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Suppression of spontaneous emission by squeezed light in a cavity
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The behavior of a two-level atom confined within a cavity, pumped by an intense external field,
and damped by a squeezed vacuum reservoir is studied. When the lowest squeezed quadrature of the
vacuum is in phase with the pumping field, the relaxation time of the population inversion and of
the polarization quadratures of the atom are appreciably enlarged, and hence the atom is decoupled
from the reservoir. The effects of finite bandwidth of the squeezing are analyzed and it is shown
that they can be used to improve the decoupling.

I. INTRODUCTION

The radiative decay of atoms in the free space is one of
the central problems in quantum optics. Recently, much
attention has been focused on the changes of the atomic
population and phase decays appearing when an atom is
damped by a squeezed vacuum environment. First, Gar-
diner [1] showed that in a infinite-band squeezed vacuum,
the two polarization components of the atom are damped
at different rates, leading to a longer relaxation time for
one of these components when compared to normal vac-
uum radiative decay. The introduction of a driving field
in the model leads to a broadening of the sidebands of
the fluorescence spectrum while the central band is nar-
rowed or broadened depending on the relative phases of
the squeezed vacuum and the driving field [2]. However,
the squeezed light generated in the actual experimen-
tal situations has finite bandwidth [3], which has lead
to the investigation of new methods to study the behav-
ior of a two-level atom in such an environment. It has
been shown, using a cumulant expansion and simulation
methods, that the effects of the squeezing on the cen-
tral band of the spectrum is reduced in this case, while
the sidebands can be narrowed in comparison with the
infinite-band case [4—7].

On the other hand, the suppression and enhancement
of spontaneous emission when an atom is placed inside
a cavity has been long studied [8—10] and observed [11].
The existence of a finite response time of the reservoir
produces a frequency-dependent coupling between the
atom and the electromagnetic field which leads to impor-
tant changes in the atomic decay. As it is well known, the
rate of spontaneous emission is proportional to the den-
sity of photon modes at the atomic transition frequency.
If the density of photon modes close to the spectral re-
gion where atomic transitions take place is modified, the
corresponding decay rate is also changed. One can there-
fore tune or detune the cavity to the atomic transition
frequency in order to enhance [8] or inhibit [9] the spon-
taneous emission. Alternatively, as has been shown re-
cently by Lewenstein, Mossberg, and Glauber [10], by
driving the atom with an intense laser field one can dy-
namically change the transition between dressed levels

frequencies (i.e. , produce a Stark shift), which causes an
inhibition in one of the polarization components of the
atom decay.

Recently Parkins [5] has shown that when an atom is
damped by a reservoir in a infinite-band squeezed vac-
uum state and driven by a laser field, spontaneous emis-
sion from the atom can be switched off, i.e., the atom
and the cavity remain decoupled. The main goal of this
work is to study the effects of the finite bandwidth of
the squeezing in this behavior both in a cavity and in
the free space. This paper is organized as follows. In
Sec. II we qualitatively analyze the effects produced by
the shape of reservoir spectrum in the atomic decay. In
Sec. III, following the work of Lewenstein, Mossberg,
and Glauber, we derive the general modified Bloch equa-
tions describing this model. In Sec. IV we particularize
these equations for the case in which the atom is in the
free space by assuming a constant cavity mode function
and, in Sec. V, for the case in which the atom is in a
Lorentzian —type cavity, confirming the results predicted
in Sec. II. Finally, in the Appendix, we compare the so-
lutions given by this approach for the case of no externa1
driving field with the numerical simulations of Ref. [6],
showing an excellent agreement. This ensures that our
solutions may be used for a large range of parameters.

II. MODIFICATIONS ON THE ATOMIC DECAY

|A'e consider here an atom placed in a cavity driven
by an intense laser field on resonance with the atomic
transition frequency and coupled to an electromagnetic
reservoir in a squeezed vacuum state. As it is well known,
the atom may be represented by the Bloch vector cr =
(o~, o„,o, ), where o; are the usual pseudospin operators
representing the atom. In the absence of damping, the
Bloch equations are given, in the rotating frame, by

