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In ion-atom collisions where the projectile is ionized, target electrons act not only coherently by
screening the target nucleus but they may also act incoherently by directly ejecting a projectile electron.
This electron-electron interaction should be relatively most important for targets that have a low nuclear
charge, since the cross section for a neutral target is roughly proportional to Z2+Z,, where Z? is the
contribution due to the target nucleus and Z, comes from the target electrons. In order to investigate
the electron-electron interaction, we have measured and calculated cross sections for Li?*, C3*, and O7*
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on H, and He, Au®* on H,, He, C, and N,, Au”" on H, and N,, U** on H, and He, and U*°* on H,.
The collision energies range from 0.75 to 405 MeV/nucleon. The calculations have been performed in
the plane-wave Born approximation. We demonstrate that for energies where the target electrons have
sufficient kinetic energy in the projectile frame to ionize the projectile, the electron-electron interaction
can lead to a significant increase in the total electron-loss cross section.

I. INTRODUCTION

The subfield of electron-electron interactions within
the field of ion-atom collisions has received considerable
attention during the last few years. Several different ex-
periments, discussed in the remainder of this section, pro-
vide evidence for the existence of electron-electron in-
teractions in ion-atom collisions. This paper concen-
trates on projectile ionization, here called electron loss to
distinguish it from target ionization.

Projectile electron loss is normally attributed to the
Coulomb interaction between the target nucleus and a
projectile electron. The effect of the target electrons can
be accounted for partially by introducing a screened
Coulomb interaction between the target and the projec-
tile electron. However, the target electrons can act not
only coherently as screening agents, but may also act in-
coherently as ionizing or antiscreening agents [1-5]. The
antiscreening effect has also been called inelastic
electron-electron interaction [6] and two-center electron-
electron scattering correlation [7]. This interaction be-
tween the target electrons and the projectile electron
have a significant effect on the electron-loss cross section,
as demonstrated by experiments performed at the Stan-
ford Van de Graaff facility, [8]. Here, cross sections for
projectile K-shell electron loss were measured for
0.75-3.5 MeV/nucleon C°>* and O’* projectiles in col-
lisions with H, and He targets. The experimental results
agree with plane-wave Born approximation (PWBA) cal-
culations, but only if the latter take into account the in-
teraction between projectile and target electrons. It has
been unambiguously shown that for energies where the
target electrons have sufficient kinetic energy in the pro-
jectile frame to ionize the projectile, the electron-electron
interaction can lead to a significant increase in the total
electron-loss cross section. We have now extended these
measurements to lithium, gold, and uranium projectiles
which together with the previous carbon and oxygen
measurements span an energy range from 0.75 to 405
MeV/nucleon and confirm the importance of the
electron-electron interaction in ion-atom collisions.

Other experiments that provide evidence for electron-
electron interactions involve electron-impact ionization,
electron-electron  excitation, and electron-electron
transfer excitation. Summarizing discussions of all these
processes can be found in papers by Stolterfoht [7] and
McGuire [9]. Electron-impact ionization experiments
[10-12] on ions can be performed by sending a fast-ion
beam through a single crystal. Predominantly, silicon
crystals have been used for these experiments. The atoms
are arranged in a periodic structure with ‘“channels”
along which there are no nuclei. With a good alignment

of the ion beam, highly charged ions traveling in these
channels presumably undergo only large-impact parame-
ter collisions with the distant, screened nuclei and thus
should not acquire enough excitation energy to lose their
tightly bound electrons. However, the ions will make
close collisions with the loosely bound, “quasifree,” elec-
trons in the crystal channels. The experimental results
clearly show the presence of electron-impact ionization
but some of the cross sections cannot be interpreted sim-
ply in terms of single-electron impact ionization, as dis-
cussed in Ref. [12].

Zouros, Lee, and Richard [13] have been able to pro-
vide definite evidence for the Coulomb interaction be-
tween target and projectile electrons in projectile inner-
shell excitation. In general, it is difficult to distinguish
this electron-electron excitation from the electron-
nucleus excitation. However, the authors of Ref. [13], us-
ing high-resolution, 0° Auger-electron spectroscopy, were
able to measure the production cross section for the
(1s2s2p ) *P state in collisions between O°* and F¢* pro-
jectiles and a H, target. The (1s2s2p)*P state cannot be
produced by direct electron-nucleus excitation from the
(15%25)2S ground state, since this would require a spin-
flip transition which is forbidden for these low-Z ions.
However, electron-electron excitation can produce the
observed state by the exchange of the projectile electron
with a target electron. The absolute magnitude of the
measured cross sections can be reproduced by an
impulse-approximation theory [14].

The transfer-excitation process in ion-atom collisions
has been studied intensively in the last several years [15].
Here, a target electron is captured by the projectile and,
simultaneously, a projectile electron is excited. In the
so-called resonant transfer and excitation process, the
projectile electron is excited by the Coulomb interaction
with the captured target electron [15]. Schulz et al. [16]
have found evidence for electron-electron transfer excita-
tion. Here, a collision with a target electron excites the
projectile electron and a second, independent, electron is
captured by the projectile. The signature for this process
is again observed using high-resolution, 0° Auger-electron
spectroscopy. The experimental results agree with
theoretical estimates within a systematic uncertainty of
50%.

