
PHYSICAL REVIEW A VOLUME 44, NUMBER 3 1 AUGUST 1991

Parameter-dependent multichannel Rydberg spectra

Qiaoling Wang
Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colorado 80309

and Department ofPhysics and Astronomy, Louisiana State Uniuersity, Baton Rouge, Louisiana 70803

Chris H. Greene
Department ofPhysics and Joint Institute for Laboratory Astrophysics, Uniuersity of Colorado,

Boulder, Colorado 80309
(Received 13 March 1991)

A variety of complex spectral features occurs in multichannel Rydberg systems when the ionization

thresholds vary in a simple manner with a tunable parameter such as the magnetic-field strength. We de-

velop an analytical description of these features, identifying the key dynamical quantities controlling the

appearance of "complex resonances" and their evolution with the parameter. The analysis predicts a

ubiquitous occurrence of states with vanishing autoionization width, and of multiple q reversals associat-

ed with perturbing configurations. This description can be used to interpret some features of the di-

amagnetic spectrum of lithium near the zero-field ionization threshold.

I. INTRODUCTION
A recent experiment on the strikingly complex near-

threshold photoabsorption spectrum of lithium in a
strong magnetic field [1] provides a new handle which
helps greatly to unravel its complexity. The unexpected-
ly regular pattern of the spectrum traced simultaneously
versus energy and versus the magnetic-field strength indi-
cates that its complexity results from strong interactions
among Rydberg states converging to different Landau
thresholds. Specifically, the strong interaction between
these levels in many Landau channels shows constructive
and destructive interference between multiple autoioniza-
tion pathways. This phenomenon is very common in
atomic and molecular systems [2—8], where it has been
called a "complex resonance, " or "overlapping reso-
nance. " The Landau energy levels of a free electron in
the magnetic field have the form E„' '= (co, /2)(2n
+m+ ~m ~+ 1) a.u. , where co, is the cyclotron frequency
(co, =B/Bo with 80=2.35X10 T) and where m is the
magnetic quantum number. As shown in Refs. [9] and
[10], these Landau levels act as ionization threshold ener-
gies, with an infinity of Rydberg levels converging to each
one.

For the specific problem of Rydberg state diamagne-
tism at 8=6 T, a very recent calculation of Delande
et al. [11,12] has achieved for the first time impressive
agreement with experimental observations [1] above the
ionization threshold to spectroscopic accuracy. This
large-scale diagonalization, like those performed previ-
ously to describe the photoabsorption spectrum below
threshold [13], gives added confidence in the measured
spectrum, but it has not yet succeeded in giving a qualita-
tive interpretation of the diverse, complicated spectral
features. Most of the interpretive progress has come in-
stead from the calculations [14—17] that determined the
most important periodic orbits from the viewpoint of
classical mechanics augmented by the Gutzwiller formula

[17]. These treatments explain the major peaks occurring
in the Fourier transform of the photoabsorption spec-
trum plotted versus the energy, particularly those
features limited to short periods T~10T„where T, is
the cyclotron period. The very-high-resolution spectrum
of Li obtained by Refs. [1] and [18] shows numerous nar-
row resonances and other regularities occurring at far
greater time scales not amenable to this classical
viewpoint.

The present paper shows how a spectrum of the type
observed by Ref. [1] can be described as a conventional,
multichannel, perturbed Rydberg spectrum. We show
how a number of complex and interesting features can
arise, quite generally, when the ionization thresholds vary
with a parameter such as the magnetic-field strength.
These features include changes in the intensity, width,
and shape of each individual resonance within a complex
resonance, when traced along the magnetic field. Mul-
tichannel Rydberg spectra with parameter-dependent
thresholds have hardly been treated to date, but they en-
compass phenomena beyond the field dependences con-
sidered in this paper, such as the variation of the elec-
tronic terms of a diatomic molecule as a function of the
internuclear distance [19].

Before Sec. III discusses atomic photoabsorption in a
strong magnetic field, Sec. II first presents a detailed mul-
tichannel quantum-defect theory (MQDT) description of
three interacting channels, one of which is open while the
other two are closed. Many readers may not be interest-
ed in the details of Sec. II, and can proceed to Sec. III.
But we have found it necessary to modify the definition of
shape and width parameters of individual resonances,
which had been previously identified by Giusti-Suzor and
co-workers [20,21]. As in Refs. [20] and [21], the analysis
in Sec. II starts from a smooth, short-range reaction ma-
trix K, of the type familiar in MQDT formulations,
which is assumed to be independent of energy and mag-
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netic field. The K matrix is normally obtained from an ab
initio calculation [22—24], but since this is not the main
goal of this paper, we suppose that it has been obtained
elsewhere. A Beutler-Fano profile o =ao(e+q) /(1+8 )

is used to parametrize each individual resonance within
a complex perturber. The line-shape parameter q, and
the width parameter I included in the definition
of e:—(E Ez—)/ —,'I, can be expressed analytically in

terms of quantities that remain relatively smooth across a
complex resonance.

