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This paper reports on the investigation of excitation spectra of rubidium Rydberg atoms in crossed
electric and magnetic fields. The quasi-Landau spectra were evaluated and their Fourier transforms cal-
culated. The scaled spectral scans used for this purpose were obtained by changing the electric and mag-

netic fields as well as the laser frequency in an appropriate way. The observed resonances could be ex-

plained completely by semiclassical orbits. Only orbits showing overlap with the ground-state wave

function are observed. The polarization dependence of certain components in the Fourier spectra can be
explained by the shape of the semiclassical orbits. The electric dipole moments of the atoms resulting
from the shift of the quasi-Landau structures in a changing electric field agree quite well with the corre-
sponding semiclassical orbits.

I. INTRODUCTION

Recently spectra of Rydberg atoms in a strong external
magnetic field and also in strong crossed electric and
magnetic fields have attracted much interest, since the
corresponding classical counterpart of such systems ex-
hibits chaotic motion of the electrons.

Rydberg atoms in weak magnetic and weak crossed
electric and magnetic fields were investigated theoretical-
ly by Solov'ev [1—3] and Braun [3,4] using perturbation
theory. Based on this work Liberman, Pinard and co-
workers explained the low-field spectra of lithium in
weak magnetic fields and weak parallel electric and mag-
netic fields [5—10] Gay et al. [11,12] and Korevaar and
Littman [13] investigated alkali-metal Rydberg atoms in
weak crossed fields theoretically as well as experimental-
ly.

If in higher magnetic fields the inAuence of the external
field gets comparable to that of the inner-atomic field the
atomic system gets classically chaotic. This is the regime
which is of particular interest for the present work. In
experiments with Rydberg atoms in that classically
chaotic regime it was found that the excitation spectrum
shows sinusoidal modulations of the spectral intensity.
The most pronounced modulations in the so-called
quasi-Landau (QL) region were first discovered by Gar-
ton and Tomkins in 1969 [14]. They occur near the ion-
ization threshold in the P, = 1 manifold (P, represents
the z parity) and exhibit a modulation in the spectra, the
maxima of which are separated by about 1.5 times fi~,
(co, is the cyclotron frequency). Above the ionization
limit the separation approaches %co, . These resonances
were explained by Edmonds and Starace using a semiclas-
sical WKB approximation [15,16]. Later highly excited
alkali-metal atoms were investigated in external magnetic
fields using high-resolution laser techniques. Approach-
ing the zero-field ionization limit strong lines appear be-
ing interpreted by Kleppner et al. as QL resonances

which were found to emerge from single quantum-
mechanical states [17]. For higher excitation energies
and higher external fields these resonances are broadened
and appear as sinusoidal modulations the maxima of
which follow WKB quantization in the plane perpendicu-
lar to the magnetic field [18,19]; they were in agreement
with the original QL spectra of Garton and Tomkins and
with the interpretation by Edmonds and Starace. It
should be mentioned that there are also measurements
performed on lithium Rydberg atoms in strong magnetic
fields which exhibit QL resonances (for a review see Ref.
[10]).

Broad resonances which can be understood semiclassi-
cally were also found in pure electric fields [20]. Howev-
er, the Coulomb potential plus an external electric field is
separable [21]. Therefore the reason for the smooth reso-
nance structure at high energies is the short lifetime of
the excited states. As shown in Ref. [20] the modulation
maxima can be associated with single decay-broadened
quantum-mechanical states. Rydberg atoms in external
electric fields are not chaotic in the classical limit; this is
a principle difference to the case of atoms in strong exter-
nal magnetic fields. In the latter case the system is classi-
cally chaotic and it is important to state that in this case
the modulation maxima resulting from the QL structure
cannot be associated with single quantum states: the
modulations are smooth envelopes over many energy lev-
els which may be narrow and thus correspond to long-
living states [22].

Further systematic experimental studies of QL spectra
of hydrogen in strong magnetic fields were carried out by
Welge and co-workers, and they identified in the Fourier
transform of the spectra many new resonances besides
the one showing a spacing between the successive modu-
lation maxima of 1.5 A'co, [23—25]. It was possible to in-
terpret these by semiclassical trajectories. In addition to
the orbit which generates the QL resonances observed by
Garton and Tomkins, and which spreads out in the plane
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perpendicular to the magnetic field, other orbits extend-
ing in the same direction as the magnetic field were also
observed.

The inhuence of classical trajectories on oscillator
strength, level density, and wave functions was investigat-
ed theoretically by Gutzwiller [26—30], Berry [22],
Reinhardt [31],Wintgen, Friedrich, and Hoenig [32—35],
Wunner et al. [36], Heller [37], and Bogomolny [38]. A
semiclassical theory developed by Du and Delos describ-
ing the average oscillator strength allows a quantitative
comparison between experimentally obtained Fourier
spectra and classical trajectory properties [39,40]. In
crossed electric and magnetic fields an interesting class of
electron trajectories spinning around the classical ioniza-
tion saddle point was found [41] which will be discussed
in connection with our results later.