In the following, we begin with a discussion of the
electron-loss cross section in the PWBA. The exact cal-
culation of this cross section can be performed only for
hydrogenic colliding systems. However, an approximate
method allows a calculation for other systems as well.
We note that for certain projectile-target combinations it
should be possible to demonstrate the screening-
antiscreening effect experimentally. Section III contains
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the details of the experiments done at Stanford University
and the Lawrence Berkeley Laboratory (LBL). Section
IV provides some details of the data analysis and Sec. V
compares the experimental results with theoretical calcu-
lations. This comparison allows us to draw definite con-
clusions about the significance of the screening-
antiscreening effect for projectile electron loss.

II. THEORY

For simplicity, we consider a one-electron projectile p
which is ionized by a target t. The extension to many-
electron projectiles is straightforward if coherence effects
among the projectile electrons are neglected. Using
atomic units, the projectile electron-loss cross section in
the nonrelativistic PWBA is given by [1-3]

8 © 9 max 1 )
0-=_£f0 dszfq i dq—q_3|Fp(q)|2’Ft(qu)’2 b (1)

where v is the ion velocity, € the kinetic energy of the
ejected projectile electron, and i represents the quantum
numbers of the ground and excited (including continuum)
states of the target atom. The sum extends over all target
states. In the center-of-mass system, the momentum g
which is transferred in the collision is defined as the
difference between the incoming and outgoing projectile
wave vectors, k;, and k,,

g = kin—Kou! » (2)
where

ki, =Q2MT)'*,

kou =(2M { T — [ E,(projectile) +-& + E, (target)

(3)

—E,(target)]})'/2 .

The minimum and maximum momentum transfers are
given by

qminzkin_kout’ qmax:kin+k0ut . @)

In Eq. 3), E;, and E, denote the ground-state and
excited-state binding energies, respectively, 7 is the kinet-
ic energy of the projectile in the center-of-mass system,
and M is the reduced mass of projectile and target.

For heavy projectiles, one can make the following ap-
proximations for the minimum and maximum momen-
tum transfers [17,18], provided the energy lost in the col-
lision is small compared to the incident kinetic energy 7,

9 min = [ E, (projectile) +e+ E (target) — E, (target)] /v ")

qmax: ® .

The form factors F,(g) and F,(qg,i) in Eq. (1) are given
by

|F,(q)*=|(ele'r7(0), | (6)

and, if the target wave function is written as a product of
the individual electron wave functions,
N, ) 2
. . Iqer;
|Fi(q,0)]*= |Z,8,0— 3 (ile 0y, | . 7
i
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Here Z, is the target atomic number, §,, is the Dirac &
function, [0), and |0); denote the ground-state wave
functions of projectile and jth target electron, respective-
ly, |e) is the final-state wave function of the ejected pro-
jectile electron, |i) is the final-state wave function of the
jth target electron, including a possible continuum state,
and the sum in Eq. (7) extends over all N, target elec-
trons. For a neutral target, N,=Z,.

The projectile form factor F,(g) involves ground-state
and continuum projectile electron wave functions. The
continuum-state wave function |e) is taken as a
projectile-centered Coulomb wave function [1]. For the
case of projectile K-shell electron loss, |F,(q)|* has been
evaluated in closed form by Bethe [19]. If the projectile
carries electrons in several shells, the form factor F,(q)
has to be calculated for each individual occupied subshell
[20]. The total cross section for electron loss from a
many-electron projectile can be obtained by adding the
electron-loss cross sections for the individual subshells,
weighted by the number of electrons in each subshell.
When calculating the individual subshell electron-loss
cross sections, one has to take into account the screening
of the full projectile nuclear charge by the other inner-
shell electrons as well as the screening by the outer, less
tightly bound, electrons [17,21].

The target form factor F,(q) involves target-electron
ground-, excited-, and continuum-state wave functions.
To evaluate F,(q) exactly, all these wave functions have
to be known. For an atomic hydrogen target, the matrix
elements in Eq. (7) have been evaluated exactly by Bates
and Griffing [1-3], Bethe, [19], and Chesire and Kyle
[22]. Thus for hydrogenic collision systems, the cross
section given by Eq. (1) can be calculated exactly within
the framework of the PWBA. In general, for hydrogenic
as well as nonhydrogenic targets, Eq. (7) can be evaluated
in an approximate way, if the target excitation energy
E,(target)—E,(target) in Eq. (5) is small compared to
E, (projectile)+¢. In the calculations presented in Sec. V,
we have replaced the target excitation energy by a mean
energy equal to the target ionization energy. Under this
condition one can neglect the dependence of the target
excitation energy on the final target state ; which allows
the interchange of the summation over the target ground
and excited target states / with the momentum transfer
integration in Eq. (1). The resulting cross section can be
written as

