R,)"172 Ix(d) 1.(0)
Xim(‘i'):L Lol e_’"lfddz R R-——-—L (35)
8y | 2d (P,—P,), dvo Ix(z) I, (2)
and therefore
1 | ¢ In(RR,) I, (0)
= YT T + - - - [
gy |2 |© | (CrT1+GLGRRIT)+— f dz IR R,Gg 7,3 (36)
We can now proceed as before to the calculation of the linewidth. The identification
d 1 Pou(d)
X(0)=( A} Ag )=n, =T, °;w , 37)
where P, (d) is the output power from the mirror at z =d, implies the linewidth (FWHM) Aw(d)=2y given by
2 2 —1/2
Ao(d)=— | GrT T, +—— —_— —_— 38
AD=5 150 | Pog@ | |Fr T 2T g, (P2 P), d In(z) YR (z) (38)
[
We have used the fact that to obtain the steady-state oscillation condition in the ab-
y=(c/2d)[1—(G_,GgR{R,)'"?] is small to replace sence of noise:
G; Gy by 1/R R, in this expression for the linewidth. 1

GrGL=

Although it is not at all obvious from this derivation 41

that the linewidths of the fields emerging from the two RiR,

ends of the cavity should be identical in the case of two-
sided output coupling with spatially varying field ampli-
tudes and phases, we shall prove that this is in fact the
case.

IV. INTERNAL AND EXTERNAL
CONTRIBUTIONS TO THE LINEWIDTH

We shall evaluate the linewidth (38) for the plane
parallel resonator of Fig. 1 with arbitrary output cou-
pling, taking into account the interference between coun-
terpropagating fields. We again use the directional gains

_ Ig(d) _I1.(0)
RoIR0 7L 1.d)

(39)

and the boundary conditions at the planes z =0 and d,

Ig(0)=R,I,(0), I,(d)=R,Ig(d), (40)

The coupled differential equations for the field intensities
are

dl, dI;

E“ZgR(Z)IR, ’a?z—gL(Z)IL , (42)
where the gain coefficients gy ; are, in general, functions
of both Iy and I;. When gg =g, the product I (z)I(z)

is constant and we find
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Ip(d) _Iz(0) (R, )
1,000 I,(d) |R, ’
and
1
Gr=G6,=G=—" . 44)
R L (R1R2)1/2 (

As discussed in Sec. III, (38) corresponds to a choice of
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symmetric ordering of the field operators. In this equa-
tion there are two distinct contributions to the laser
linewidth. The first term in the large parentheses
represents the ‘“‘external” contribution due to the
amplification of vacuum fluctuations entering the cavity
from outside. The second term gives the “internal” con-
tribution due to atomic noise fields inside the cavity. We
find it convenient to express (38) in the general form

1| ¢ fiw 1
Bold)=5 150 | Poga@) [Tt B, —pp, Time
(45)
With (39) and (40), T';,,, may be expressed as
T,Ix(d)
Fin=In(R R,) ™22 —
IR(Z +IL(Z)
X _—
fo Ip(2)I;(2) “o)

We shall examine (46) for three cases of interest: (a)
the linear (exponential gain) regime where (44) applies
with G (z)=e¥; (b) the nonlinear (saturated gain) regime
where (44) applies with G (z) no longer exponential; and
(c) the nonlinear regime with interference between
counter propagating intracavity fields taken into account,
so that (44) is no longer valid.

We first note that the linewidth of radiation emerging
through the mirror at z =0 may be obtained by making
the appropriate replacements in (38):

Aw(0)=% i P::L()m
T
LT\ T+
In(R,R,)™'? T,I;(0)
(Py—Py), d
z)+1I;(z)
Xfo IRTIL(LZ)— (47)
Using the relation
P,.(d) T,Izx(d) T
PouI(O) - TZIIIZ(O) :T?R‘GR ’ 48
and the gain “clamping” condition (41), we deduce that
Aw(d)=Aw(0)=Aw . (49)

Even when the directional gains are unequal, therefore,
measurements of the fundamental linewidth at either end
of the laser will yield the same value.