The question arises whether the occurrence of the QL
resonances is a general signature of the excitation spectra
of Rydberg atoms in strong fields. Therefore, more de-
tailed experiments are necessary, especially in cases
where an additional electric field is applied perpendicular
to the magnetic field. Crossed fields occur rather fre-
quently, for example, in a plasma confined by a magnetic
field or on the surface of neutron stars. Rydberg atoms
are suited for laboratory experiments, since the experi-
mentally achievable field strengths are comparable with
the inner-atomic field acting on the Rydberg electron,
therefore the strong-field regime can be achieved easily.
Moreover, the high excitation energy of the Rydberg
electron justifies semiclassical approximations of level
density and wave functions. Such a simplified treatment
is necessary, since up to now there have been no
quantum-mechanical calculations available of spectra in
strong crossed fields exceeding energies that correspond
to those of levels with a principal quantum number of
about 25.

II. INFLUENCE OF CLASSICAL TRAJKCTORIES
ON QUANTUM PROPERTIES

A. Modulations of the level density

G( W')= g
a a

(2)

The response function is closely related to the level densi-
ty, which is essentially the imaginary part of G( W). The
summation in Eq. (2) is taken over all energy levels. The

Concerning the semiclassical description of the level
density, we follow here the theory developed particularly
by Gutzwiller [26—30]. He proceeds from a relation be-
tween the response function of a system and the respec-
tive propagator:

G(W)= i I dt J dx "—K(x, t, x, 0)e'
t=o V

= f dx "G(x,x, W), (1)
v

where K(x, t, x',0) is the propagator, G(x, x', W) the
Green's function, and 8 the level energy. The response
function G( W) on the left-hand side of Eq. (1) is defined
by

integrand in the middle of Eq. (1) is the product of a
phase factor and the propagator, starting at the position
x and returning to x within a time t. The propagator is
written as a Feynman path integral. By successively em-
ploying the stationary phase approximation Gutzwiller
ends up in a semiclassical expression Gsc( W) for G ( W)
which essentially contains a sum over all classical period-
ic orbits (PO). His result for two-dimensional systems is
written [29]

oo

G ( W) —y i y e im (s( w)/fi nn/2)—2A', 2 sinh(mP/2)

(3)

T stands for the revolution time along the periodic orbits
and the summation index m corresponds to the number
of revolutions along one periodic orbit. The parameter p
depends on the stability of the orbits PO: p is purely
imaginary for stable orbits, and is real and greater than 0
for unstable orbits. The parameter S denotes the energy-
dependent action integral over one traversal, and n is the
number of conjugate points along the orbit in the case of
unstable orbits; for stable orbits n is zero. For the three-
dimensional case the coefficients of the phase terms in Eq.
(3) are getting more complicated, since the description of
the stability of the trajectories requires more parameters
than just p.

From the relation dS =Td8' which is well known
from classical mechanics follows that periodic orbits
cause modulations of the level density whose periods on
the frequency scale are equal to the revolution frequen-
cies. Unstable orbits generate sinusoidal modulations,
since the coefficients of the phase terms in Eq. (3) de-
crease rapidly with increasing number of revolutions; this
is not the case for stable orbits where the coefficients do
not decrease. Therefore, stable orbits lead to a level den-
sity corresponding to periodic linelike structures. In this
limit the more general Gutzwiller treatment approaches
the semiclassical treatment of Bohr and Sommerfeld be-
ing only applicable to integrable systems [29]. Thus the
structure of the mean level density is related to the classi-
cal stability behavior of the system.

It must be pointed out that the stationary phase ap-
proximation which is applied here requires that the sys-
tem can be semiclassically approximated anywhere in its
configuration space. The introduction of a scattering
center such as the Coulomb potential which cannot be
described in semiclassical terms leads to the requirement
to use the quantum-mechanical expression of the Green's
function in its vicinity. Therefore the momentum of an
electron which closely approaches the scattering center is
changed abruptly in any direction, whereby the probabili-
ty for a particular momentum transfer follows the laws of
quantum mechanics. Therefore the scattering center
leads to the occurrence of trajectories in Gutzwiller's for-
mula Eq. (3) which are classically not periodic. The am-
plitudes of the level density modulations caused by those
trajectories depend not only on their classical stability be-
havior, but also on the quantum-mechanical differential
scattering cross section at the scattering center.
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D =D.e (4)

W and 8' denote the energies of the excited state and
the ground state

~ g; ), respectively. D is the projection of
the dipole operator 0 onto the direction of the laser po-
larization. The Green's function G~(q&, q, ) has a semi-
classical approximation [39,40]:

G~(qI q;)=c X ~p.i(q; q~)~
cl

Xexp
iS,&(q;, q&) n„~

2
(5)

where the sum is taken over all classical trajectories con-
necting the initial point q; and the final point q&. The
classical functions S,&(q;, q&) and p,&(q;, q&) denote the
action integrals along the trajectories and the modulation
amplitudes depending on the classical stability of the tra-
jectories. Lu and Delos evaluate Eq. (4) applying the
quantum-mechanical Coulomb Green's function (without
external fields) within a tiny sphere surrounding the pro-
ton, and the semiclassical Green's function Eq. (5) outside
the sphere, but now including the external field. Their re-
sult approximating the energy averaged oscillator
strength in the vicinity of the field-free ionization limit is
[29,40]

f ( W) =fo( W) + g C„sin( T„W'+ b,„),
where fo(W) is the field-free energy-averaged oscillator