8 ) qmax
U:T‘Z-fo dsfq . dq—q1§|FP(q)!ZS(q’Zt) ’ (8)

where, if closure is used [19], the effective target charge
squared S'(q,Z,) is given by

$(q,2,)=5,(q9,Z,)+S,(q,2Z,)
2
+

N,

J

9)

N!
Z,—3F;(q)
j

The two terms in Eq. (9) can be interpreted physically
in terms of the ionization by a screened target nucleus
(screening) and the ionization by the N, target electrons
(antiscreening). As the momentum transfer g approaches
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zero, F;(q)—1, so that for a neutral target where the
number of electrons is equal to Z, the effective perturbing
charge vanishes. This situation corresponds to large im-
pact parameters, where the projectile approaches, in
effect, a neutral target atom. For high-momentum
transfers, or conversely, small-impact parameters, F;(q)
vanishes and S(q,Z,)—Z2+Z,. Therefore, the interac-
tion between target and projectile electrons can result in
an increase of the projectile-ionization cross section over
the pure nuclear “Born” cross section. The largest rela-
tive increase should occur for an atomic hydrogen target
where Z,=1. The quantity Ej-v’F '+(q) has been tabulated
by Hubbell et al. [23] for all atoms. For a target with 1s
electrons, F),(g) has the analytical form [24]
1
Fila) [1+(g/2a) ]’ 1o
where «a is the effective target atomic number. For hy-
drogen a=1 and for helium a=1.69, reflecting the
screening of the target nucleus by one of the 1s electrons.
If one accepts the interpretation that the second term,
S,(g,Z,) in Eq. (9) represents the ionization by the target
electrons, one must take into account the fact that a free
electron can eject a projectile electron only if it has
sufficient kinetic energy in the projectile’s rest frame to
do so [18]

Imv?>1, (11)

where m is the electron mass, v the relative velocity be-
tween the free (target) electron and the projectile, and I
the ionization energy of the projectile. This threshold
effect is implicit in Eq. (1) through the dependence of q;,
on E,(target), as shown in Eq. (5). This is so because only
if a target electron undergoes an inelastic collision, i.e.,
changes its state, can it transfer momentum to excite or
ionize the projectile [2,3]. In the closure approximation,
however, the q,,;, dependence of E, (target) has been elim-
inated. To take the threshold effect into account, Anholt
proposed the following ad hoc correction to S(q,Z,) [18]

S(q,Z,)=S,(q,Z,)+5,(q,Z)[0,(v)/o5()], (12)

where o, is the electron-induced ionization cross section
and o is the Born cross section for protons at a velocity
equal to the projectile velocity v. The upper limit for the
momentum transfer integration in o, has to be taken as
infinity so that o, =o 5 at high velocities [18].

For Li**, C°*, and O’ projectiles incident on a heli-
um target we calculated the screening cross sections for
the helium nucleus, screened by its two electrons, using
S,(g,Z,), as well as the sum of the screening and an-
tiscreening cross sections, using S(g,Z,). Figure 1 shows
these cross sections normalized to the “nuclear” PWBA
cross section, calculated for a bare helium nucleus. For
increasing projectile nuclear charges, the screening cross
section approaches the nuclear PWBA cross section. A
qualitative explanation for this behavior is that with in-
creasing projectile charge the minimum momentum
transfer increases, i.e., the maximum impact parameter
decreases. If this maximum impact parameter, above

which no projectile ionization can take place, falls
significantly below the target K-shell radius, the form fac-
tor which characterizes the target electron’s screening ac-
tion approaches zero.

We already mentioned that the largest relative increase
in the electron-loss cross section should occur for an
atomic hydrogen target. Experimentally, it is difficult to
produce a well-understood atomic hydrogen target for
collision studies. Therefore, we decided to use a molecu-
lar hydrogen target. Although this decision certainly
simplifies the experiment, it makes the theoretical calcu-
lation more complicated. A quantitative treatment of
this problem should include interference terms due to the
two scattering centers, the electron correlation within the
molecule, and the effect of the spins of the two electrons.
The rotational and vibrational degrees of freedom of the
molecule can be neglected as long as one considers only
molecular ground-state wave functions. A detailed
derivation of the PWBA cross section for a H, target is
given by Meyerhof et al. [25] who also discuss several
different models for the molecular hydrogen form factor.
The main conclusion is that for a projectile of atomic
number Z, =5 the molecular-target cross section can be
represented by twice the atomic target cross section, but
that for Z, <5 molecular effects have to be taken into ac-
count. Since the present paper discusses experiments be-
tween Zp=3 and 92, we have used for theoretical com-
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FIG. 1. Calculated K-shell electron-loss cross sections for (a)
O’*, (b) C°*, and (c) Li*" projectiles incident on a helium tar-
get, normalized to the nuclear PWBA cross section. The
dashed line is the scattering cross section, calculated with the
first term only in Eq. (12); the solid line is the sum of the screen-
ing and antiscreening cross section.
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parison one of the molecular H, model calculations from
Ref. [25]. We decided to use the “Stewart” model which
contains a modified form factor F;(q), Eq. (10), for one
electron in the molecule, the interference factor between
the two charge centers [26], and the Anholt threshold
factor, as in Eq. (12). Use of the latter treats the
electron-electron threshold region consistently for H, and
He targets. We refer to Ref. [25] for details, but note that
the Stewart model cross sections differ only little from the
Bates-Griffing cross sections for HO, multiplied by two,
except very close to the electron-electron threshold.