A. Exponential gain regime

In this unsaturated regime 8r=81.=8
=(—1/2d)InRR,. Utilizing the differential equations
(42), we may perform the integration in (46) to obtain
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4“4
1 1 ]°
r,,=T,I(d — , 50
= Tol(d) \ s =) 50
or, employing (39)-(41),
_ 1
Fint—-T —_1 RlGR+GR
R,
T,
=T, }—Z-—FT,GR =T oy - (51)

We see that in this regime the internal and external con-
tributions to the linewidth are exactly equal. From (44)

and (51), and using P, +P,=(P,+P,),=1, we find
2
N fiw P,
2d | P, (d) —P, |,
[(R)V24(R,)V2][1—(R,R,)?]
R|R, ]
X T,(R )V . (52)
In terms of the total output power P, given by
Py  ToIg(d)+T IL(O) T, |R,
Pou(d) T,Iz(d) T, |R, |
(53)
the linewidth is
Aw= |- ? #iw P,
2d | Py |P,—Py |,
[(Rl)1/2+(R2)1/2][1—(Rle)l/z] 2
(R,R,)? ]
(54)

We note that in this regime G (z)=e®, and that if the ap-
proximation e¥~1+3z is made, we recover Awgr of Eq.
(13) instead of (54).

B. Gain-saturation regime

The expression for the external contribution to the
linewidth is obviously unchanged regardless of how
strongly the intracavity field may saturate the gain. The
amplification of the (right-going) vacuum field is deter-
mined by the single factor Gy of (38). As long as (44) is
valid, this contribution will be unchanged. The internal
contribution, however, will be modified by gain satura-
tion. We will assume a homogeneously broadened gain
medium, in which case, for zero atom-field detuning,

g (55)

ER LT T 1,

with the field intensities normalized to the saturation in-
tensity. The differential equations (42) may be integrated
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along the length of the cavity using (55) and the relation
Iq(2)I;(z)=const=C. We obtain for Iz(z)

N 7g(0) T RETIR I Ix0) | &
(56)
Atz =d,
I (d)_ (RI)I/Z
R [(RV2+(R,)2][1—(R,R,)'?]
X[gd +1In(R,R,)?] . (57)

Equation (46) may be integrated using the above results.
The resulting value of I';, will depend on the values of gd
and the mirror reflectivities. In Figs. 2 and 3 we plot the
ratio of external to internal contributions, for two values
of gd, as a function of mirror reflectivity R,. In each
case we show results for two values for R,. These curves
display the generic trend that gain saturation leads to an
increase in I';,,. This increase is more pronounced for
larger gd and when the product of the reflectivities is
small or, equivalently, for larger values of G. Our numer-
ical results also indicate that the two contributions be-
come independent of gd and essentially equal for G <2.
This corresponds to a regime where either the external or
internal contribution may be used to compute the
linewidth.

C. Gain saturation with spatial hole burning

The saturated gain is modified when interference be-
tween the left- and right-propagating fields is properly

0.95 i~

I1e:d./ 1—‘in!.

0.9 - -

R,

FIG. 2. Ratio of the external and internal contributions, in
the gain-saturation regime, as a function of the mirror
reflectivity R,. R, =0.1 (solid) and 0.9 (dashed) while gd =5 in
both cases.

0.95

Pext/ T int

0.9

0.85 — -

0 0.2 0.4 0.8 0.8 1
R,

FIG. 3. Same as Fig. 3 but for gd =20.0.

taken into account. This interference produces spatial
hole burning and a reduction in output power. For an
asymmetric cavity the gain becomes directional, so that
Gr and G; are no longer equal, although steady-state
gain clamping ensures that Gx G, =G*=1/R,R,. Both
I'.,; and T';; will be shown to increase due to spatial hole
burning. In the paraxial and plane-wave approximations
the directional gain coefficients are given by [18]

g 1__a—(az—bz)l/2
(aZ_bZ)l/Z 2[[ ’

8= I'ZR,L

(58)

where a=1+1Igx+I; and b=2(IxI;)""?. As shown by
Agrawal and Lax [18], the solution may be formulated in
terms of shifted intensities

A:IR_A,, BZIL_A, > (59)

which satisfy the same set of equations as Iy and I doin
the absence of interference effects. The constant shift A is
specified by the boundary conditions. With this change
of variables the coupled differential equations (42) then
become [18]

dz 1+ A+B
4B ___—gB
dz 1+4+B° (61)
with the product AB=A. Using the notation

Ay=A(z=0), 4,= A(z=d), the boundary conditions
at z =0 and d are now
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Ao +A=R, —)‘—+x’, (62)
A,
1 | A
Atr=ge | (63)