d—CJ'=B x G)
dt

where B= (0, 0, 0), 0 being the Rabi frequency which
characterizes the atom —laser-field interaction strength.
Equation (2.1) shows that the first component of the
Bloch vector ze = o (also known as the dressed popu-
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lation inversion [12]) remains constant, while the dressed
polarizations z'y = (o& + io, )/2 oscillate at frequencies
+0, respectively. However, this behavior breaks down
when damping is taken into account. The electromag-
netic reservoir that triggers spontaneous emission can be
represented in the Bloch space by fluctuating fields in the
XY' plane [13] (see Fig. 1). Hence B= (0+ E,E&, 0),
where E~ and E& are the slowly varying quadratures of
the electromagnetic reservoir along the X and Y direc-
tions, respectively. The shape of the fluctuation distri-
bution is elliptical when the reservoir is in a squeezed
state, as shown in Fig. 1, where we have assumed for
the principal directions of the elliptical distribution to
coincide with the A and Y axes. The length of the semi-
axes (which is a measure of the fluctuating field strength)
are proportional to N —M + 2 and N + M + 2, respec-
tively, where N and I are two parameters describing
the squeezing which, for an ideal squeezed vacuum, ful-
fiii

~
M )= gN(N+ 1). Thus for M positive (negative)

it is the E (E&) quadrature that is initially squeezed.
When these fluctuations are much faster than the typical
atomic lifetime, white-noise methods can be used. How-

ever, for fluctuations that do not fulfill this condition,
other methods must be used. For weakly interacting sys-
tems one can describe the fluctuations of E~ and E& in
the Fourier space by its spectrum.

In order to analyze the role played by the reservoir, let
us decompose the field operator in the usual way [14]

E „=E~ „+E' y. (2.2)

The first term E~ gives the free evolution of the field
and the second E' is the source term, which gives the
contribution of the photons emitted by the atom into
the cavity modes. Note that with this definition, despite
the commutator [a(f), E &(t)] = 0 for all times, Ef &(/)
and E' „(t)may not commute separately with the atomic
observables. So we chose normally ordered mean values

N + M + 1/2

N —M + 1/Z

for all the products involving field and atomic operators,
and we will keep this choice in the following.

The source terms E' „can only carry one photon in
whatever mode and therefore the spectrum of the radi-
ated part will be the cavity mode density, i.e. , a function
centered at the central cavity frequency (which we as-
sume to coincide with the atomic transition frequency
uo) with a width I' and a height zy„where I' i is the
response time of the reservoir and p, the contribution of
the cavity modes to the spontaneous emission rate when
(d = 4)p.

On the other hand, the spectrum of the free part E
(E&) is given by a function of height p, N —p, M (y, N +
p, M) and width of the order of the minimum between
the squeezing bandwidth along the X (Y') direction and
the bandwidth of the cavity mode density function I'.
Note that the fluctuation intensities of the free part are
not p, (NUM+I/2) but p, (N+M), since, as mentioned
above, we have chosen normal ordering (in fact, the last
term +2 is contained in the radiation part).

Notice that when the reservoir is in a vacuum state
(o Ef „)= 0 due to the normal order chosen, and, there-
fore, only the radiated parts of the field contribute to the
spontaneous emission. In the following we concentrate in
an ideal and strong squeezing (N )& 1) since this is the
situation where most important features arise. With all
the previous discussion, the following observations are in
order.

(a) The evolution of the dressed population inversion
is given by

—„,(~-) = (~.E„')+ (~.E„') (2.3)

In the free space (I' .-oo) and for infinite-band squeez-
ing, the spectrum of E& ——E~ + E„' has a height of
(N + M + z)p, and infinite bandwidth. Thus the right-
hand side of Eq. (2.3) tends to zero for M negative
(E& squeezed) and therefore the decay of (z'~) is inhib-
ited [1, 2]. For decreasing values of the squeezing band-
width, much smaller than the Rabi frequency 0, this last
frequency lies outside the spectrum of EJ. As in the
absence of damping, o, undergoes Rabi oscillations at
frequency 0, the term (rr, E~) becomes negligible, and
therefore (z ) decays as if it were damped by a vacuum
state. Hence the effect of the squeezing vanishes for this
component of the Bloch vector [6].

On the other hand, for decreasing values of I' (good
cavity limit) the Rabi frequency lies outside the spec-
trum of Ez ——E~ + E„' and therefore the decay of (m ) is
inhibited. This last phenomenon is the same reported by
Lewenstein, Mossberg, and Glauber [10] when the reser-
voir is in a vacuum state.