III. EXPERIMENTS

This section describes the experimental setups at the
Stanford Van de Graaff and the LBL Bevatron accelera-
tors. At the Stanford Van de Graaff accelerator we have
measured projectile electron-loss cross sections for Li?*,
C>*, and O”* projectiles in collisions with molecular hy-
drogen and helium targets. The energy ranges from 0.75
to 3.5 MeV/nucleon. Figure 2 shows a schematic of the
beam line. Following the charge-state selection by
analyzing and switching magnets and, if necessary, post-
stripping between the two magnets to obtain the desired
charge state, the ion beam is directed into a differentially
pumped gas cell after tight collimation and attenuation.
The beam is then charge-state analyzed by 80-cm long
electrostatic deflection plates. After being separated hor-
izontally by 1-2 cm, the different charge states are
detected in two scintillator-photomultiplier counters.
The two detectors each have a sensitive area of 2.4 by 4.8
cm and are separated by a 3-mm-wide gap. The ionized
charge state (e.g., C®") is detected in one of the counters
(detector 1), while the other one detects the incident
charge state as well as the very weak capture charge state
(e.g., C**). The beam is focused so that it is approxi-
mately 5 mm high and 1 mm wide. Thereby a 10:1 ratio
between charge-state separation and individual charge-
state width can be obtained. The ratio of the number of
counts in the background between the two charge-state
peaks to the number of counts in the incident charge
state is less than 0.03%. The two scintillator-
photomultiplier detectors each consist of a rectangular
piece of scintillator material [27] which is glued to a
wedge-shaped piece of lucite. For better light collection,
a thin film of aluminum, approximately 1.4—mg/cm?
thick, is evaporated onto the scintillator. Since we are in-
terested in the ratio of the number of counts in detector 1

Gas Cell

FIG. 2. Sketch of the Stanford Van de Graaff beam line used.
The symbols have the following meaning: P1-P4, pumps; Q,
quadrupole magnet; S, four-jaw slits; E, electrostatic deflection
plates; D, detector chamber.
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FIG. 3. Sketch of the LBL Bevatron beam line used. The
symbols have the same meaning as in Fig. 2; M is a dipole mag-
net.

to the number of counts in both detectors, we do not have
to know the absolute collection efficiencies of these detec-
tors. However, their relative efficiency was tested for
each incoming ion beam and energy and was found to be
equal to unity to better than +3%.

At the Lawrence Berkeley Labortory’s Bevatron ac-
celerator we have measured one-electron-loss cross sec-
tions for 100- and 380-MeV/nucleon Au*?* projectiles in
collisions with H,, He, C, and N, targets, 380-
MeV/nucleon Au”* and U¥™ projectiles in collisions
with H, and N, targets, and 405-MeV/nucleon U*** pro-
jectiles on a H, target. Figure 3 shows a schematic of the
beam line used. The ion beam provided by the Bevatron
accelerator is pulsed with a repetition rate of 10 to 15
pulses per minute. The length of the individual pulses
can be varied within small limits; for our experiments the
pulse length was 100 msec. The focusing of the beam is
accomplished by a series of magnets upstream from the
target-gas cell. However, because of the divergence of
the beam, as well as its width, only about 1% of the beam
is transmitted through the gas cell. This fraction is ana-
lyzed by a pair of dipole magnets. Between the gas cell
and the dipole magnets, the beam passes through a pair
of focusing quadrupole magnets. The charge-state
beams, separated by about 4.5 cm near charge state 52+

104 T I T I T
52+

103

T llllml T TTTIT

102 53+

54+
101 P

COUNTS/CHANNEL

100 M{\ | |

0 50 100
CHANNEL NUMBER

150

FIG. 4. X-position spectrum for 380-MeV/nucleon Au>?" in-
cident on H, at 149-mTorr pressure. The emerging Au charge-
state peaks are shown, as well as a pile-up peak P.
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and less for higher charge states, pass through a thin My-
lar window at the end of the beam line and enter a 25-
cm-wide and 10-cm-high position-sensitive multiwire pro-
portional counter, which sits in air. The beam was usual-
ly focused so that the charge states were 15 to 20 mm
high and 3 to 7 mm wide, resulting at best in an approxi-
mately 7:1 ratio of charge-state separation to individual
charge-state width. The multiwire proportional counter
we used is a modified version of a detector used by
Schweppe [28]. It consists of three flat, parallel elec-
trodes, an anode, and two cathodes for the x- and y-
position readout. The cathodes are of the so-called
“graded-density” type, where the cathode wires are elec-
trically connected into two groups such that the density
of each group changes in an approximately linear manner
across the entire cathode width [29]. The position resolu-
tion is 1 mm for the x cathode, and 4 mm for the y
cathode.