We are interested in the solution of (60) for the general
case of asymmetric resonators, subject to the above
boundary conditions. The quadratic equation in A, re-
sulting from (62), yields two solutions, both of which
satisfy the requirement that the intensities be positive.
However, the one given below is the only one consistent
with the threshold gain condition, which implies that the
intracavity laser field is zero at and below threshold. (It
might be noted that this is the correct criterion to be ap-
plied to Eq. (4.3) in Ref. [18].) Consequently, 4, is given
by

Ao=1{[A21—R)*+4AR,]'>—AM1—R))} . (64)

Integration of (60) leads to the following transcendental
equation:

A(z)
%

1 1

In -
A(z) A,

+[A(z)— A4]—A

=gz , (65)

satisfied by A4 (z) at all points along the cavity. In partic-
ular, at z =d, we have
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4
f(?»)=—{1~1
Ao
1 [ [A*(1—R,)*+4AR,]'2+A(1—R,)
" R, |[A21—R,?+4AR,12—A(1—R,) |
(67)

Numerical solution of (66) and (67) determines the pa-
rameter A. Finally, having obtained 4, and A, the direc-
tional gain Gy is given by
A A
R Ao+
1 [ [A21—R,)*+4AR,1V2+A(1+R,)

R, | [A(1—R*+4AR |12+ A(1+R,) |’
(68)

while G is determined by the gain clamping condition.

It is clear that for a symmetric resonator, with
R 1 :R 2 =R,

1

However, when the mirror reflectivities are unequal, the
gain is strongly dependent on their ratio. This depen-
dence is illustrated in Fig. 4, where Gy, G, and the gain
obtained by neglecting interference effects [G=1/
(R{R,)'?] are displayed as functions of R, for a fixed
value of R .

(69)

I — =1 |- = =g, the linewidih, Tt 15 comentent 1o bt reune (08)
which may be rewritten ac :ggr)ns of the total output power, using the general form of
1n[f(x>]+[f(x)—1]Ao+”J{((+;o”=gd ., (66) {:‘(Ldfw;—;amz . (70)
where Then
J
T3 T?
I"ext=R—2+T1GRT2+T1GLT2+R—1
T, T, |’
= (R1)1/2+(R2)1/2 +T7, GR+GL—(R1R2)1/2
[ROV24H(R)VAI[1—(RR)V?] | T,T, [(R\R,)"*Gg—1]?
= R R, R\R, G . (71)

Spatial hole burning will always increase the laser
linewidth because it reduces the output power of the
laser, thereby increasing the relative noise power. We see
from Eq. (71) that the external contribution is further in-
creased for lasers with two-sided output coupling and
asymmetric cavities. This additional increase vanishes
for single-output resonators, or for those with mirrors of
equal reflectivity, where G, =G, =1/R.

Iy, will also increase due to spatial hole burning. In

r

terms of the variables defined in (59) and the total output
power, (46) becomes
T,

T,Ggp+—
20Rr R,

Ag+A
Ad

Ly =In(R R,)™'"?

X f oddz

AX 4204 +A
A2+A+1) A+ |
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FIG. 4. Variation of the directional gains Gg, G, as well as
the gain G in the absence of hole burning, as a function of the
mirror reflectivity R,. R, is held fixed at 0.1 and gd is taken to
be 20.0.

This equation may be integrated using (64)—(68). As be-
fore, the result will depend on the values of gd and the
mirror reflectivities. In Figs. 5 and 6 we exhibit the ratio
of external to internal contributions, as given, respective-
ly, by Egs. (71) and (72), for two values of gd. We again
consider two values of R, for each value of gd. On con-

0.9

0.8

LI N S B S R B S S S R

Fex!/ lF‘int

1T

0.7+ . ]

0.6 - .

]

0.5

0 0.2 0.4 0.6 0.8 1
R.

FIG. 5. Ratio of external and internal contributions, includ-
ing effects of spatial hole burning, as a function of R,. R; and
gd have the same values as in Fig. 2.
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FIG. 6. Same as in Fig. 5 but for gd =20.0.

trasting these curves with those in Figs. 2 and 3, it is
clear that the effects of spatial hole burning on the inter-
nal contribution are more pronounced than those of gain
saturation alone. The two contributions are nearly equal
only when both R,R,~=1.0. This corresponds to the re-
gime where Awgr is a good estimate for the laser
linewidth.