In Sec. III, we consider the evolution of a complex res-
onance whose ionization thresholds are proportional to
the magnetic-field strength. Many interesting features in
the calculated model three-channel spectrum, namely in-
tensity, width, and line-shape variations with energy and
field, can be characterized in terms of the parameters in-
troduced in Sec. II. Some of these features can be found
in the experimental spectrum [1] as well. Clearly, the re-
striction to three channels, and the assumption of a reac-
tion matrix K independent of E and B, are both
oversimplifications. In fact, atomic hydrogen (or lithium)
at B =6 T probably involves more like 20—30 channels.
Yet this three-channel model provides the simplest proto-
type system which gives the main features of complex au-
toionizing resonances, and which illustrates the effect of
parameter-dependent thresholds. Moreover, since we
consider only a very narrow range of B and E, it is
reasonable to approximate the K matrix by a constant
matrix. Section III also includes a model calculation
with twenty interacting channels for field strengths near
B=6 T, which shows that such a model does indeed gen-
erate spectra bearing a qualitative resemblance to those
seen experimentally in Ref. [1].

II. PROPERTIES OF PERTURBED RYDBERG SERIES:
A THREE-CHANNEL MODEL ANALYSIS

In this section, we develop a set of parameters to de-
scribe a perturbed autoionizing Rydberg series of a
three-channel system. For alternative discussions of
many-channel system from a different (level-by-level)
point of view, see Fano [25], Fano and Cooper [26], Mies
[27], and Connerade [28]. These parameters include a
line-shape parameter q for each individual resonance, and
a smooth reduced-width function I,". The q parameter
is found to be very energy dependent, as, in particular, it
can change sign (the so-called q reversals) in two ways.
One is the smooth change at a zero of q; the other is the
rapid change at a pole of q. The two different types of q
reversals cause different features in the spectrum. The
smooth reduced-width function itself displays an asym-
metric shape reminiscent of a Beutler-Fano profile. This
asymmetry manifests the interference effects of different
autoionizing pathways when the Rydberg series is per-
turbed by an interloper. The energies of "zero-width"
resonances can be predicted by this function.

Figure 1 shows the zeroth-order picture of Rydberg
series converging to three nonde generate ionization
thresholds E, &E2 (E3. We are primarily interested in
the energy range where the total energy E is slightly
below the second ionizatio~ threshold E2. The key
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FIG. 1. Zeroth-order picture of a Rydberg series converging
to three ionization thresholds E, (E2 (E3.

where the energies are in a.u. On the other hand, the
characteristic scale for spectral variations associated with
channel 3 is much larger, namely Ac.3-v3 . It is this in-

terplay between two greatly differing energy scales (and
correspondingly different time scales, ht —v,-, and
different distance scales, b, r —v; ) that is responsible for
the striking appearance and much of the qualitative phys-
ics associated with such spectra [2—8].

In this energy range near the second ionization thresh-
old Ez, the states associated with the third channel play a
role as "perturbers, " or "interlopers, " into the Rydberg
series of the second channel, which we denote the "host"
Rydberg series using the terminology of Giusti-Suzor and
Lefebvre-Brion [21]. In our analysis, we isolate the
effects of states in the third channel as causing a charac-
teristic energy dependence of the "individual" level inten-
sities, line shapes, and reduced autoionization widths of
the host Rydberg series. This viewpoint is appropriate
here, since in the absence of the perturbers, these would
all be constants (provided the K matrix is constant) [20].
To state it more clearly, we initially "eliminate" the third
channel in the usual sense of the MQDT, which means
specifically that a linear combination of the E-matrix
states is found such that the closed-channel components
of the wave function in the third channel decay exponen-
tially at r ~ ~. After the third channel is eliminated, its
effects are fully incorporated as energy dependences in
the remaining two-channel reaction matrix. The re-
mainder of the analysis can then proceed along the lines
of previous two-channel analyses [20]. This two-step pro-
cedure differs from previous studies of three-channel sys-
tems by Cxiusti-Suzor and Lefebvre-Brion [21], by Cooke
and Cromer [29], and by Wintgen and Friedrich [30], all
of whom treat the two closed channels on an equal foot-

features in this energy range are governed by the fact that
the spectral variations associated with Rydberg struc-
tures in channel 2 occur on a very small characteristic en-

ergy scale Ac2- v2 . Here the effective quantum number
in channel i is defined by

v, =[—2(E E;)]—



QIAOLINCx %'ANCE AND CHRIS H. GREENE

ing. Since the order of applying asymptotic boundary
conditions in the closed channels is irrelevant, eliminat-
ing these closed channels one by one is equivalent to elim-
inating all of them simultaneously. However, eliminating
the two channels separately helps to keep track of the
two qualitatively difFerent energy scales in the problem,
as will be seen below. After eliminating the third chan-
nel, the energy-dependent 2X2 reaction matrix and di-
pole matrix, denoted as K and d, are given according to
Seaton's formula [31]:

r

K13K31
K 11 K 12

3

K13K32

T3

K23K31
K21 K22 T3 3

K13d3
1

T3

K23d3d—
2 T3

(2a)

(2b)

tan( —b, )+K„

where T,- =—tan~v, -+K,, Since the zeroth-order positions
of perturbers are determined by roots of T3 =0, it is clear
that K and d are strongly energy dependent in the vicini-
ty of perturbers. In other words, K and d carry all the in-
formation about the perturbers implicitly through their
energy dependence.