Figure 4 shows an x-position spectrum for 380-
MeV/nucleon Au>?* incident on H, at 149-mTorr pres-
sure. The three detected charge states are Au’?t, Au>>™t,
and Au**". The small peak in between the incident and
the first ionized charge state of the x spectrum is a result
of pile-up. By reducing the number of particles per pulse
from 100 to 20, we observed that the pile-up peak disap-
pears. Since a reduction of the beam intensity by a factor
of 5 was impractical, we devised a method of including
the pile-up peaks in our data analysis [30]. As was the
case in the Van de Graaff experiment, we do not need to
know the absolute counting efficiency of the detector.
The relative efficiency was determined by moving two
charge states across the width of the detector and
measuring their relative ratios. We found the relative
efficiency to be constant within =8%.

The quality of the cross-section measurements for both
the Van de Graaff and the Bevatron accelerator experi-
ments relies heavily on the purity of the target gases and
the knowledge of the physical properties of the gas cells.
The gas purity is important because the cross section for
projectile electron loss is roughly proportional to Z2+Z,,
where Z?2 stems from the target nucleus and Z, from the
target electrons. This implies, that for gases like hydro-
gen or helium, where the electronic contribution to the
electron-loss cross section might be detectable, high-Z,
impurities like water or nitrogen molecules can falsify the
measured cross section if their concentration becomes too
high. Therefore, we decided to use high-purity target
gases [31]. Using the simple Z2+ Z, scaling, we calculate
that the total effect of these impurities results in a less
than 3% increase for the high-purity H, and He used,
compared to a 15% increase for commercial hydrogen.
During the Van de Graaff accelerator experiment, we
compared the two hydrogen targets and found an in-
crease in the cross section of approximately 10%, which
is consistent with our theoretical estimate.

The purity of the target gases is determined not only by
their “intrinsic” contamination, but also by the outgass-
ing of high-Z, molecules from the inner walls of the gas
cell. Most of this contamination is water and nitrogen,
and the amount of contamination is proportional to the
surface area of the gas cell. With the Van de Graaff ex-

periment, the setup did not allow for baking, so the gas
cell was kept under vacuum for weeks before the actual
experiments started. Under these conditions, the flow
rate due to outgassing is 107* Torr liter/sec [32],
whereas the calculated target-gas flow rate is six to seven
orders of magnitude larger and, therefore, the contamina-
tion due to outgassing can be neglected. While the Van
de Graaff experiment gas cell has a surface area of ap-
proximately 200 cm?, the surface area of the Bevatron ex-
periment gas cell amounts to about 26 000 cm?. Here, the
outgassing presents a much bigger problem and the gas
cell has to be baked to reduce the effect of contamina-
tions. By using a mass spectrometer, we determined the
outgassing rates and the partial pressures for various
background gases before and after baking the gas cell for
about 24 h at approximately 160°C. We measured a
reduction of the rate from approximately 107> to 1077
Torr liter/sec. Comparing the latter value with the mea-
sured target-gas flow rates of 0.1 to 1 Torr liter/sec dur-
ing the experiment leads us to the conclusion that the
contamination due to outgassing has been reduced to
negligible proportions.

In the case of the Van de Graaff experiment gas cell,
the biggest systematic error, between 5% and 10%, in the
final determination of the electron-loss cross section
arises from the uncertain effective length of the target-gas
cell. Details of the effective-length determination are
given in Appendix A. Since in the Bevatron experiment
the expected electron-loss cross sections are more than an
order of magnitude smaller than the cross sections mea-
sured in the Van de Graaff experiments, the number den-
sity of the target atoms had to be increased accordingly.
To achieve this, we designed a gas cell, 241 cm long and
40 cm in diameter. Details about this target-gas cell are
given in Appendix B. In both the Van de Graaff and the
Bevatron experiments the effect of temperature variations
introduces an uncertainty of less than 1%. The total ex-
perimental uncertainties in the two experiments are less
than +11% [30], caused mainly by target length uncer-
tainties in the Van de Graaff experiment and by relative
detector efficiency uncertainties in the Bevatron experi-
ment.