V. THE K FACTOR
The laser linewidth may be expressed in the form
Ao=KAwgt . (73)

The factor K, usually referred to as the Petermann
enhancement factor, or the “excess” spontaneous-
emission factor [4,5], has been the subject of recent exper-
imental studies [19].

In the unsaturated regime, the K factor is given by the
ratio of (54) to (13). We find

[(Rl )1/2+(R2)1/2][1_(RIRZ)I/Z] 2
(RR,)"In(RR,)

,  (74)

in agreement with previous calculations [20] in which the
K factor was determined by integration over the explicit
“adjoint modes” of the cavity. In our work, the K factor
for this regime is obtained without reference to the ad-
joint modes and has a clear physical interpretation. It
may be obtained almost trivially by calculating the
amplification of vacuum fluctuations leaking into the cav-
ity from the space external to the cavity. (See also Sec.
V1.) This amplification depends only on the overall gain,
and therefore provides the basis for the very simple
derivation of the K factor (74) [9].

When saturation and spatial-hole-burning effects are
included, (74) is no longer valid and the K factor will be
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modified. The modified enhancement factor K’ may be
expressed as

T +[1/(P,—P,), 1T,
k= AAwaS)T - 2[P2t/(IEZ—P12)],(1:11;,R;)2 S
or
k=L (Ot To+ |25 | (Pp= T
2 P, .
1 (76)

X
(InR,R,)?

Values of K’ may be obtained using (71) and (72) in Eq.
(76). K' will reduce to K only when I'; =T, i.e., only
for the regime discussed in Sec. IV A. As acknowledged
by the authors, the adjoint mode analyses of Refs. 5 and
20 are restricted to the same regime. The inclusion of
saturation and interference effects necessary to obtain K’
in terms of adjoint modes appears to us to be rather
difficult. In contrast, Egs. (71), (72), and (76) provide a
straightforward way to include these effects, and to eluci-
date the physical origin of the various contributions to
the enhancement factor.

In Figs. 7 and 8 both K and K' are shown as functions
of R, for fixed values of R,. The increase in the enhance-
ment factor due to spatial hole burning is seen to be
significant for small values of the product R |R,.

VI. PHYSICAL INTERPRETATIONS
OF LASER LINEWIDTH

There is no question that the quantum linewidth of a
laser may be attributed to spontaneous emission. In the

25 ——r———————————————

Enhancement Factor

1.5 ~

Rz

FIG. 7. K and K’ as a function of mirror reflectivity R,. R,
is fixed at 0.1 and gd =5.0, while the value % is assumed for the
ratio (P, /P,),.
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FIG. 8. Same as in Fig. 7 but for gd =20.0.

Schawlow-Townes limit, for instance, the linewidth may
be derived starting from the energy-time uncertainty rela-
tion, using for Ar the lifetime associated with spontane-
ous emission into the lasing mode [10].

We showed in Sec. II that this is not the only way to
explain the finite laser linewidth. By considering non-
normally ordered field correlation functions—which
determine the same laser linewidth via a Fourier
transform —we showed that the linewidth could also be
attributed in part to the vacuum field leaking into the
cavity. This is not surprising in view of the fact that
spontaneous emission itself may be regarded in part as
stimulated emission due to the vacuum field [14].

Such an alternative interpretation has a practical ad-
vantage. Namely, it leads to a very simple derivation of
the K factor based on the amplification of the vacuum
field propagating into the gain medium from the space
external to the cavity. (See below.) In the “Schawlow-
Townes limit” the amplification factor is close to unity,
but for high-gain systems the amplification of vacuum
fluctuations is appreciable, and its deviation from unity is
precisely the origin of the K factor.

To appreciate the interplay of spontaneous emission
and amplified vacuum fields in a heuristic, semiclassical
framework, consider the equation

dly

dz
describing the propagation of the “noise intensity’ in an
inverted medium. The gain coefficient g is independent of
I if the noise intensity is too weak, compared with the
coherent signal, to contribute substantially to gain satura-
tion. R, is the rate of spontaneous emission into the sin-
gle (signal) mode of frequency w of interest, and N, is the

number density of excited atoms. For simplicity we take
g and N, to be independent of z. Then

=gIy+R,N,fiw (77
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R _#oN
Iy(0)+—2—2%

I(d)—1(0)= 22

gd (78)

for gd small compared with unity.