I

B. Modulations of the excitation cross section

In an experiment where the QL structure is examined,
the intensity modulation of the excitation spectra, not the
level density, is investigated. Therefore the dipole matrix
elements connecting ground and Rydberg states deter-
mines the results. A formalism which approximates the
mean excitation cross section semiclassically was
developed by Lu and Delos [32,40]. They calculated the
mean excitation cross section of hydrogen in a strong
magnetic field starting with a well-known relation be-
tween oscillator strength and the Green's function:

2m, ( W —W, )f ( W)= — Im(DI/r; ~G~g ~Dl/J; )

with

strength. The sum is taken over all recurring trajectories.
T,&

are the times of traversal and 4,&
are trajectory

dependent phases. In Refs. [39] and [40] the modulation
amplitudes C„are calculated which depend on the stabil-
ity behavior of the orbits, the ground-state quantum
numbers, and the laser polarization. In contrary to Eq.
(3) Eq. (6) contains not only periodic orbits which can be
traversed many times but also recurring orbits which can
be traversed only once by a classical electron. There is no
difference in the calculation procedure of the amplitudes
C,&

which favors the periodic orbits with respect to tra-
jectories which are only recurring [39,40]. The deriva-
tion of the Gutzwiller formula Eq. (3) however suggests
that also in a semiclassical expression of the oscillator
strength applied to systems fulfilling semiclassical condi-
tions anywhere in configuration space the recurring tra-
jectories can be ruled out by a stationary phase argument.
Therefore the inAuence of recurring trajectories should
vanish if the nonclassical Coulomb center would disap-
pear.

Since the atoms which are examined in our experi-
ments always contain the Coulomb center the purely
semiclassical case treated by Gutzwiller is not realized
there. Therefore we expect that recurring as well as
periodic orbits modulate the excitation spectra. Never-
theless, our experiments show that the spectra are dom-
inated by periodic orbits, especially for high action
values, i.e., short-range modulations. The reason for that
may be that the classical amplitudes C,~

tend to get large
if a trajectory is periodic or nearly periodic.

C. Semiclassical probability distributions

The connection between excitation cross section and
semiclassical orbits which could be traversed by an excit-
ed classical electron suggests that also the wave functions
of excited states in the Rydberg regime which are ex-
pected to exhibit some classical behavior, are affected by
semiclassical trajectories. Bogomolny found by working
out the semiclassical approximation of Green's function
Eq. (5) that such a correlation between wave functions
and periodic orbits exists [38]: the slightly space and en-
ergy averaged quantum-mechanical probability distribu-
tions can be semiclassically approximated by a mean part
plus contributions resulting from periodic orbits:

( ~g(q)~ ) =pp(q)+Pi'" " Q Im 'Apo(x)exp —Spo+ Wpo(x)
PO 2

Here n is the dimensionality of the system, and x and y;
designate space coordinates in a system where the x axis
is taken along the periodic orbits and the y, in transversal
direction. The mean part po(q) is the projection of the
classical microcanonical distribution onto the
configuration space, whereas the probability distribution
is enhanced in the neighborhood of periodic orbits. The
strength of these enhancements depends on the stability
of the orbits via Apo(x) and Wpo(x) in Eq. (7) which are
functions of the monodromy matrix of the periodic or-

I

bits. Equation (7) was derived for systems exhibiting un-
stable periodic orbits and fulfilling semiclassical condi-
tions anywhere in configuration space. The introduction
of a Coulomb center would lead to the appearance of
recurring orbitals in Eq. (7) (see II A). Since in the exper-
iment transitions from the ground state localized at the
Coulomb center to large Rydberg states are measured,
the measurement is sensitive only to wave-function
enhancements generated by trajectories performing at
least one close approach to the core. Therefore also the
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semiclassical approximation of wave functions suggests
that classical periodic and recurring orbits which ap-
proach the Coulomb center show up as periodic modula-
tions in the excitation spectrum.

III. EXPERIMENTAL EXPLANATION
OF QUASI-LANDAU SPECTRA

The aim of our experiment was to investigate the QL
spectrum of rubidium Rydberg atoms and to identify the
corresponding semiclassical orbits. If the excitation spec-
tra are recorded using fixed field values, the Fourier
transforms of the spectra yield the revolution times of the
corresponding semiclassical trajectories. This follows
from the relation dS =TdW and Eq. (6). However, the
useful energy range over which the Fourier transform can
be taken is limited for two reasons.

whereas the corresponding trajectories solving Eq. (8)
evolve according to the scaling laws, that means they
keep their shape, but they are reduced or blown up de-
pending upon whether the energy 8' is increased or de-
creased.