IV. DATA ANALYSIS

In our experiments we measure for a given projectile
and energy the number of particles n; in a given charge
state as a function of the target-gas pressure. From these
numbers, the charge-state fractions f; can be computed
in a straightforward way by taking the ratio

fi=n,-/2nj . (13)
J

In the Van de Graaff experiment, these fractions are
measured for six to eight different target-gas pressures for
which they generally remain below 5% of the initial
charge state. In the Bevatron experiment, they are mea-
sured at two to eight pressures. The charge-state frac-
tions depend on the target thickness x and on the charge
exchange cross sections o ; from charge state j to charge
state i. The individual fractions are connected through a
system of coupled differential equations
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ﬁ= (0;f;—0if) (14)
dx ;@G 07
An exact solution of this system of coupled differential
equations can be obtained only numerically. However,
for small target thicknesses an approximate solution to
these equations is given by [33]

fizfi(0)+0i—1,ix _(Ui—l,iai,i+1+0i-1,i0i,i—1)x2 .
(15)

The first term f;(0) is the background yield due to elec-
tron loss in the residual beam line vacuum, incomplete
charge-state selection by the magnets, or slit-edge scatter-
ing at the collimators. In most cases, the background
yield was much less than 0.5%. The next term is linear
in the target thickness and it is this term we use to deter-
mine the electron-loss cross section. For the Van de
Graaff data, a linear least-square fit suffices to obtain the
cross section. For the highest gas pressures, the Bevatron
data exhibit the presence of the quadratic term in Eq. (15)
which is due to two-step charge-transfer processes. We
analyzed this data with a quadratic fit for the whole set
and a linear fit at the lowest pressures, where the charge-
state fraction is still a linear function of the pressure.
Both fits agreed within 3%.

The target thickness x which we use to calculate the
cross section is measured in number of molecules per cm?
and derived from the ideal-gas law

x=N,PI/RT=9.65X10"Pl /T , (16)

where N, is Avogadro’s number, P is the pressure in
mTorr, [ is the target length in cm, T is the temperature
in K, and R is the universal gas constant.

The total uncertainty involved in the data analysis
alone, including statistical and systematic errors, is less
than +4% for the Li>*, C°", and O’ projectiles, less
than +7% for the Au®>" and U™ projectiles, and less
than +41% for the Au”" projectile [30]. The reason for
the large error in the latter case is discussed below.

V. RESULTS

In the Introduction, we mentioned experiments other
than projectile or target ionization which investigate the
electron-electron interaction in ion-atom collisions.
Several different experiments display the presence of this
interaction [10—16]. While most require rather elaborate
experimental techniques, few attempts have been made to
investigate the effect with comparatively simple projectile
[34-37] or target [38] ionization measurements. Some of
these experiments [36, 38] exhibit a qualitative agreement
with the theoretical predictions [4]. We did not study
target ionization because here the analysis of the experi-
ments is complicated by two competing processes, the
direct ionization of the target and the capture of a target
electron by the projectile. The advantage of studying
projectile ionization is that capture of a projectile elec-
tron by the target is absent due to the lack of vacancies in

H.-P. HULSKOTTER et al. 4

the target atom [33].

Starting with the lowest-Z, projectiles we used, Fig. 5
compares our experimental results for Li’" on H, and He
with our theoretical calculations. The error bars include
the experimental and data analysis uncertainties. The ar-
row on the abscissa of Fig. 5 and the subsequent figures
indicates the projectile energy corresponding to the
threshold given by Eq. (11). For the Li** on H, collision
system we also show low-energy data by Shah, Goffe, and
Gilbody [39] and Shah and Gilbody [40]. The solid line
in Fig. 5(a), and for all other H, target systems, is based
on the calculation of Ref. [25] for a molecular hydrogen
target. The solid line in Fig. 5(b) is the screening-
antiscreening calculation, based on Eq. (12) for helium,
where the target form factor is given by the analytic ex-
pression in Eq. (10) with an effective charge of a=1.69.
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FIG. 5. Projectile electron-loss cross sections for Li** in-
cident (a) on H, and (b) on He. [J, A, data from Refs. [39] and
[40]; @, our results. The arrow on the abscissa indicates the
projectile energy corresponding to the threshold given by Eq.
(11). In (a) the solid curve is the screening-antiscreening calcu-
lation for H, and the dashed curve is the screening part. In (b)
the solid curve is the screening-antiscreening calculation for He
and the dashed curve is the screening part.
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The dashed curves are the screening parts of the cross
sections. A discussion of the limit of validity of the
PWBA is also given in Ref. [25]. In the case of
Lit+H,, the PWBA is not valid below 0.2
MeV/nucleon, but above this energy the screening-
antiscreening calculations agree reasonably well with the
experimental results.

For heavier projectiles like C>* and O™, the energies
available at the Stanford Van de Graaff accelerator (0.75
to 3.5 MeV/nucleon) span the range below and above the
threshold. These projectiles also carry a higher nuclear
charge which should make the comparison with the
theory more favorable since the PWBA assumes
Z, <<Z,, and molecular effects are very small [25]. Fig-
ures 6 and 7 compare our experimental results with the
theoretical calculations. Also shown are experimental
data from Ref. [34] for C>* on H, and Ref. [35] for C°*
on He and for O’ on H, and He. Our results for both
C’" and O’" are in excellent agreement with the
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FIG. 6. Projectile electron-loss cross sections for C°* in-
cident (a) on H, and (b) on He. A, data from Ref. [34]; O, data
from Ref. [35]; @, our results. The curves are calculated as for
Fig. 5.
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screening-antiscreening theory.