The rate of stimulated emission (or absorption) into a
single mode of intensity [ is o /#iw, where o is the stimu-
lated emission cross section. If we regard spontaneous
emission as stimulated emission due to the vacuum field
[14], and replace R, by oIy /#iw in (78), then

oly(0)N,
I(d)—I1(0)= IN(OH--“-;'— gd
=1+ |1 v0)ed (79
NZ_NI N 8 )
since g=o0(N,—N;). Thus, except for the factor

N,/(N,—N,), the vacuum and spontaneous-emission
contributions to the change in the noise intensity as it
propagates from z =0 to d are exactly the same.

This heuristic argument is in fact directly relevant to
the laser linewidth, since we have shown that the noise
field that randomly perturbs the laser output and pro-
duces a finite spectral linewidth can appear to have con-
tributions from both the amplified vacuum field and
amplified spontaneous emission. We have referred to
these contributions as “external” and “internal,” and
have shown explicitly that within the linear regime they
are the same, just as in the above semiclassical argument.
The different “weights” given to these two contributions
depend simply on how field operators are ordered in the
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equivalence of different orderings may be shown to hold
independently of whether there is spatial hole burning.

In Sec. III we arrived at the expression (38) for the
linewidth using the symmetrically ordered correlation
function X(7) defined by Eq. (22). Let us now consider
the normally ordered correlation function

2
X'(n)= lz—cd Jlar [arCalyd 1) ag(d )

Xey(t'+t”—2t—r) . (80)

In this case the vacuum field makes no explicit contribu-
tion. Now from (30) and (32) we can write X'(7) in the
form

Ye
8y (P,

_e ™ 1
_Pl)t d

X'(r)=

d Ix(d)
Xfodsz(z) ﬁ

1,(0)

1 R-I_L-—_(z) ) (81)

where P,(z) is the upper-level probability for an atom at
z:

Py(z)=21[Py(z)+P(2)] +1[Py(z)—P(2)]

=1+1[P,(z)—P(2)] . (82)

The expression g(z)=oN[P,(z)—P,(z)] for the gain
coefficient at z, together with the definition g, =y ./c
=g N(P,—P,), for the threshold gain, implies

c
calculation. We will now demonstrate explicitly that Py(z)—P 1(z)=7/—g(z)(P 2P (83)
different orderings lead to the same linewidth. For sim- ¢
plicity we will neglect spatial hole burning, although the and therefore
J
Ye —r7 Ip(d) 1, (0) _ Ir(d) 1, (0)
X'(1)= 2 Lfd : 1Gr = e Wlfddzg(Z) 3 \Gr
16y (P,—P,), d 7o | Ix(z) I, (z) 16y d-o Iz (2) I, (z)
c _..1 rd Iz(d) 1,(0)
=X +——e V"= —_— -, 84
Xine(7) 6y d fo dz g(z) T TRiGRT ) (84)

where X, (7) is given by Eq. (35). To demonstrate the
equivalence of the symmetric and normal orderings, we
must show that the second term on the right-hand side is
equal to the quantity X, (7) defined in (28). This equali-
ty may be demonstrated straightforwardly using the gen-
eral relations (39)-(44).

At the risk of belaboring the point, we emphasize how
simply this equivalence of different orderings allows us to
calculate the K factor [9], for if the “internal” and “exter-
nal” contributions are the same, we can calculate the K
factor using one or the other. More to the point, we can
use only the external part, which depends only on the
overall gain factors and not at all on the generation and
propagation of spontaneous emission from the excited
atoms in the gain medium.

From the literature on the K factor one could easily be
left with the impression that ‘“‘excess spontaneous-
emission noise” is a fundamental property of a single
atom in a lossy cavity. However, this is not the case.
Several years ago a solution to the problem of an atom in
a lossy, multimode cavity was given [21]. The analysis
was fully quantum mechanical, beginning with the Ham-
iltonian for the initially excited atom, the quantized radi-
ation field, and all the atoms making up the two dielectric
mirrors defining the (open) cavity. For simplicity only
modes propagating in the two directions normal to the
mirror surfaces were included in the analysis. One result
of this theory is that the spontaneous-emission rate of a
single atom inside a single-mode lossy cavity is enhanced
by the Q factor of the cavity, not the K factor [22]. This
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is in agreement with the old argument of Purcell [23].
The K factor is therefore an enhancement of
spontaneous-emission noise associated with an atom in-
side a gain medium. Such an interpretation is in fact en-
tirely consistent with Siegman’s analysis.