The scaled action S, of a trajectory is given by
S, =SB'~'; this follows from S =f p.dq and Eq. (9).
Therefore the action S of the trajectory changes propor-
tionally to 8 ' during the scaled scan. Since S changes
by h between successive modulation maxima, they exactly
appear equidistant on a 8 ' scale. This is the main ad-
vantage of scaled spectra. The modification of Eq. (6) for
scaled spectra recorded as a function of 8 ' yields

f(B ' )=fo(B ' )+B' y C, ,[sin(B ' S, ,[) .
cl

(1) The revolution times of the semiclassical trajec-
tories change with the excitation energy.

(2) In most cases the amplitudes C,&
in Eq. (6) change

quite rapidly as a function of the energy. Therefore gen-
erally the modulations due to one type of trajectories ap-
pear only in a small energy range, thus no accurate value
of the revolution times can be deduced.

For those reasons ordinary spectra allow us only in some
cases to identify the trajectories which modulate the spec-
tra.

In order to circumvent this difhculty it is necessary to
employ a classical scaling property of the examined sys-
tem, which is discussed in the following. The real param-
eters determining the motion of the electron are the ener-

gy 8' and the field values E and B. The Hamiltonian of
the system in terms of these parameters is

H= —— Ex+—I, +— (x +y ),p2 ] 8 8
2 p 2 ' 8

with E= —Ee and 8=Be,.
Transforming to scaled coordinates, energy and elec-

tric field according to

C, ,&
are complex scaled modulation amplitudes, con-

taining also the Maslov index. The C, ,&
keep constant

during the whole scaled scan as well as the scaled action
values S, ,&

of the trajectories. The only dependence of
the modulation strength on 8 is via 8 ' which is propor-
tional to 8" . Since this is a very weak dependence a
trajectory influencing the scaled spectrum at its begin-
ning does so within the whole energy range [ Wo, W, ] of
the scaled scan. Therefore the Fourier transforms of
long-scaled spectra yield values of the actions of the
modulating trajectories being accurate enough so that
they can be identified.

IV. EXPERIMENT

The experimental setup is shown in Fig. 1. Our experi-
ments have been performed with rubi. dium Rydberg
atoms; these are much simpler to investigate than hydro-

NCP Detector
F/I D/// // /////'D'A'&

Electrons

EB —4/3 co = 8'8

8 2/3 p8
—

& /3
(9)

Field ionization

leads to the scaled Hamiltonian H,
2

PS
S

———Ex+ —I +—(x +y )
1

s 2 z, s 8 s s
~S

(10)

which does not depend on B. One trajectory solving Eq.
(10) corresponds to a one-dimensional manifold of trajec-
tories solving Eq. (8).

A so-called scaled spectrum is taken at constant scaled
energy and scaled electric field. The scaled spectrum is
recorded in a fixed energy range [ Wo, W, ]. The real field
values which have to be applied to the atoms during the
scan change in order to provide constant scaled parame-
ters E and co [see Eq. (9)]. As mentioned above only those
trajectories result in a modulation of the spectra which
approach the core region. During the scan the trajec-
tories following from Eq. (10) are kept unchanged,

Laser
Beam(uv)

Rydberg Atoms

~e

Electric Field E

Magnetic Field 8

Collimating Pinhole

Atomic-Beam Oven

FIG 1 Experimental setup
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V. EXCITATION SPECTRA AT A MAGNETIC FIELD
OF 0.7 T

In order to get a survey on the spectra at 0.7 T record-
ings were made covering an energy range from principal

Energy (cm ~) -50

L
JL
4 kl ~

II L IL
~ ~

JJ I ~

bO

OP

CG

'V

OP

Polarization
fI g

Resolution 15 MHz

Stepvrise Enlarged Resolution:

gen atoms, and furthermore the spectra can be recorded
with a much higher resolution. The use of rubidium
atoms is no disadvantage since they also represent a one-
electron system for which the pure Coulomb field is only
disturbed when the valence electron is inside the core.
This disturbance however has no influence on the QL
spectra, as has been shown by O'Mahony for Li and Sr
atoms in strong magnetic fields [42].

The excitation of the rubidium Rydberg levels was per-
formed by the frequency doubled radiation of a dye laser
(rhodamine 6G). The rubidium atoms emerge from an
atomic beam oven and pass through strongly collimating
pinholes. In the excitation region well-defined electric
and magnetic fields are present. In order to avoid a
motional electric field (vXB contribution) the atomic
beam is directed parallel to the magnetic field which is
generated by a superconducting pair of coils. The laser
beam crosses the atomic beam at right angles. The resid-
ual Doppler width amounts to 15 MHz. About 200 ps
after the excitation all Rydberg atoms are field ionized,
and the stray magnetic field deAects the field electrons
onto a microchannel plate detector. With this experi-
mental setup the excitation rate of Rydberg atoms is
recorded. The laser frequency and the Geld values are
varied by a computer which is also used to add the signal
counts into a set of channels. The Fourier transforms of
the spectra yield the revolution times of the semiclassical
orbits or, in the case of scaled spectra, the values of the
action of the modulating trajectories.

quantum numbers 33 to about 150. The laser polariza-
tion was parallel to the electric field, which was increased
progressively in steps of 200 V/m starting at zero value
and ending at the ionization field strength. The spectrum
shown in Fig. 2 was assembled by putting many sections
together. Therefore, the spectrum shown in Fig. 2 is
highly reduced in size and therefore only the coarse
features can be recognized. The insert demonstrates the
actual resolution on an extended scale (linewidth 15
MHz).