(b)The evolution of the dressed polarizations may be
expressed as

FIG. 1. Bloch space representation of a two-level atom
interacting with a driving field and damped by a squeezed
reservoir. The phase of the external field has been chosen in
order to match with the maximally squeezed quadrature of
the electromagnetic reservoir.

—(~+) = +i(n(~+) + (~+E~)
dt

+(zyE') —(z. E~) —(z. E„')) .

In the free space and for infinite-band squeezing, again
the terms with E& tend to zero for M negative. In this
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case, the dressed polarizations decay due only to the term
E . In the absence of damping, x+ oscillates at the Rabi
frequency 0 and then, for values of the squeezing band-
width smaller than this frequency, (n Ezf): 0 since
now 0 lies out of the spectrum of Ef. Besides, when E
is squeezed (M positive),

—(7r+) = iQ(z+)+ i(z. E„'),
dt

so it decays more slowly than in a vacuum state. In the
good cavity limit (0 )) I') also (z. E„'):0 for the
same reason, and therefore this dressed polarization is
undamped. Since as it has been shown above, (z ) decay
is also inhibited in this case, the atom is decoupled from
the cavity. This behavior coincides with that predicted
by Parkins [5] when the squeezed reservoir has infinite
bandwidth. However, for strong, infinite-band squeezing,
the spectrum of the E& quadrature evaluated at the Rabi
frequency can be relevant even for 0 ) I', which imposes
a very intense field in order to decouple the atom from
the cavity. As we show below, this condition is relaxed
when the squeezing has finite bandwidth.

In conclusion, when an atom is placed in a good qual-
ity cavity the effects of the shape of the cavity-mode den-
sity function strongly modifies the behavior of the atom.
VJhen besides, the cavity modes are squeezed, the decay
of the atom could be, in principle, inhibited. The finite
bandwidth of the squeezing also modifies this behavior.

III. MODIFIED BLOCH EQUATIONS

The Hamiltonian for the model considered in the pre-
ceding section reads, in the rotating-wave approximation,
as

H = 68003 + Ckd 4)Q Q~

d~[g(cu)a+a + g(~)*at a ]

0+—(o+e ' "+o. e' "),
2

where a~ and Q~ are the annihilation and creation opera-
tors for the cavity mode of frequency u, The two former
terms give the free evolution of the atom and the cav-
ity modes, while the third and the last terms give the
interaction of the atom with the cavity modes and with
the laser field, respectively. Here g(ur) characterize the
cavity-mode density and 0 is the Rabi frequency for the
laser field.

We are interested in the evolution equations for the
mean values of the atomic operators. Using the Heisen-
berg equations for the Hamiltonian (3.1) and eliminating
the equations for the evolution of the annihilation and
creation operators we find

d .0—„t( (t)) = 2( (t))+ d g( )e'" '( (t) -(o))+ d~
I g(~) I' dt'e'~ ' l~' ' l(o.,(t)o. (t')),

(3.2)

—( .(t)) = ~( a (t)) —2 d g( )e*' ' ' ( + (t) -(o))

—2 d~
I g(~) I

dt'e'& ' &~' ' l(a+(t)o. (t')) + H.c.,

where H.c. stands for Hermitian conjugate. These equa-
tions contain contributions from two-time correlation
functions, which are connected to other three-time cor-
relation functions and so on. In order to obtain a finite
hierarchy of equations we must cut off in some order the
infinite set of obtained equations. To do this we con-
sider a series expansion in terms of

I g(u) I up to first
order (Born approximation), which, in principle, is valid
for short times. The validity of this approximation is
contrasted in the Appendix. We need certain correlation
functions for the reservoir modes at the initial time. For
a squeezed vacuum they are

(a-(o)) = o,

(a-'(o)a- (o)) = &(~)b(~ —~')

(a (O)a (O)) = M(~)b(2~o —~ —~').
where we have assumed that the frequency around which
the squeezing has been produced coincides with the

I

atomic transition frequency. N(u) and M(u) are pa-
rameters characterizing the squeezing and depend on the
specific mechanism to squeeze the vacuum. In the follow-
ing we consider the squeezing obtained at the output of
a degenerate parametric amplifier (DPA) [3], which has
proved to be one of the most successful ways to achieve
it. In this case