VII. SUMMARY

In this paper we have shown how the Schawlow-
Townes formula for the laser linewidth is modified when
arbitrarily large output couplings are taken into account,
as well as saturation and spatial hole burning. The possi-
bility of large output coupling leads to an enhancement of
the linewidth as described by the Petermann K factor,
and saturation and spatial hole burning produce further
enhancement of the linewidth.

It is interesting that the experimental results of Hamel
and Woerdman [19] do, in fact, show a larger K factor
than that predicted without saturation and spatial hole
burning. This difference can easily be accounted for by
comparing their experimental results with our K’ rather
than the K factor without saturation and spatial hole
burning. However, there is an important caveat: the
difference between K and K', for the numbers appropri-
ate to the Hamel-Woerdman experiments, is due predom-
inantly to spatial hole burning. But, as we have noted,
this effect will be reduced by carrier diffusion which is not
accounted for in this paper. We defer further discussion
of this point to a later paper that will include an analysis
of the 1+a? enhancement as well as explore the
modifications on including saturation and spatial hole
burning.

The physical picture emerging from our theory attri-
butes the laser linewidth to either spontaneous emission
alone or to both spontaneous emission and vacuum field
fluctuations, depending on how one chooses to order field
operators in the correlation function determining the
linewidth via a Fourier transform. We have shown that
conventional theories, which attribute the linewidth to
both atomic and field noise sources, are in this conceptual
sense oversimplified.

The freedom to choose operator orderings leads to a
practical as well as conceptual advantage: we have
shown that it allows not only for a simple derivation of
the K factor, but also for a straightforward generalization
to include the effects of saturation and spatial hole burn-
ing on the linewidth. However, in view of the confusion
that has previously surrounded the K factor, we feel that
the conceptual clarity emerging from our approach
should not be underestimated. In the simplest possible
terms we can conclude that the fundamental laser
linewidth arises from spontaneous emission and the fluc-
tuations of the vacuum field leaking into the laser cavity
from the outside world. When there is large output cou-
pling, and therefore high gain, both the spontaneous
emission generated inside the cavity and the vacuum field
propagating into the cavity are amplified, and it is this
amplification that is neglected in the standard theories
and that gives rise to the K factor.
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APPENDIX A:
NOISE CORRELATION FUNCTION FOR ATOMS

Consider first the familiar Heisenberg equation of
motion for the slowly varying part of the two-level atom-
ic lowering operator o (z)=S(t)e ~'“* in the case of a sin-

gle atom coupled to a single field mode:

S(t)=D A(t)o,—BS(t)+Fg(1) . (A1)

Here D is the atom-field coupling constant, o, and 4 are,
respectively, the operators corresponding to the popula-
tion inversion and the slowly varying part of the photon
annihilation operator, and 3 is a decay rate associated
with the homogeneous broadening of the atomic transi-
tion. Fg(t) is the Langevin noise operator resulting from
the dissipation mechanism giving rise to the line broaden-
ing.

The dissipation rate 8 in (A1) must be related to a fluc-
tuation process represented by F(¢) in order to prevent
the operator S(t) from decaying to zero. The fluctua-
tion-dissipation relation between 3 and Fg(z) is indepen-
dent of the A field in (A1), because both the fluctuation
and the dissipation arise from the coupling to degrees of
freedom (a “reservoir”) independent of 4. We can obtain
the desired relation, therefore, by considering the formal
solution of (A1) in the absence of any field, which yields

1 — L tan i " Bt +1"—2t)
(st)s()) fodt fodt (Fi(t"Fs(t"))e
(A2)

in the long-time limit B¢ >>1, which for simplicity we
focus on here. Langevin operators are typically & corre-
lated, and in order to satisfy the identity
(s 0)S())=1(1+0,(¢)) in the long-time limit we
choose

(FI(t")Fs(t"))=2BP,8(t'—1") , (A3)

where P, is the steady-state value of 1(1+0,), i.e., the
steady-state upper-level probability. Similarly the identi-

ty (S(1)ST (1)) =1(1—0,(1)) is satisfied if

(Fg(t")Fi(2"))=2BP8(t'—1") , (A4)

where P, is the steady-state lower-level probability.