The spectra show structures which are composed of
sharp and nearly equidistant lines in the region where the
external fields have smaller influence (upper left corner of
the recording Fig. 2; this corresponds to the situation in-
vestigated, e.g. , in Ref. [17]). However, in the regions
with strong influence of the external fields the QL struc-
tures appear as sinusoidal envelopes of a very dense spec-
trum. According to the formula of Gutzwiller [Eq. (3)]
this change of the QL structure between the two types
(linelike structures and sinusoidal modulations) reflects
the transition of the dynamics of the corresponding clas-
sical system from regular to chaotic. Thus the structure
of the QL spectrum provides also information on the
classical analog.

At first glance, two long-periodic sets of QL structures
with a period of about three to five times the cyclotron
frequency can be recognized in Fig. 2 or more clearly in
Fig. 3 where sections of Fig. 2 are shown. The two sets
differ in the apparent dipole moment, according to which
the QL structures shift when the electric field is changed.
This means Fig. 2 exhibits the Stark map of the QL reso-
nances. The behavior of the coarse QL structure is ex-
plained by the trajectories shown in Fig. 3; they deter-
mine mainly the QL structure in the spectral region
displayed in Fig. 3

When the electric field is reduced to zero value both
orbits change into the trajectory originally observed by
Garton and Tomkins. In order to prove that these orbits
explain the coarse QL structure, the action was calculat-
ed as a function of energy and electric field. It differs by
h for the different neighboring straight lines superposed
to the spectra of Fig. 3; the positions of the maxima of
the coarse QL structures coincide with these lines.
Furthermore, the slopes of these lines are consistent with
the dipole moments corresponding to the respective tra-
jectories. This is proof also that these trajectories gen-
erate the coarse QL structure, as can be understood from
Ref. [40], Appendix C, yielding in our case, where the
Hamiltonian contains an electric-field term —eEx:

BS
BE

I i.l &w4 ~~~
I1.2 GHz I

FIG. 2. Rubidium spectrum for B=0.7 T in the energy range—103-—5 cm . The recording displayed in one line was tak-
en at a constant electric field. The electric field increases from
line to line by 200 V/m.

with trajectory dipole moment d. The application of
(Bx/By) ~

= —(Bf/By)
~

/(Bf /Bx )~ valid for any
f (x,y) yields

Bm
BE

Our data and the orbits displayed in Fig. 3 fulfill this
relation.

It must be pointed out that the trajectories shown in
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Energy (cm r)

~ L

~&l8
4)

4 4l
V

M
l4

ISP

Fig. 3 return to the core, but they are not periodic as
most of the other trajectories which modulate the spec-
trum and which are shown below. The discussion of the
role of periodic and recurring orbits in II suggests that
systems which can be semiclassically approximated any-
where in configuration space are influenced only by
periodic orbits, whereas violations of the semiclassical
conditions lead to the occurrence of modulations generat-
ed by trajectories which are only recurring. Therefore
the orbits shown in Fig. 3 are able to modulate the spec-
trum due to the nonclassical scattering of the returning
electron at the Coulomb center.

The spectrum exhibits also modulations of finer struc-
ture with a period of about 0.5 to 1 times the cyclotron
frequency (see insert of Fig. 2). The trajectories generat-
ing these modulations could be identified only by means
of scaled spectra which will be discussed in the following.

VI. SCALED SPECTRA, FOURIKR ANALYSIS,
AND TRA JKCTORIKS

The introduction of the scaling procedure allow us to
reduce the number of parameters describing the spectra
from three to two. In addition, the measurements were
restricted to the region close to the ionization threshold,
that means for the scaled energy [Eq. (9)] we chose the
maximum possible value. Therefore only one important
parameter remains, the scaled electric field, correspond-
ing essentially to the inhuence of the electric field in com-
parison with that of the magnetic field. Two limiting
cases wil1 be discussed here: dominating electric field and
dominating magnetic field.

First the case of large electric fie1d is discussed. In or-
der to give an impression of the scaled spectra before
Fourier transformation Fig. 4 shows a series of them tak-
en for the scaled parameters and energy range as indicat-
ed. In order to visualize the influence of the diFerent
terms in the Hamiltonian their magnitudes are shown in
Fig. 4 for a region far away from the core. These values
show that the external fields and the inter-atomic field are
of comparable size. The spectrum at the upper left of
Fig. 4 was taken for parameters for which only a few ex-
cited Rydberg states are stable enough to be detected. It
must be pointed out that due to the scaling procedure
this situation keeps the same for the entire scaled spec-
trum. The following spectra of Fig. 4 are taken at the
same scaled electric field and for successively increasing

N=0 gp N=4

(b) -75

L
\

lL

Energy (cm r)