) 2 2

4 &S +(~o —~) & +(~o —~) &
'

(3.4)

M(ur) = A2-p2 ( 1 1

4 ( p~ + (~D —~) ~ A~ + (~, —~)~) '

where A = &pp+ e, p = 2' ~ E'
pp is the damping con-

stant of the DPA, and e its amplification constant (the
upper sign stands for M positive and the lower for M
negative). Maximum squeezing is achieved at threshold
of the cavity at e = 2'. Now the modified Bloch equa-
tions become
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t—(o (t)) = 2 (o' (t)) —i Ck'(o, (t')) sin Q(t —t')[N(t —t') —M(t —t')]
dt 2

t
—2 Ch'(o (t')) cos Q(t —t') N(t —t')

0
t ~ t

—2 Ch'(o+(t')) cos Q(t —t')M(t —t') ——
0 2 0

Ch' sin Q(t —t')G(t —t'),

(3.5)

„ ( (t)) = 'Q[( (h)) ( (h))l

t
—2 Ch'(0', (t')) Re(N(t —t') + M(t —t') + cos Q(t —t') [N(t —t') —M(t —t')])

+ 4 dt'(o+(t')) sin Q(t —t')Im[((r (t')N(t —t') + (o+(t'))M(t —t')]
0

t
dt'(I + cos Q(t —t') Re[G(t —h')]),

0

where

~(r) =f ~~]g(~) I' 0'(~)+ el"" ",
M(r) = d(ug(cu)g(2~o —~)M(u))e'( ' l', (3.6)

G(r)= J ~~]g(~) I' &e
and ((r+(h)) = (o' (t))'. Note first that these equations
display memory effects through the time integrals, i.e.,
the evolution in a time t depends on the values taken
in previous times. These memory effects are related to
the non-Markovian coupling between the atom and the

cavity modes. On the other hand, these equations are in
principle valid for short times. However, when the char-
acteristic decay time for the atom is much larger than the
inverse of the bandwidth of

~ g(cu)
~

N(u) (broadband
limit) the fluctuations of the field are so rapid that the
atom "sees" the field always as a squeezed vacuum and
therefore the equations are valid for longer times.

In most of this work we will assume that the phase
of the driving field in the DPA is chosen in order N(r),
M(r), and G(r) to be real quantities. We will analyze
these cases since they represent the limits where most
physical effects are found. In this case and in the same
order of expansion, the modified Bloch equations become

—(ir )= —2
dg

dr cos Qr[N(r) + M(r)](ir ),

(3.7)
d—(7r+) = iQ(s+) —

i
2 dr[N(r) —M(r)]+

dt o

t
dre ' '(N (r) + M(r)]) (ee)

t t
dre'~ [N(r)+ M(r)](ir (t)) —i dr(1+ e' ')G(r),

0 0

where (ir ) = (o ) = (o+) + (o ) and (oz) = —i((o+)—
(o )) are the first and second components of the Bloch
vector, respectively, and (iry) = (o&) + i((r, )) are the two
dressed polarizations.

IV. DECAY IN FREE SPACE

Let us first particularize the modified Bloch equations
for the case in which the reservoir is in an infinite-band
squeezed state. This corresponds to the usual white-noise
limit, where the reservoir response time is zero. To obtain
the evolution equations for the atomic operators we must
take the limits A,p: oo in (3.4), keeping p/A constant.
The equations obtained from (3.7) become

In the free space the cavity-mode density is considered
to be constant over the frequencies in which the atom
interacts, and hence

d—(~.) = —q( N+M+') (~.),

d (,
dh
—(-.) = *Q(-.) —.

i
-'(N+-') -

~ (-.)(2 2 2 )

(4.2)

y

2' (4.1) + (N+ 2 + M)(ir ) ——iy,
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with

I (X'N+- =-
I

—+ —
I4 qp2

(4 3)

pp

0.80

M= —
I

———
I

4 'gp~ A2) '

which coincide with the results of Ref. [2]. In this limit,
the decay of (7r ) is inhibited when the Ez quadrature is

strongly squeezed, i.e. , N » 1 with M & O.