It is now straightforward to obtain the continuum
phase shift and the photoionization cross section analyti-
cally for this two-channel system by using standard
MQDT methods [31]. That is, the "physical" phase shift
6 in the lone open channel can be obtained by solving a
determinantal equation,

We stress, however, that our primary purpose in this
paper is to study and develop a parametrization for de-
tailed properties of a complex resonance, rather than to
simply calculate the phase shift and cross section, which
are already familiar procedures in conventional MQDT
calculations. In particular we want to study how the in-
tensity, line shape, and autoionization width of each indi-
vidual resonance changes with energy when a perturber is
embedded within the host Rydberg series. To accomplish
this, we adopt the same formulation as Giusti-Suzor and
Fano [20], who utilize an alternative set of parameters to
treat a two-channel problem having an energy-inde-
pendent K-matrix. These include two phase parameters
[p&,pz] and a pure channel-coupling matrix

to parametrize the K matrix. Notice that all of these pa-
rameters become energy dependent in the present prob-
lem owing to the elimination of the third channel dis-
cussed in Eq. (2). The MQDT elimination of channel 2
can now be achieved as in Eq. (3a) by solving the deter-
minantal equation

det
tan( —b, + harp, , )

tanm(vz+ pz)
=0 (4)

tannp, &+ g tanpz
K 11

1 —g tanmp, tanpz
(Sa)

giving the same phase shift b, as Eq. (3a). Thus the rela-
tion between these parameters and the K elements can be
easily derived after several steps of algebraic manipula-
tion:

det
K21

=0,
tanmv2+ K22 tanmp, z+g tanp&K22 2

1 —g tanvrp, tang, z

(5b)

and the cross section is given by

K12d 2
0 =Ipcos 6

tan~v2+ K22
(3b)

K12 =
cos~p&cosmpz 1 —g tanvrp. &tanpz

(5c)

where Ip is proportional to the photon energy.
Inversion of Eqs. (5a) —(5c) yields the expression of each
parameter:

~p& =
—,
' arctan

2(Kii+KzzDx. )

1 Dz —«» —Kzz—)
L

n1~+
2

(6a)

~p2= —,
' arctan

n 2'+
2

2(Kzz +K i, DK )

I D~ —(Kzz —Kii )— (6b)

[(K„+Kzz) +(1 Dx ) ]' —[(K„—Kzz) +(1—+Dx ) ]

[(K„+Kzz) +(1 Dx) ]' +[(K„—K—zz) +(I+Dx) ]'
(6c)
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Dq
o =Io cos( b, +rrp, )D, —sin( —b. +rrp, )—(7a)

where D& and Dz are related to d& and dz by

D i
=d i cosmp i

—
/de sinvrp&,

D~= —gd, sin~p&+dzcos~pz .
(7b)

Equation (7a) can be rewritten in a form suggestive of a
Fano profile:

o. =I0D )

cot( —b, +~pi ) ——
g D,

1+cot (
—b, +~p, )

(8)

The position of a resonance can be defined as the energy
at which the phase shift varies most rapidly, or where the
time delay is at a maximum. Since the parameter E in a
Beutler-Fano profile vanishes at the center of a resonance
and can be written as (E E~ )/ —,'1 it in its —vicinity, we
compare in Fig. 2 the two functions [cot( —b, +~p&)]
and dh/dv~. (Since db, /dv~ relates to db /dE in a sim-
ple way, i.e., dA/dE=v& dA/dv&, dA/dv& reache»ts
maximum at the same energy as dA/dE. ) From the
graph it can be seen that the positions of the peaks of
dh/dvz correspond closely to the positions of poles of
[cot( —b, +mpi ) ] '. This agreement implies that we

with n, z =0, 1,2, . . . and Dx —=det~E;J. ~. Some remarks
are necessary to fully specify the energy-dependent pa-
rameters harp; and g, as there are an infinite number of
possible branches for the ~p, . Since adding an integer
multiple of m. to mp; does not change the final cross sec-
tion, only n