Now in many, if not most lasers, 8 is large compared
with other rates and consequently S may be assumed to
adiabatically follow the inversion:

D 1
S==A(t)o,(t)+—
? B

(A5)
B

Fg(1) .

This is essentially the standard rate-equation approxima-
tion. In this approximation the Heisenberg equation for
the field operator,
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A()=DS(t)— Ly A()+F (1), (A6)

becomes

2
A(I)E%az(t)A(tH- %B)—Fs(t)—%ycA(t)-FFA(t)

(A7)
with F ,(t) the Langevin noise operator associated with
cavity damping.

The first term on the right-hand side of (A7) accounts
for stimulated emission and absorption. The second term

corresponds to spontaneous emission and may be
identified with the last term in Eq. (5) of the text:

c D
2q Aw()— G Fs() (A8)
and
2d 2 D 2
(Al anag,em)— |[== 5 (FltenFg(e) .
(A9)

Equation (A7) applies when a single atom is coupled to
the field. For N atoms the factor D2/ is replaced by
ND?/pB, which may be identified as cg /2(P, —P,), where
g is the gain coefficient. Then

N

2

2d

c

2
cg _ -1
25y P2 P
X (FI(t')Fs(t"))
2

Cg ’ ”
——P t—t .
Frt g Pad 1)

(4l a,(")—

2d

=_1-
2| ¢

(A10)

The factor N /2 is introduced to obtain the contribution
from N atoms, each of which is equally likely to spon-
taneously emit a photon to the right or left along the cav-
ity axis. (In the text we require separately the
spontaneous-emission contributions to left- and right-
going fields.) Now g(P,—P, )~ !is just the number densi-
J
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In the approach of Sec. II we require only the effective
slowly varying field annihilation operator Ag ,,.(2),
which may be defined by writing
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ty of atoms times the stimulated emission cross section,
and consequently is time independent. Therefore we can

replace cg(P,—P;)"! by its steady-state value,
cg,(P,—P) '=y (P,—P,)"\. Thus
1 {24 * 7P
T ’ " — c” 2 ’ Iz
== |=| — - All
(Asp(t )Asp(t ) 2 c P,—P, 8(t'—¢t"), ( )

which is the result (6) used in the text. Equation (7) fol-
lows similarly.

APPENDIX B: NOISE CORRELATION FUNCTION
FOR THE FIELD

The positive-frequency and slowly varying part of the
free-space, right-going vacuum electric field operator out-
side the laser cavity has the standard form

172
—ilo, —wy)t

2mho
k a;(0)e ,

4

ER,vac(t)zi 2
k

(B1)

where w is the atomic transition frequency, V is a quanti-
zation volume, and aq;(0), is the source-free, photon an-
nihilation operator for the mode k. The factor e
makes Ep .,.(2) the part of the field that drives the slowly
varying atomic dipole operator S(z). The spatial depen-
dence of the vacuum fields will be of no consequence in
what follows and is therefore ignored here.
From (B1) we have the vacuum expectation value

2mfiw,
V

<ER,vac(t,)E;,vac(t”)> = 2
k

Xe—i(wk—wo)(t'—t”) (B2)
since (a,(0)a;.(0))=8,,.. In the one-dimensional mode
continuum limit we take V= A,L, where A4, is some
cross-sectional area and L is a length, and 3, —(L/
2m) [ dk. Then

© —i(o—wy)(t'—t")
f dow we 0
0

8(t'—t") . (B3)
[
Comparison with (C8) indicates that

(At A et = L8000 = 1) (BS)
and of course ( A} uo(t') AR yalt”))=0. Clearly

Aj .a.(2) has the same correlation properties.
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APPENDIX C:
REDUCTION OF LINEWIDTH ABOVE THRESHOLD

It is well known that the linewidth (13) is reduced by a
factor of % in the nonlinear, above-threshold regime of
laser oscillation [1]. We shall present a simplified argu-
ment showing how this correction arises. As noted in
Sec. II, the field and atomic noise sources may be treated
as classical noise sources with correlations chosen to cor-
respond to those of their quantum counterparts. Since it
greatly simplifies the analysis compared with the full
quantum treatment, and avoids any consideration of
operator orderings, we take this approach here.