-75

N=1
Energy (cm ) -60 -75 Energy (cm ~) -60

~ PIE
gp

bO,
~ ~

M N= 2 N=6

'
~

N=3 Scaled Parameters:

FICr. 3. Coarse QL structure of the spectra at 8=0.7 T (see
also Fig. 2). The modulation maxima are connected by solid
lines. The meaning of these lines is explained in the text. In (a)
the lines connect modulation maxima that are generated by the
orbit which is oriented in the opposite direction of the electric
field. The trajectory is shown in the right-hand side. The dipole
moment of the lines and of the trajectory is about 1400 e A. In
order to visualize the size of the trajectory the position of the
classical ionization saddle point (ISP) is indicated. In (b) the
second type of coarse modulations are enhanced by solid lines.
They are generated by a trajectory which is lying in the direc-
tion of the electric field. The modulations and the correspond-
ing trajectory show a dipole moment of about —1000 e A.

e = 0.68

ur = —1.50 —N && 0.034

FIG. 4. Scaled spectra with initial parameters E=8196 V/m,
B=0.45 T, 8'= —50.8 cm ' —NX0.55 cm ', where N desig-
nates the numbering of the spectra starting on the left-hand side
from above. The laser polarization is parallel to the electric
field. Far away from the core the orders of magnitude of the
difFerent terms in the Harniltonian are (in a.u. ) as follows:
Coulomb term, 2X10; electric field, 8X10; diamagnetic
term, 1X10
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scaled energy co, being equivalent to increasing stability
of the atoms with respect to field ionization. The follow-
ing coarse features can be recognized. (1) Close to the
ionization threshold (spectra at the upper left of Fig. 4)
components at small values of S, dominate (i.e., with long
wavelengths). (2) With decreasing scaled energy (lower
right of Fig. 4) one component with a short wavelength
and one with a very long wavelength are dominating.

Therefore it can be stated that the diA'erent QL reso-
nances exhibit different stability behavior or, in other
words, the stability of the wave functions is difFerently
affected by the corresponding semiclassical trajectories
making the excited states more or less sensitive to decay
into the continuum. A possible explanation of this
feature is that the different infIuences lead to a different
amplitude of the oscillatory wave function beyond the
ionization saddle point and therefore to different ioniza-
tion probabilities.

The Fourier transforms of the scaled spectra reveal the
detailed QL structure of the scaled spectra. Figure 5
shows the Fourier spectra obtained from the spectra in
Fig. 4. In the diagram the resonance strength is plotted
versus the scaled action which is displayed in units of h.
Figure 5 demonstrates clearly that the scaled spectra in
Fig. 4 can be decomposed into a set of well-separated
sharp resonances. As will become clear later it is useful
to collect the resonances in groups which correspond to
different types of generating trajectories. This is included
in Fig. 5.

If the polarization is changed, a new group of reso-
nances shows up in the gap between the resonances la-
beled by 8, and 8, in Fig. 5. In addition, the resonances
8, and B, themselves almost disappear (see Fig. 6).

In the following sections the trajectories generating the
modulations displayed in Figs. 5 and 6 will be discussed.
The resonance at 50h appears for each polarization and is
caused by the trajectories which are already shown in
Fig. 3.

For each polarization two strong resonances appear
(labeled by C) over a rather large range of parameters at
scaled actions of 1.52h and 2.14h. They are generated by
trajectories which approach the core once per revolution
and which are periodic in phase space. Figure 7 shows
the shapes of some orbits belonging to that group. Due
to the symmetry of the system, the orbits approach the
core in the direction of the electric field. Figure 7 also in-
dicates the scaled electric field at which these orbits
occur, and the scaled energy, at which the orbits closely
approach the core. Changing the scaled energy at which
an individual orbit approaches the core causes a deforma-
tion of this orbit leading to an increased distance between
orbit and core. As well as for other orbits experimentally
a relation between the resonance strengths and the core
distance of the associated orbits was found. The smaller
the spacing between the associated orbit and the core the
stronger the resonances. Figure 7 shows that only the
trajectories C, and C2 approach the core within the ex-
perimentally examined parameter range. Therefore this
explains why only the orbits C, and C2 were found to

td

~ A)L~
8,
o C

k ~~ A

A

~ W

L

B,
Aa ..

A
C

C
co B

J()ri

EN

A. ~ B,

B
~ %HI

A

~ ~

C

05

8
IAC

~ RtQ

Bb

A'

B

Bc
0 Scaled Action 15.26

0 Action at -50.8cm 1232

(units of h)

AC

C

Bc
I

Abner AA.

0 Scaled Action 12.26
I

0 Action at -50.8cm 990

(units of h)

J~Jt
Bb

FIG. 5. Fourier spectra of the scaled spectra shown in Fig. 4.
In the diagrams the square of the Fourier amplitude is plotted
the scaled action and the action of the modulating trajectories
at an energy of —50.8 cm '. Individual resonances or groups
of resonances are labeled by letters which are referred to in the
text.