& z
=0 and 1 give physically different

branches. Therefore, there are four possible branch com-
binations of mp;. But not all of them give the correct
spectrum. The signs of the numerator and denominator
in the brace of Eq. (6a) can be used to determine the qua-
drants for 2~p, . Taking the sign of the numerator to
coincide with the sign of sin2~p& and the sign of the
denominator to coincide with the sign of cos2mp& unique-
ly determines the quadrant of 2~p&. The same procedure
applies to determine the quadrant of 2mpz. As for the
sign of g, it is uniquely determined as well through Eq.
(5c) after deterinining p,;. Notice that g in Eq. (6c) is al-
ways less than 1. When we calculate g from Eqs.
(5a) —(5c), we obtain another solution whose value is equal
to the inverse of Eq. (6c), i.e., g ) 1. But it does not give
any different physical solution to the problem. To see it
more clearly, we know from Eqs. (5a) —(5c) that these
equations are invariant under replacement of g by 1/g
provided one simultaneously replaces p, ; by p; + —,'.
Therefore, the g ) 1 case can be converted to the g ( 1

case, using care to change branches for the mp;. The
physical origin of this conversion has been already dis-
cussed in detail in Refs. [20] and [32], which point out
that these replacements amount to interchanging the two
eigenchannels of the K matrix.

After obtaining p; and g, the photoionization cross sec-
tion depends on the new set of parameters in the form

2

(e)-

~+ o -ili(LLisL)h~)))(f+~q~~l&iil«s«i»—

-5

0 ui HAJJ aa~duLJLLLI
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FIT&. 2. (a) The function [cot( —6+@,)] ' plotted vs the
effective quantum number of the second channel, i.e.,
vz=[ —2(E Ez)] '—

, showing many poles. (b) The derivative
of the phase shift 6 with respect to v&, which has peaks lying
close to the positions of the poles in (a).

should identify E:—cot( 6+vrj, i )—. The quantity—(1/g)(Dz/Di ) is similarly identified as the shape pa-
rameter, i.e., q = —(1/g)(Dz /D, ). To justify these
definitions, recall that the original idea of a Fano profile
[25,26] requires the parameters pro, q, and I to be con-
stant, or at least nearly independent of energy over the
width of the resonance.

We have calculated the photoionization spectrum and
the q parameter for individual resonances, as defined
above for a broad interloper, by using a symmetric K ma-
trix with elements K~& = 1.19 K&p=1. 14 K&3 0 31,
K» =1.16, K» =0.23, »d %33 = —0. 14, »d dipole ma-
trix elements d, =0.95, dz= —0.80, and d3=0.40. The
channel structure for the model calculation consists of
three equally spaced ionization thresholds, i.e., Landau
thresholds (n =0, 1,2) with I =1 and co, =0.0129.
These expressions for q and c are appropriate only for a
broad perturber, meaning specifically that the perturber
is much broader in energy than the unperturbed energy-
level separations of the host Rydberg series. The results
for the cross section and q parameter are shown in Figs.
3(b) and 3(c). Dynamical information about the per-
turber position, width, and shape is also shown in Fig.
3(a) for clarity. From these graphs, a major qualitative
conclusion is that while the q parameter is rather energy
dependent across the width of the perturber, it is rather
smooth across the width of most individual resonances.
Some significant variations of q occur close to the center
of the perturber near vz =25, where q oscillates from be-
ing a large negative number to being a large positive
number (i.e., arctanq oscillates about the value —

—,'n).
However, the shapes of the actual resonances are hardly
affected by this seemingly large oscillation in the values
of q.

It should be stressed that it is not sufhcient to arrange
the cross section as in Eq. (8) so that it mimics the form
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of the Beutler-Fano line shape. For instance, if the re-
sulting q (or other) parameter is not roughly constant
across an autoionizing resonance, the resulting line-shape
parameters have little meaning. A definitive test of the
above expressions derived for q, I, and Ez is to compare
the exact photoionization cross section calculated using
Eq. (8) to the resonant cross section using the Beutler-
Fano line shape with constant parameters. Note that I z
has been approximated as the reciprocal of the time de-
lay, I'tt =2(db, ldE) ~E=E . For narrow resonances

R

(within a comparatively broad perturber), the Beutler-
Fano line profile agrees quite well with the exact cross
section, as can be seen from Fig. 4(a), where the solid line
is the exact calculation and the dotted line is the Beutler-

Oo2
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Fano profile calculated with constant parameters. For
broad resonances, however, the agreement is somewhat
poorer, as can be seen in Fig. 4(b). The discrepancy is
largest at the wings of the resonance, which may stem
from the close proximity of other resonances nearby, or
to the neglect of the energy dependence of the q parame-
ter. While it is clearly preferable to use the exact MQDT
expression (8) directly for obtaining the quantitative spec-
trum, the general agreement of the Beutler-Fano parame-
trization suggests that the definitions of q, I, and Ez de-
scribe the overall shape of each individual resonance ade-
quately.