As mentioned in Sec. III, the biggest source of error in
the Van de Graaff experiments is the systematic uncer-
tainty in the effective gas-cell length. Therefore, by tak-
ing the ratios of H, to He cross sections, one can
significantly reduce the size of the error bars. Figure 8
shows the experimental and theoretical cross-section ra-
tios for Li?*, C3*, and O7". The solid line gives the ra-
tio of the screening-antiscreening calculations and the
dashed line the ratio of the nuclear PWBA calculations.
Our experimental values follow closely the screening-
antiscreening curves.

At the Lawrence Berkeley Laboratory’s Bevatron ac-
celerator we were able to study one-electron loss of
many-electron projectiles by using Au and U ion beams.
Figures 9 and 10 show one-electron-loss cross sections for
Au?t in collisions with H,, He, C, and N, targets at 100
and 380 MeV/nucleon. Both energies lie above the
electron-electron threshold. In Fig. 9 and all subsequent

CROSS SECTION (105 b)
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FIG. 7. Projectile electron-loss cross sections for O’ in-
cident (a) on H, and (b) on He. O, [, data from Ref. [35]; @,
our results. For clarity, data points from Refs. [36] and [37]
have been omitted. The curves are calculated as for Fig. 5.
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figures, the solid curves are the screening-antiscreening
calculations summed over the relevant projectile sub-
shells, using Slater screening constants for the effective
nuclear charges and the subshell binding energies of Carl-
son et al. [41] for partially stripped ions. The solid curve
in Fig. 10(a) is the screening-antiscreening calculation for
the nitrogen atom times two. The dashed curves
represent the screening parts of the cross sections, which
for these high-Z ions are essentially identical with the nu-
clear cross sections. The experimental data points agree
well with the theory for Au®?" on H, and also for Au>?*
on He. For Au*?** on C and N,, antiscreening produces a
relatively small change in the cross section, which cannot
be ascertained experimentally. A comparison with the
Au*?" +C results shows that solid-state effects are absent
for these light targets, as already noted by Anholt and
Meyerhof [42].

We also attempted to measure the cross section for
Au”* on H, and N, at 380 MeV/nucleon. This mea-
surement is more difficult than the previous one. The
main reason is the high background contribution due to
slit-edge scattering. As mentioned previously, it is not
possible to focus the Bevatron ion beam sufficiently so
that it will not hit the stainless-steel entrance or exit colli-

Ho:He CROSS-SECTION RATIO

PROJECTILE ENERGY (MeV/nucleon)

FIG. 8. Ratio of H, to He cross sections (a) for Li**, (b) for
C**, and (c) for O’*. A , data from Ref. [40]; @, our results.
The solid curves are the ratios of the molecular H, to the He
calculations and the dashed curves are the ratios of the nuclear
PWBA calculations.
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FIG. 9. Projectile one-electron-loss cross sections for Au®?*

(a) on H, and (b) on He. The solid curves are calculated, as de-
scribed in the text. The dashed curves are the screening parts.
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FIG. 10. Projectile one-electron-loss cross sections for Au
incident (a) on N, and (b) on C. The solid curves are the atomic
screening-antiscreening calculations, as described in the text,
multiplied by two for N,, and the dashed curves are the screen-
ing parts.
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mators of the gas cell. As part of the beam collides with
these apertures, it changes its charge state. The most
likely charge-state distribution produced in Au”>*+ Fe
collisions at this energy unfortunately centers around
charge states 75+ and 76+. The same is true for the
Au’?T experiment, but there worked in our favor because
this charge-state region is far removed from the slit-
scattered charge states. Figure 11 shows the measured
and calculated cross sections for Au”>" on H, and N,.
Unfortunately, the statistical uncertainties of the mea-
sured cross sections are too large to allow a meaningful
comparison with theory.

Figure 12 gives the results for U%* on H, and He.
Here again, we find good agreement between the mea-
sured cross sections and the screening-antiscreening
theory for both H, and He targets.

We tried to measure the one-electron cross section for
U on H, at 405 MeV/nucleon, because at this energy
Claytor et al. [10] had determined the electron-loss cross
section of few-electron U ions, including U°**, channeled
in a Si crystal. In principle, the channeling experiment
should provide an electron-impact ionization cross sec-
tion for U™, which should be related to the antiscreen-
ing cross section in U9°++H2 collisions, although not
close to the electron-electron threshold. We discuss this
point in a forthcoming paper [43]. But, as Fig. 13 shows,
our present measurement was much too imprecise to ex-
tract an antiscreening cross section, because the cross
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FIG. 11. Projectile one-electron-loss cross sections for Au”*

incident (a) on H, and (b) on N,. The curves are calculated as
for Fig. 9, except that the curves for N, are the atomic calcula-
tions multiplied by two.
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FIG. 12. Projectile one-electron-loss cross sections for U™
incident (a) on H, and (b) on He. The curves are calculated as
for Fig. 9.
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FIG. 13. Projectile one-electron-loss cross sections for U*
incident on H, (@). The open symbols are cross sections scaled
from U** (0) and Ut (O) incident on Be (Ref. [43]).
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FIG. 14. Ratio of H, to He cross sections (a) for Au>" and
(b) for U™, The solid curves are the ratios of the “Stewart”
molecular model for H, to the He screening-antiscreening cal-
culations and the dashed curves are the ratios of the nuclear
PWBA calculations.