In the case of finite-band squeezing (but broad enough
in order for the Born approximation to be valid) Eqs.
(3.7) may be expressed as

0.60

0 40

0.20

—
„,(~-) = —v-(t)(~-)

—(7r+) = —A(t)(z+) + B(t)(z. ) —iy,
cA

(4 4) 0.00
0.00 'I .00 2.00

yt
3.00 4.00

where now

p2 p2

+np +

FIG. 2. Evolution of the dressed population inversion vr

in free space for A/7 = 32, p/y = 8, and (1) 0/p = 1, (2)
0/p = 10, (3) 0/y = 100. The solid lines represent the
solution obtained from Eq. (4.4), the dashed lines that of Eq.
(4.G), and the dotted line the result obtained in a vacuum
reservo11.

( e Pi-
x

I
1 — (p cos Bt —0 sin Ot)

I

p

(4.5)

A(t) ~ 7 P
A'

When the squeezing bandwidth fulfills y/2 (( p /A
As/p~ (see the discussion in the Appendix), we can re-
place A(t), B(t), and p (t) by their values at t = oo. The
decay constants are then given by

evolution of (z ) tends to the solution obtained in the
vacuum (dotted line), as mentioned above.

On the other hand, and in the same limit (0 )) A, p),
the decay constant for the dressed polarizations tends to
(p /2)(1/2+1 jp ). Hence, when E is strongly squeezed
and 0 » A, this decay constant tends to half the one
for standard spontaneous emission. Finally, it is worth
mentioning that Eqs. (4.6) and (4.7) coincide with those
of Ristch and Zoller [4] when the same limit is taken (first-
order approximation in p/p and y/A in the decorrelation
approximation).

p A2+ 02
=p (oo)=-

2@ +0
for (z ), and

(4.6)
V. DECAY IN A CAVITY

In this section we analyze the eAects produced in the
atomic decay when the atom is placed in a cavity. Vfe
assume the mode function of the cavity to be

p~ ——Re[A(oo)] = ——+ 2y
'7 P
2 A2

(4 7)

for the dressed polarizations. The most important fea-
ture of these decay constants is that, opposite to the
infinite-band squeezing case, they depend on the Rabi
frequency of the laser field. So, for 0 )) A, p, the decay
constant y tends to its value when the reservoir is in a
vacuum state and, therefore, the eA'ect of the squeezing
on the first component of the Bloch vector is lost. This is
depicted in Fig. 2, where it is shown the evolution of this
component given by Eq. (4.4) with the definitions (4.5)
(solid line) and those of (4.6) (dashed line) for &/y = 32,
p/p = 8, and Q/y = 10, 100. First note that the results
predicted by both theories are very similar, which per-
mits one to use the decay constants derived at t — .-oo.
For increasing values of 0 both results coincide and the

pc
2z I —i(~ —~,)

'

This corresponds to a cavity-mode-density modeled as a
Iorentzian function with a maximum value at u, . Here

p, is the contribution of the cavity modes to the sponta-
neous emission rate when u = u, and I' is the reservoir
response time. In the infinite-band squeezing, we obtain,
for the terms defined in Eq. (3.6),

N(r) = (N+ -')—'I
r2

M( )=M—'
2 r —iL

G( ) F 1r iE~--
2
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dt
—(z. )= —7 (x),

G—„(~+)= A(~+) + B(~ ) + C,

where

r'
7,. = P, (N + M + —.', ) „

B = '(N + M +—-,')

A =i.Q —7,(N —M + —,') —B',

C- 'Y q'+r —n)

(5 2)

(5.3)

Note that for 02 » 12, 1 (N + M + z), one can
dynamically suppress the decay of the (m ) component.
When E& is strongly squeezed (M negative), the effect
of the squeezing is added and the decay becomes still
slower. On the other hand, the decay constant for (n+)
becomes, in the same limit,

7~ = —Re(A) = —'(N —M + ~) + ~p,2
(5.4)

which consists of two terms. In order for this component
not to decay, it is necessary first that M be positive in the
strong squeezing limit (the first term becomes as small
as we please) and second, 7 must be very small. If the
first condition is fulfilled, then we need O~ && r~, r2(N+

~
M

~
+ z ), which implies a very intense laser field and in

the strong-squeezing limit (N » 1). All this results have
already been reported in Ref. [5].