A q parameter has also been identified for this three-
channel MQDT problem by other authors. Wintgen and
Friedrich [30] give an alternative identification by a
different procedure. First, they arrange the cross section
in the form of a Fano profile, after which a shape parame-
ter is identified in their Eq. (24), which is a rapidly oscil-
lating function of energy. To get physically correct q
values, they subsequently evaluate q near the resonance
energy, giving their Eq. (24 ). The q obtained in this way
is an approximation and valid for the case of narrow res-
onances, whereas our parametrization of q appears to be
smoother and valid for both narrow and broad reso-
nances. For the channel interaction parameters cited
above, each perturber causes one zero of q, and three
poles. We have also seen examples in our numerical "ex-
periments" in which each perturber has one zero and one
pole, which is the case predicted by Ref. [30]. These sign
changes of q in our parametrization are clearly associated
with changes in the asymmetry of individual resonances
in Fig. 3(b). It can be seen from Fig. 3(c) that q reversals
can occur either when q passes continuously through
zero, or when q has a pole as a function of the energy.
Almost always, the zeros of q cause a more noticeable

(a)

10 'l5 20 25 30 35 40 45
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0
3.1 70 3. 1 71 3. 'I 72
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3. 1 73 3. 1 74

FIT&. 3. (a) o.0~ is the cross section calculated by assuming
E. j 3 E 3 $ E23 E32 0. Under these assumptions, the states
in the third channel are bound states of zero width. Thus the
spectrum o.02 represents an unperturbed host Rydberg series.
Similarly o.

o3 shows the perturber locations expected in the ab-
sence of interactions. This spectrum was calculated by setting
E ]2 E 2 I E23 E32 0. (b) The cross section shown was cal-
culated using the full E matrix, giving a perturbed autoionizing
Rydberg series. The peaks with arrows are described by a
Beutler-Fano profile in Fig. 4. (c) The Fano line shape q is
shown as a plot of the quantity q =arctanq /m, where q is
defined below Eq. (8). Note that poles of q occur when q has the
value —2(mod 1). The q parameter has one zero and three
poles in this calculation within the width (or nearly within the
width) of each perturber.

2 ' 5
2.0—
1 5

U
1.0—

b
0.5—
0.0

3. 1 14 3. 1 1 6 3. 1 I 8
E ( IO a.u. )

3.1 20 3. 1 22

FIG. 4. Test of the Beutler-Fano profile parametrization
developed in Eq. (8) for the resonances marked by arrows in
Fig. 3(b). The solid curves represent exact MQDT calculations,
while the dotted curves are the Beutler-Fano line shapes with
constant parameters. (a) The resonance with E=0.031 72,
I =1.43X10,q=7. 71, and o.o=0. 15. (b) The resonance with
E =0.031 175, I = 1.03X 10 , q= —1.43, and o.0=0.71.
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change in the asymmetry of the actual resonances than
do poles of q. As a rough rule of thumb, the poles of q
tend to occur very close to the center of the perturber,
whereas the zeros of q are farther out on the edges of the
perturber.

A perturber also modifies the autoionization width of
the individual members of the host Rydberg series. In
the absence of perturbers, it is well known that the
widths of successive resonances decay in proportion to
v2 . For this reason, it is preferable to introduce a
smoother "reduced decay width" equal to vzI . Follow-
ing the definition of Fano and Rau [32], we define the re-
duced width as I'"'=2/(m. dhldP2) (with P2=~v2). The
explicit expression can be derived from Eq. (4),

f (r) 2
~2 ~2

Pi + 1+ps l+ Pd 2 d

dV2 1+g dV2
—1

dg
1+e dPz

(9a)

This is a rapidly oscillating function of the energy owing
to the rapid oscillations of c as defined above. A more
suitable expression, which is smooth and which attains a
physically correct value at the center of each individual
resonance, is obtained by using the fact that c=O at the
center of each resonance. The resulting reduced-width
function is far smoother, and can be calculated from

dp( dp2

vr dV2 dV2
(9b)

Figure 5 contrasts the rapid oscillations of I",which ex-
hibit a dip at every resonance energy, with the smooth
curve representing I,'"'. This smooth reduced-width
curve passes through (or extremely close to) all the mini-

ma, displaying an asymmetric shape reminiscent of a
Beutler-Fano line shape for the smooth width function it-
self.

The spectrum in Fig. 3(b) shows that the intensity of
the perturber is redistributed among the host Rydberg
states causing a great intensity enhancement for the high
Rydberg states, where the perturber itself is no longer
distinguishable from the host Rydberg series. Further-
more, the intensity enhancement and the inAuence on the
widths and q parameters of the Rydberg series extend far
beyond width of the perturber.

The asymmetric shape of I,"gives us a hint that in
one energy range the perturber decay to the continuum
can interfere constructively with that of the host Rydberg
series, thereby resulting in broader individual resonances.
Elsewhere, however, the interference can be destructive,
resulting in individual resonances that are narrower than
the unperturbed host Rydberg series members. This
feature is clearly visible in Fig. 3(b), where individual res-
onances are broadened on the lower-energy side of the
complex resonance, but narrowed on the higher-energy
side of this perturber. The destructive interference can
cause another interesting phenomenon, namely zero-
width resonances. Since the efFect of destructive interfer-
ence is to slow the autoionizing decay of a resonant state,

0.25

0.20

0.15

0. 1 0

0.05

0.00
I

' ' ' '
I

' ' ' '
I

10 15 20 25 30 35 40 45

FIG. 5. The rapidly oscillating function is the reduced width
function calculated from Eq. (9a). The solid curve is the smooth
reduced width function, whose analytical form is given in Eq.
(9b).