FIG. 6. Fourier spectra with the same parameters as in Fig. 5
(without %=6), but polarization perpendicular to E and B.
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Cp

~ = —1.48

~ = 0.87

C2

~ = —1.61

o = 2.14

Cg

C3

+=24

C4

cr = 3.34

e = 0.68

FIG. 7. Modulating periodic trajectories which approach the
core once per revolution (not complete). The scaled parameters
and the values of scaled action o. of the trajectories in units of h

are indicated. Only the trajectories C& and C2 are in the experi-
mentally covered range.

generate modulations in the observed spectra. The tra-
jectories shown in Fig. 7 besides C& and Cz would gen-
erate modulations at the corresponding scaled energies
indicated there.

There exists an interesting group of trajectories which

can be derived from orbit Co shown in Fig. 7. They are
closely related to the so-called quasi-Penning orbits (QP
orbits) described by Clark, Korevaar, and Littman [41].
These unstable closed loops around the classical ioniza-
tion saddle point exhibit an amazing feature; they extend
far into the region beyond the classical ionization saddle
point. They were supposed to modulate the photoabsorp-
tion cross section in crossed magnetic and electric fields
[41]. However, according to Sec. II B, trajectories modu-
lating the excitation spectrum have to start at the core re-
gion and return to it. Therefore, the genuine QP orbit
may modulate the level density, but not the excitation
spectra starting from low-lying initial states (this is the
experimental situation encountered in high-resolution
laser spectroscopy). Nevertheless, it is possible to ap-
proach the QP orbits by recurring trajectories. Slight
changes of the initial parameters of trajectory Cc (Fig. 7)
lead to trajectories performing an arbitrary number of
loops around the ionization saddle point (Fig. 8). Howev-
er, the energy above which these orbits exist is a couple
of wave numbers above the ionization limit; therefore the
spectra presented in this paper exhibit no signature of
them. They have another disadvantage: their stability
decreases strongly as the number of loops increases. A
calculation of modulation amplitudes according to Refs.
[39] and [40] yields that only the first few trajectories
shown in Fig. 8 should be stable enough to result in
detectable modulations. Scaled spectra above the ioniza-
tion limit that might be modulated by these orbits are
planned to be the subject of future work.

Nearly all the other resonances which occur in the
right part of the Fourier spectra of Figs. 5 and 6 are gen-
erated by trajectories approaching the core twice per re-
volution (Fig. 9). For the same reason that applies to the
C-type trajectories there exist more trajectories of this

NI, =0

u =0.493

o =1.64 ISP

Ng =1

~ =0.477

o =2.24

NL =2

cu =0.453

o = 2.86

Ng =3

4) =0.429

NL =4 Ng =10

~ =0.413

o =3.52 o = 4.15 o = 7.67

FIG. 8. Trajectories which approach the Quasi-Penning orbit calculated with a scaled electric field of a=0.235. They are labeled

by the number of loops 1VL around the classical ISP, the scaled energy, and the scaled action. The first few trajectories shown may re-
sult in a modulation of the absorption spectrum above the ionization limit.
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cr = 2.67
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u = —1.36
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S = 227h
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~ = —1.60

cr = 5.04
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~ = —1.60
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S = 276}1

Bgp 8 Bc
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FIG. 9. Modulating periodic trajectories approaching the core twice per revolution (uncomplete). The scaled parameters and the
values of scaled action 0. of the trajectories are indicated. Additionally the values of the action at an energy of —50.8 cm are
shown. The trajectories are labeled by a descriptor showing the total number of loops of the trajectories {first number in subscript)
and the number of loops which lie in the right part of the trajectories between the two points of closest approach to the core {second
number in subscript). For trajectories which inAuence the spectra in the experimentally covered parameter range also the corre-
sponding resonance type (B,—8, ) is shown.

type than observed in the experiment. Furthermore, for
most trajectories approaching the core twice there are a
couple of orbits having the same action calculated for a
fixed energy. A few of them are shown in Fig. 9. The or-
bits which are believed to generate a modulation are ad-
ditionally labeled by the group of resonances they can be
associated to.

In most Fourier spectra of Fig. 5 one resonance of type
B, strongly dominates. It corresponds to the orbit B&o
(2m trajectory) in Fig. 9, where the electron starts more
or less in direction of the electric field, traverses many
lobes the orientation of which perform a full 2~ circle,
and finally returns to the core running counter to the
electric-field direction. For other parameters than those
of Fig. 5 the orbit starting in the electric-field direction
may consist of more or less than 10 lobes, but further ex-
perimental results show that over a wide parameter range
it has an outstanding resonance strength. Thus the fine
modulations which are mentioned at the end of Sec. V are
generated by the B-type orbit starting in the electric-field
direction.