I et us concentrate on the effects of the finite-band
squeezing in this decay. Introducing Eq. (3.4) in (3.7),
when we substitute the upper limits in the integrals by
infinity, we find Eq. (5.2) with

where 4 = uo —u, is the atomic transition-cavity fre-
quency detuning and N and I have been defined in
(4.3). First note that substituting these values in Eq.
(3.5), and for a detuning much broader than that the cav-
ity width I', the integrals become very small and therefore
the atom remains decoupled from the cavity. This eA'ect

has been long studied, so we leave aside the problem of
the detuning and in the following we concentrate in the
resonant case (A = 0). The modified Bloch equations
become, in this case,

and therefore

y~ ——ReA = 7c P
2%2 2

(5.6)

As in Sec. IV the effect of the squeezing y is disminished
in this case in comparison with the infinite-band one.
Hence, in order to decouple the atom from the cavity
it is necessary that 0 )) I', A, p and a strong squeezing
with M positive. Thus, in this case, a strong squeezing

(p /A « 1) does not lead to a much higher value of the
Rabi frequency 0, i.e. , a very intense laser field. The
finite band of squeezing may be an advantage for the
dynamical suppression of the atomic decay.

Finally, to conclude this section, we study the effects
of the inhibition of decay on the resonance spectrum. In
order to measure the spectrum emitted by the atom, it
is necessary to consider that the atom is not only cou-
pled to the cavity modes but also to other modes (back-
ground modes), which we take to be in a vacuum state.
We assume that the coupling between the atom and the
background modes is much weaker than the coupling be-
tween the atom and the cavity modes, so the precedent
study remains valid in this case. The spectrum of the
light emitted by the atom in the background modes in
the stationary state is given by the Fourier transform of
the two-time dipole autocorrelation function

S(~) = I' lim Re
taboo

d7. e '"'(cr+(/)0. (t + i.)),

(5.7)

where k is a normalization constant that we take to be
k = 1. The spectrum is usually calculated by using the
quantum regression theorem, valid for Markovian sys-
tems [15]. However, it has been shown that in systems
damped by a colored reservoir, one can use this approach
only on the condition that the reservoir spectrum can be
regarded as fiat on each emission line [12]. In the case
under study, despite that the bandwidths of the reservoir
are finite, they have been assumed to be much broader
than the damping rates in order for the upper limit t in
the integrals of Eq. (3.7) could be substituted by infinity.
Thus the quantum regression theorem can be used as long
as this condition is fulfilled. In this case, the two-time
dipole autocorrelation function obeys the equations

d—
d, (~+(~)& (~+ &)) = —7 (~+(~)~ (~+ ~))

(5.8)
d

d ( +(&) +('+ )) =A( +(t) +(&+ ))

+B( +(~) -(&+ ))
+ C( +(~))

2

A=zQ ————B,Pc I"
2 A2

C= i '
~

1+—.q. ( r
I' —iQ) '

(5.5)

where 7, A, B, and C are given in (5.5). These equations
must be solved by taking as initial conditions (r = 0) the
values obtained in the stationary state from the precedent
analysis. To obtain the spectrum from these equations is
a simple task, but we omit here the final results since they
lead to involved expressions. We plot the results in Fig.
3, where we compare the infinite-band squeezing (solid
line), the finite band (dashed line), and the free-space
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by squeezing strongly the E quadrature of the electro-
magnetic field and pumping the atom with a very strong
laser field. However, in this case, the first condition im-
poses very intense laser fields. We show that for finite
values of the squeezing bandwidth, this last condition is
relaxed.

ACKNOWLEDC MENT

We are much indebted to Professor E. Bernabeu for
his continual advice and interest in this work.

APPENDIX: COMPARISON WITH THE WORK
OF PARKINS AND GARDINER

In this appendix we compare, for a particular case, the
results given by Eq. (3.5) with the exact numerical ones

1.00 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0.80

FIG. 3. Fluorescence spectrum of an atom damped by a
squeezed reservoir with A/Iu = 1.5 and (1) in free space and
infinite bandwidth squeezing, (2) in a cavity (I'/y, = 30) and
infinite bandwidth squeezing, and (3) in the same cavity and
finite bandwidth squeezing (A/p, = 30). The spectra have
been normalized in order that their maximum values coincide.