III. THE EFFECT OF THRESHOLDS
VARYING WITH A MAGNETIC FIELD

Now we consider the evolution of the properties of a
complex resonance as functions of a changing magnetic

it can essentially become a true bound state in the contin-
uum if the resonance width happens to vanish. This
phenomenon has been discussed by Friedrich and
Wintgen for atomic hydrogen in a magnetic field [2].
Figure 5 also shows that the function I," has a zero.
When the field strength is varied, the energy of a resonant
state can be made to coincide with this point, where it be-
comes such a "bound state in the continuum. " This
zero-width resonance usually lies very close to the center
of the perturber, and simultaneously the q value ap-
proaches infinity, as expected since the oscillator strength
distribution for a transition to a bound level has the form
df IdE =f„"o(E E„). —

The preceding derivation of the cross section in the
form (8), by first eliminating channel 3 followed by the el-
imination of channel 2, is exact. However, the
identification of the Beutler-Fano line-shape parameters
I, q, and o.

o based on this form of the cross section be-
comes inappropriate whenever the perturber width be-
comes small enough so that it is comparable to, or less
than, the separation between levels of the host Rydberg
series. In this limit of a narrow perturber, the perturbing
resonance can be distinguished from the Rydberg levels
in the second channel, and its I,q values can be calculat-
ed separately. The approach developed in Eq. (2) and in
Eqs. (7) and (8) remains valid for a narrow perturber pro-
vided channel 2 is eliminated first instead of channel 3.
Thus if labels 2 and 3 are everywhere interchanged, Eq.
(8) still gives a Beutler-Fano parametrization in this limit.
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!m! +m+1n+
2

dPz 1

dco~ (n —p )
(10)

This expression shows that the slope of suKciently high
Rydberg levels coincides with the slope of the corre-
sponding ionization threshold, since the last term in Eq.

field. The Landau threshold energies are proportional to
the magnetic field, with slopes dE,. /d m,
=[n+(!m +m+1)/2]. Here the MQDT channel in-
dex i = 1,2, . . . corresponds to the Landau quanta
n =0, 1, . . . . The Rydberg structures associated with
di6'erent channels are differentiated by observing their
field dependence. For a high Rydberg resonance state
that is unperturbed, the energy can be expressed in a sim-
ple form E; „=E;—I/(2n, *

), where n,*=n, —p, is the'~ "z
e6'ective quantum number in channel i. The quantum de-
fect p, is a generally smooth function of both magnetic
field and energy. If the state is high enough, p, can be re-
garded as energy independent. In this limit the resonance
energy has a slope with changing magnetic field given by

(10) becomes arbitrarily small as n, ~ ~. Consequently
states in higher channels have larger slopes than states in
lower channels, as shown in the experimental study of Li
diamagnetism by Iu et al. [I] in Fig. 6. For relatively low
states in each channel, since they interact strongly with
states in other channels and in some cases appear as
broad perturbers, the slopes are difficult to evaluate. Fig-
ure 7 shows our calculated spectrum as a function of both
the magnetic field and the energy. This model calcula-
tion is performed by assuming a three-channel K matrix
to be independent of both B and E, so that the only field
dependence is contained in the ionization threshold ener-
gies. The three channels included are the Landau chan-
nels with n =0, 1, and 4.

Several interesting features can be seen that resemble
experimental features from Ref. [I]. First of all, reso-
nances with diferent slopes versus B are evident in the
spectrum, as well as avoided crossings at the intersections
between two Rydberg states. This feature is very obvious
in the experiment, where widely spaced intense lines hav-
ing large slopes are seen to cross families of weaker, nar-
rowly spaced levels with small slopes. The reason the
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states with larger slopes have a greater energy spacing
than lower-slope states stems from the fact that, in a
given energy range, the states having larger slopes are
lower-n, Rydberg states in higher channels, whose spac-
ing is roughly (n,*) . Some bending of these levels away
from straight lines is a manifestation of the interaction
between different Rydberg channels.

The variation of the q parameter with E and B is
another important factor that influences the appearance
of the spectrum in Fig. 7. As discussed in the preceding
section, poles of q tend to occur very close to the center
of the perturber. A q reversal associated with a pole of q
can be seen in the experimental spectrum [1] shown in
circle (a) in Fig. 6, where the resonance intensities are
rather high because of being close to the center of the
perturber. At lower energy and field, the resonance has a
negative q value. As the field increases, the q value
changes quickly to positive values. When a q reversal
happens around q =0, an interesting intensity variation
becomes noticeable. In Fig. 7 we plot two dashed lines
where q =0 is expected. These lines can be obtained nu-
merically from the definition of q