We write the classical counterpart of (3) in the nota-
tionally simplified form

i(1)=— £
A(t)=—y A1)+ 2d[V(t)+Asp(t)]

=—y A(t)+Fy(t), (C1)

where Fy(t) is now a classical noise source of zero mean
and y=1(y,—cg) as in Sec. II. A4 (¢) now represents a
complex, classical field amplitude for the intracavity laser
field. In the steady state,

(a*0AG+m) = [lar [ ar (FRaFye),,

Xe}’(t’+t"—2!—‘r) , (C2)

where ( ),, denotes a classical ensemble average. Choos-
ing

PHILIP GOLDBERG, PETER W. MILONNI, AND BALA SUNDARAM

b

we obtain

Ve
2y

which leads as in Sec. II to the linewidth Aw = Awgr.

Now in Eq. (C2)— and in the quantum-mechanical
equations (8) and (14) of the text—we have written the
steady-state correlation function as if ¥ were a constant,
independent of the field. In reality, of course, saturation
of the gain medium implies a dependence of y on the field
intensity. Let us write

A(1)=F(t)e ~1*"

P2
(A*(DA(t+71)),,=

1
- e T 4
v 2 P,—P, ,  ©

(CS)

where F(t) and ¢(¢) are the real amplitude and phase, re-
spectively, so that (C1) becomes

—y(F)F+L(Fye'*+Fte %), (C6)

¢= E’;,(FNe“”—F,’{',e ~igy | (C7)
where we indicate explicitly a dependence of ¥ on F, cor-
responding to saturation.

In the absence of noise the steady-state solution of (C6)
is determined by the solution of the equation y(F)=0. If
we assume that the noise has only a negligible effect on
the steady-state amplitude F, determined in this way,
then

(A*(t)A

(t+7’)) ifgp(e+7)— ¢t)])

._FZ <e

av

* ’ " _l 2 r___ gt
(FREN(")) o= P,—P, reS('—1"), = F2 (¢ ~(/IgU+ =401 (C8)
(C3) av
(Fy(t")Fy(t")),,=0, From (C7) we have
()= i) _ —ig(")
lt+71)—(2)= 2Ff "dt'[Fy(t")e ™ —FA(t")e ~i41)] (C9)
and
([¢(I+T)_¢(t)]2>av: t+Tdt'ft+Tdt”[<FN(t FN(tll)el[¢(t) P(t"” )]) av
t t
_<FN(ll)Fls(tn)ei[qb(t')*‘qb(t")]>av] . (C10)

We assume, as is usual in the theory of the laser linewidth, that the fluctuations in ¢(z) are slow on a time scale over
which the noise Fy(t) has nonvanishing correlations. Then we can effectively assume the properties (C3) for the aver-

ages in the integrand of (C10) to obtain

1 t+r t+r
+ _ 2 -t n 1 r__an
Qo+ =g P)y=5 [ Tar [ar 2 5 P ———y 8(t'—1")
T 7/0P2
4F2 P,—P,’ (C11)
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which implies the linewidth 77 {[¢(z+7)—d(2)]1*),,
given by

P,
P,—P,

fiw

Aw= 2P

y2=1Aogr . (C12)

out

Therefore phase fluctuations alone produce the above-
threshold linewidth LAwgy. The effect of amplitude fluc-
tuations in the linearized theory is to add an additional
%AwST to the linewidth, as is clear from our classical
analysis. As emphasized by Lax [1], the stabilization of
the amplitude in the nonlinear theory eliminates such a

contribution to the linewidth. It should be emphasized
that the effect of this nonlinear stabilization on Aw is the
same in our theory as in the conventional one pertaining
to the “Schawlow-Townes limit.”” Therefore our expres-
sions for Aw should be multiplied by the factor 1 in order
to apply in the above-threshold regime. The K factor
remains the same.

The formula (C7) leading to (C11) ignores any coupling
between phase and amplitude fluctuations, and as such
does not allow for the enhancement of the linewidth asso-
ciated with the a parameter [6]. This enhancement is
planned to be the subject of a future paper.
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