As already mentioned the strengths of resonances be-
longing to the groups B,—B, depend on the laser polar-
ization. Figure 10 illustrates that infIuence for three indi-
vidual resonances which are typical examples of the
groups B,—B,. The upper orbit in Fig. 10 is favored
when the polarization is perpendicular to the electric
field, and the other two when it is parallel. Generally the

Fourier Spectra:

Bb

Polarization f X

Corresponding Orbits:

B7,3

u = —1.57

o = 3.93

S = 322h

LJQILillLLhJM .
Ba

B5,1

~ = —1.66

cr = 2.67

S = 227}1

Polarization
~~

X

AIAARA A m AA A

Bc

B1P 7

~ = —1.56

o = 5.58

S = 458}1

Q d c =0.68

FIG. 10. Polarization dependence of the resonance strength.
The resonance strength is the stronger the smaller the angle be-
tween laser polarization and the part of the trajectories along
which the electron approaches the core is.
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angle a between laser polarization and the part of the or-
bit along which the electron approaches the core is small-
er the stronger the associated resonance is. The interpre-
tation of this feature is straightforward: the light polar-
ization determines the direction in which the excited
wave function is enhanced. The coefficients C,l in Eq. (6)
also include terms which depend on the laser polarization
and ground-state quantum numbers. In our case the
ground state is the Ss state which leads to an angular
dependence of the squares of the Fourier amplitudes pro-
portional to cos (a), where a is the angle defined above.
This coincides with our observations.

The Fourier spectra show that there are parameter re-
gions where only one or two resonances dominate. In
such a region the QL structure of the ordinary spectrum
is quite simple and regular. Therefore, the variation of
the QL structure can easily be seen when the external
electric field is changed. Figure 11 shows a typical exam-
ple: on the right of the displayed ordinary spectrum the
C& resonance shows up whereas on the left the reso-
nances caused by the BIII orbit (see Fig. 9) can be seen. It
is possible to calculate the spectroscopic dipole moments
resulting from the Stark structure of the QL modulations.
The dipole moments obtained by the spectrum agree with
that of the trajectories assigned to the resonances. This is

N=O N=5

another proof that the calculated trajectories explain the
observed QL resonances.

In the preceding sections we discussed spectra with
quite high scaled electric field. In the following we will
discuss the case of strongly dominating magnetic field,
i.e., low scaled electric field. In these cases the Fourier
transforms of the scaled spectra consist of an equidistant
set of resonances, as shown in Fig. 12. The Fourier spec-
tra shown there are arranged in the same manner as those
in Figs. 5 and 6. The observed resonances correspond to
values of the action which are integral multiples of that
of the quasi-Landau-orbit observed by Czarton and Tom-
kins, since the inAuence of the magnetic field dominates
and the electric field can be considered as a small pertur-
bation. This can be seen in Fig. 13 where some high mag-
netic field orbits are plotted which are extending in the
plane perpendicular to the magnetic field. The shape of
their loops only slightly deviates from the quasi-Landau-
orbit originally observed by Garton and Tomkins.
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FIG. 11. Comparison between spectroscopic dipole moments
of the modulations and dipole moments of the corresponding
trajectories. The magnetic field was 8=0.7 T. Specific values
for trajectories 1 and 2, respectively, are as follows: Spectro-
scopic dipole moment, 1700+200 A and —450+70 A; trajectory
dipole moment, 1500+100 A and —400+50 A; 1/df,
(1.0+0. 1)T, and (1.4+0. 1)T,; revolution time, (1.05+0.07)T,
and (1.22+0.07)T, .

FIG. 12. Fourier spectra of scaled spectra with initial param-
eters E=8718 V/m, 8=2.36 T, 8'= —50.8 cm ' —XX0.83
cm ', where N designates the numbering of the spectra starting
on the left side from above. The laser polarization is parallel to
the electric field. Far away from the core, the order of magni-
tudes of the different terms in the Hamiltonian are (in a.u.):
Coulomb term, 2 X 10; electric field, 8 X 10; diamagnetic
term, 2X 10
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o = 3.49

cr = 7.83

The line strength of the resonances associated with the
orbits are rapidly varying functions of the parameters of
the scaled spectra. It is not possible to collect resonances
to significant groups like in the case of strong electric
field. This behavior results from the fact that in the case
of strong magnetic field the electron approaches the core
nearly after each lobe. Therefore at several locations
along the trajectories quantum-mechanical scattering
effects show up which cannot be accounted for by semi-
classical methods and which strongly depend on energy
and field strengths via the impact parameters. Thus the
rapid fluctuations of the resonance strength reAect the
sensitivity of the scattering cross sections to the parame-
ters of the scan.

VII. CONCLUSION

o = 0.87 NL

~ = 13.03

In this paper we discussed results on the QL reso-
nances in the spectra of rubidium Rydberg atoms in
crossed magnetic and electric fields. The observed reso-
nances are explained completely by semiclassical trajec-
tories. Only those orbits generate resonances that show
an overlap with the ground-state wave function and that
yield the proper excitation geometry in connection with
the laser polarization. The inhuence of the presented or-
bits onto the spectra is confirmed by the agreement be-
tween dipole moments derived from the trajectories and
those following from the Stark structure of the reso-
nances. This is proof also that a good agreement between
the semiclassical description and the observed spectra
could be obtained.

FIG. 13. Periodic trajectories for dominating magnetic field

(only a few examples). The scaled electric field c is 0.078, and
the scaled energy co is 0.490. The scaled actions of the trajec-
tories are indicated. XL designates the number of loops the tra-
jectories consist of.
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