= —(1/g)(D2 /D
~ ),

that is, D2 =0 (since g, D, , and D2 are finite in our calcu-
lation). They form nearly straight lines with slopes larger
than that of second threshold. As is well known, and can
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FIG. 7. Evolution of a complex resonance with the magnetic
field. The MQDT spectrum is calculated by using a constant
three-channel K matrix with elements K» = —1.3, K»=1.1,
K i 3 0.94, K~2 = 1 ~ 1, K23 =0.38, and K33 —0.26, and with di-

pole matrix elements d& =1.20, d2= —0.85, and d2 =0.50. The
channel structure consists of three Landau channels
E; =(co, /2)(2n+ ~m ~+m+1), with i= 1,2, 3 corresponding to
n =0, 1,4, respectively, and with m =1. The spectrum has been
convoluted with a Gaussian of full width at half maximum
2.5 X 10 (a.u.). The solid line in the plot is the zero-width line
as discussed in the text, and the dashed lines are q =0 lines.

1E=E3—
2(n, —5)

(1 la)

be seen from the Fano line-shape formula, the cross sec-
tion reaches its minimum at the resonance energy, if
q=0. If we pick one single resonance in the upper half
plane of (E,B ) in Fig. 7, and follow its evolution as B de-
creases, the resonance intensity is seen to decrease as it
approaches the q=0 curve, minimizing near this line.
After passing the line, the resonance intensity increases
again while the line-shape asymmetry q changes sign.
Therefore, the intensities of rt„sonances are generally very
small close to the q =0 curves. In the experimental spec-
trum in area (b), we see some examples where resonance
intensities diminish out on the edge of the complex reso-
nance, with small q values. However, no example of such
a q reversal around q =0 could be found in this experi-
ment, since the strong peaks all have large q values. Be-
cause a q reversal associated with q =0 usually happens
on the edge of a complex resonance and it is rather gra-
dual as well, the reversal process takes a wide range of E
or B to complete. Therefore, it extends considerably
beyond the width of the perturber. At a field strength
around 6 T, a larger number of interacting channels (ap-
proximately 30) are involved. The experimental spec-
trum is accordingly far more complicated than that of
this simple model. Despite our difficulty in observing
q =0 states in Ref. [1], our analysis using this simple
model predicts that the frequent "disappearance" of reso-
nances, evident in the observed spectra [1], could be
caused by the (q =0)-type q reversals.

The asymmetric constructive and destructive interfer-
ences also cause another characteristic feature in Fig. 7.
That is, just above and to the left of the perturber marked
on Fig. 7, the resonance widths are comparatively nar-
row, while at an equal distance below and to the right of
the perturber, the individual resonance widths are
broader. The experimental spectrum [1] displays similar
asymmetries, which are barely visible in Fig. 6(c). That
is, the fourth resonance below and to the right of the
marked resonance in Fig. 6(c) is visibly broader than the
fourth resonance above to the left of the marked one.
Such an asymmetric shape of the width function has al-
ready been seen in Fig. 5. There the dip in the higher-
energy regime indicates destructive interference, while
the peak in the lower-energy regime indicates construc-
tive interference.

As we have noticed from experiments [18], there al-
ways exist very narrow resonances, even well above the
first ionization threshold. This can be explained as the
effect of destructive interference between different au-
toionization pathways. Our model calculation shows that
for any fixed magnetic-field strength, there are zero-width
points at certain energies, although at most values of B
no resonance lies at those special energies. If there is no
interaction between the closed channel and the open
channel, as implied by zero width, the autoionization
states in the closed channel are essentially true bound
states. Based on this fact, we can give an analytical ex-
pression of zero-width points in the (E,B) plane by set-
ting K, z =0. The explicit expression is then
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where 6 is defined as

1 Ki3K32
arctan K3 3

7T K)2
(1 lb)

Equation (1 la) describes a straight line for E versus B,
whose slope coincides with the slope of the third thresh-
old energy. The solid line in Fig. 7 shows the zero-width
resonance positions, demonstrating how the resonances
close to this line are narrower than the resonances further
away from it. Note that in Fig. 7, the resonances lying
near this line are not fully resolved, which is an artifact of
the finite mesh used in the theoretical calculation. In fact
the integrated "strength" across such resonances remains
finite and smooth even as their widths go through zero.

In circle (c) of Fig. 6, an experimental example is
shown of a resonance width decreasing as E and B in-
crease. Up to a certain point in the lower half of Fig.
6(c), the resonance is seen to get increasingly narrow,
high, and symmetric. The marked resonance has max-
imum intensity and minimum width. Beyond this
marked resonance, the width again increases, while at the
same time its shape becomes somewhat more asymmetric
and the intensity diminishes again. This appears to be an
experimental example of a zero-width resonance. More-
over, the resonance intensity distribution near this possi-
ble zero-width point is very similar to that in the model
spectrum shown in Fig. 7.