0.60

0.40

0.20

case (dotted line) for A/p = 4. Note that Mollow's side-
bands are much narrower for the finite-band case. This is
not surprising since, as it is well known, the width of the
central band is p~ and the width of the sidebands is y~.
As mentioned above, the effect of the finite-band squeez-
ing improves the inhibition of the decay of the atom for
M positive and, therefore, the decay constants p and
p~ become smaller.
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VI. CONCLUSIONS
0.80

In this work we have studied the behavior of a sin-
gle two-level atom driven by a very intense laser field
and damped by a squeezed reservoir in a cavity. We
have shown that the effects of the finite bandwidth of the
reservoir and the cavity produce strong modifications in
comparison with the case where the bandwidths are infi-
nite. These modifications can be predicted by decompos-
ing the electromagnetic field inside the cavity in free and
source part, and studying the spectrum of fluctuations of
both parts. To check these predictions we have derived
a model accounting for finite (but broad) bandwidths.
We have shown that in free space, the effect of the finite
band of the squeezing in the dressed population inver-
sion is to decrease the effect of the squeezing; we have
also shown that the decay of the dressed polarizations
can be reduced to half that obtained in the normal vac-
uum. In the case where the atom is placed in a cavity, it
is shown that one can decouple the atom from the cavity
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FIG. 4. Decay of the atomic mean values for (a) A/p = 32,
p/p = 8 and (b) A/p = 0.8, p/p = 0.2 given Eq. (A2) (solid
line), Eq. (A4) (dotted line), and the numerical simulation of
Ref. [6] (dashed line).



SUPPRESSION OF SPONTANEOUS EMISSION BY SQUEEZED. . . 1955

d—(o. )= —2 dr [N(r) + M(r)] (cr ),

d—(o. )= —2
dh

dr[N(r) —M(r)] (o„), (A1)

—(o.,) = —4
dt

dr%(r)(o, ) —2 drG(r).

Substituting g(u) given in (4.1) in this equation we ob-
tain

(A2)

where

(A3)

In the infinite bandwidth case these equations become

—(o. ) = —p(N + M + 2) (cr ),

(A4)

d—(o., ) = y(2N + 1)(o—,) —p,

where X and M have been defined in (4.3), in agreement

given by Parkins and Gardiner [6]. In their work they
study the interaction in the free space of a single two-
level atom with a finite-band squeezed reservoir in the
absence of a driving field. For this case Eq. (3.5) gives

with the results of Ref. [1].
Note first that for very short times (pt, At 0) the

eKect of the squeezing is negligible and the atom behaves
as if it were embedded in a vacuum state. For very long
times (t )) 1/p, , 1/A) we recover the infinite bandwidth
limit. However, before reaching this time, the state of
the atom may have changed substantially and Eqs. (A4)
give a wrong result. In order for these equations to be
valid, it is necessary that y (( p /A, As/p2, i.e. , the
atom almost remains in its initial state after t
p . In this case the equations obtained are the same as
in Eq. (A4).

In Fig. 4 we have plotted (o ) and (o„) given by
(A2) (solid line), the simulation theory (dashed line),
and the infinite-band squeezing theory (dotted line) for
several values of A/y and p/p and M ( 0. Note that
we have not plotted (o, ) since it decays with the sum
of the decay constants for the z and g components [see
Eq. (A2)]; and tllel'efore t, he agreement of the siI11ula-
tion result with these coinponents ensures the agreement
with the (o.,). I'or the moderate values of the squeezing
bandwidth which have been used in Figs. 2 and 3 [Fig.
4(a)] it is clear that our approach is in very good, agree-
ment with the exact result. The white-noise result gives
a slight result but still qualitatively good. For smaller
values of the squeezing bandwidt, h the agreement is still
good though for the (o ) component, , it is a little worse
[Fig. 4(b)]. This is due to the fact that, for this compo-
nent, the times for which the Born approximation is valid
are shorter, and therefore for intermediate times there is
a slight diII'erence.

Finally, it is worth mentioning that Parkins and Gar-
diner also introduce several analytical approximations
and compare them with the simulated result, finding
good agreement. However, the main misfit comes from
the diferent values predicted by their analytical ap-
proach and the simulation method for short times. In
our approach it is precisely for these short times where
the theory is best suited. For long times and in the lim-
its mentioned above, it is expected that their results and
ours coincide.
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