The evolution of a complex resonance for this three-
channel system is very tractable and clear. It is charac-
terized by two dynamical quantities, namely the width
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FIG. 8. Model MQDT spectrum is obtained for a system of
20 interacting Rydberg series converging to equally spaced Lan-
dau channels with I=0. The K matrix is chosen to be indepen-
dent of energy and magnetic field. The spectrum plotted is a
convolution with a Gaussian whose width is 0.001 cm, to
simulate the finite experimental resolution of Ref. [1].

function and the shape parameter, which control the ap-
pearance of the spectrum. This analysis serves as a pro-
totype for understanding more complicated systems. Fig-
ure 8 tests this description of Rydberg state diamagne-
tism by performing a similar model calculation near
B=6 T, with twenty interacting channels converging
to the m =0 Landau thresholds E; =co, (i —

—,
' ),

i =1,2, . . . , 20. The 20X20 K matrix and the twenty di-
pole matrix elements were chosen in essentially a random
fashion, and then kept independent of E and B. The
main point of this calculation is that it produces a spec-
trum having a complexity comparable to the experimen-
tal spectrum of Ref. [1], shown in Fig. 6. There are also
numerous similar features in Figs. 6 and 8, including res-
onances with difFerent "slopes" of E versus B, avoided
crossings between individual resonances, and high Ryd-
berg state resonances that fade in and out when traced
versus E and B. This example is highly suggestive that
the picture of a multichannel Rydberg spectrum will in
fact be adequate to describe atomic diamagnetism near
the zero-field ionization threshold.

IV. CONCLUSIONS

The problem of electron motion in the combination of
a spherical Coulomb potential and a cylindrical diamag-
netic potential has been compared [33] to the problem of
two-electron motion near the threshold for double es-
cape. Similarities do exist between them, primarily in the
fact that each involves a nonseparable Schrodinger equa-
tion in just a few degrees of freedom, and also in the fact
that resonances are established along a potential ridge in
each problem. The diamagnetism of Rydberg atoms,
however, is much simpler in principle, because at any
given energy there is a finite number of interacting Lan-
dau channels. (In this sense it is analogous to the two-
electron problem at energies just below the double-escape
threshold. ) The asymptotic channel structure is therefore
quite clear [9], and in particular the asymptotic wave
function at z

~

—+ ac is a straightforward Landau channel
expansion, each of whose terms is separable in cylindrical
coordinates. On the other hand, the two-electron contin-
uum wave function in the field of a central charge ap-
pears to remain nonseparable all the way out to infinity
near threshold.

Viewed from this perspective, it is clear that in any
given energy range, the motion of a bound or continuum
Rydberg electron in a magnetic field must be describable
within the framework of the standard multichannel
quantum-defect theory. This description of N interacting
Landau channels is based on an N XN "smooth" reaction
matrix K;, with an additional N dipole matrix element d
needed to calculate the photoabsorption spectrum.
Difhculties of a practical nature have made the calcula-
tion of this information IK,",d ] prohibitively time con-
suming for two reasons: (i) The large number of interact-
ing channels N=20 —30 in the near-threshold energy
range for a 6-T magnetic field; (ii) the large volume over
which the wave function is nonseparable for a 6-T field,
roughly a cylinder of radius ~ 10 a.u. and of comparable
length. The determination of an accurate [K;J,d~] re-
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quires an accurate numerical solution of the Schrodinger
equation throughout this volume.

Variational [22] or close-coupling-type [34] methods
have successfully calculated IK;l, d ] for ultrastrong
fields B ~10 T, but to lower B another two orders of
magnitude looks very dificult with existing methods. A
line of attack that is particularly promising is the devel-
opment of a spherical-to-cylindrical coordinate frame
transformation approach by O'Mahony [24). This has al-
ready produced good results near 100 T and appears cap-
able of treating substantially lower fields without any
great modification in principle. A related treatment
developed by Watanabe [35] has also found encouraging
preliminary results at 6 T.

While the development of computational techniques
capable of determining the MQDT parameters IIC;, tI I
is an important final step, the present study has shown
that many of the characteristic types of interference phe-
nomena can be classified without knowing these parame-
ters. The evolution of perturbers and "complex reso-
nances" as functions of energy and magnetic field has
considerable complexity, even when {K;,d ] are in-
dependent of E and B as in the model calculations of Sec.
III. We have seen how many complex features of the
type observed in lithium by Iu et al. [1] are generated by

just three interacting Rydberg channels attached to Lan-
dau thresholds. The last example of Sec. III shows how a
20-channel calculation should, in principle, be able to de-
scribe the complete spectrum of Ref. [1], although the
complete demonstration using an ab initio K matrix
remains a task for subsequent studies. The recent success
of Delande, Bommier, and Gay [ll] in reproducing the
experiments of Refs. [1] and [12] is an impressive demon-
stration of computational power. A partial interpretation
of the many interfering resonances is pointed out by Ref.
[11], but it is difficult to pinpoint the key physical pro-
cesses, as the spectrum emerges from diagonalization of a
90000X90000 matrix. Reduction of the information
contained in this huge matrix to the more manageable
number ( 5 30) of interacting Landau channels in a
quantum-defect picture should ultimately simplify the job
of interpretation, which remains to be completed.
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