section is so small and the corresponding background un-
der the charge fraction peak is large. Nevertheless, to
check the accuracy of the theory, we scaled one-
electron-loss cross sections for U and U°'* on Be
from Ref. 44 to a H, target by applying a factor Z to the
U%* +Be cross section and twice that for U°'". This
procedure should be valid below the electron-electron
threshold where the cross section is essentially nuclear,
i.e., proportional to Z2. Above the threshold, this scaling
is not valid because the antiscreening cross section is pro-
portional to the number of target electrons. Agreement
between theory and experiment is satisfactory over the
energy range shown in Fig. 13.

In Fig. 14 we show the ratio of the H, and He cross
sections for Au*** and U®™. The solid lines are the
screening-antiscreening ratios and the dashed line the nu-
clear PWBA ratios. The agreement between the
screening-antiscreening calculations and the experimental
ratios is very good.

VI. CONCLUSIONS

The goal of this work has been to investigate the effect
of target electrons on the projectile electron-loss cross
section. The target electrons can act not only coherently
by screening the target nucleus but they may also act in-
coherently by directly ionizing a projectile. We showed
that this screening-antiscreening effect is important for
targets with a low nuclear charge, since the cross section
for a neutral target is roughly proportional to Z2+Z,,
where Z? is the contribution due to the target nucleus
and Z, comes from the target electrons. In order to in-
vestigate the screening-antiscreening effect, we have mea-
sured and calculated cross sections for Li?*, C°", and
O’" on H, and He, Au®?"t on H,, He, C, and N,, Au”t
on H, and N,, U%* on H, and He, and U*°* on H,. The
corresponding calculations have been performed in the
plane-wave Born approximation.
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We have not only been able to demonstrate unambigu-
ously the effect of the interaction between target and pro-
jectile electrons over a wide range of projectiles and col-
lision energies, but we have also shown that this interac-
tion can lead to a significant increase in the projectile
electron-loss cross section. The largest increases relative
to the nuclear PWBA cross section which we have been
able to observe are 80-90 % for 1-3-MeV/nucleon Li’"
and 70-80 % for 380-MeV/nucleon Au**" on H,.
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APPENDIX A

In the following, we present details of the effective-
length determination for the Van de Graaff experiment
target-gas cell. The base pressure in the beam-line sec-
tions upstream and downstream of the gas cell is in the
lower 107 %-Torr range. Due to the finite pumping speed
of the diffusion pump (P3 in Fig. 2), the pressure in the
differentially pumped area depends on the target-gas
pressure. At the maximum gas-cell pressure used (450
mTorr of H,), the pressure in the differentially pumped
area is in the lower 107 3-Torr range. The entrance and
exit apertures to the 6-cm-long gas cell have an area of 2
and 12 mm?, respectively. The apertures are contained in
tubes, 18 mm long with an inner diameter of 7 mm.
Since the target gas streams out through these apertures
and tubes, the net result of this gas flow will be an in-
creased effective length of the gas cell. For the gas pres-
sures used in the Van de Graaff experiments (5-450
mTorr), the gas flow is in the transitional flow regime
[45], i.e., between viscous and molecular flow. Following
the discussion of this flow regime in Ref. [45], the con-
ductance of a system measured in liters per second can be
approximated by the sum of viscous and molecular con-
ductances

Cc=C +C

molecular

P,y d* 658 d°
=3.27X107 20—+ 2= ;
n 1 VM d+31

viscous

(A1)

where P,, (Torr) is the average pressure in the system, 7
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(poise) is the viscosity of the gas and M (amu) the mass of
a gas molecule, / (cm) is the length of the system and d
(cm) its typical diameter. Using Eq. (A1) we can calcu-
late the conductances of apertures and tubes and add
them according to

Caperture Ctube

C TCn (A2)

Ciotar =
aperture

Knowing the gas-cell pressure P, as well as the pres-
sure in the differentially pumped area P,;, we can estimate
how the pressure drops from P, to P, over the distance
Laperture T{tube- Segmenting this distance into finite inter-
vals 8/; we can then calculate the effective length of the
gas cell

2P8l;

lg=1o T +

> P.3l;
—_— (A3)
entrance PO exit

For H, and He, the result of this estimate is an
effective length of 7.3 and 7.1 cm, respectively, for the
range of pressures used in this experiment. The
difference between the two results is due to the difference
in mass and viscosity. Equation (A1) is only an approxi-
mation of the true conductance. By making different as-
sumptions about the gas flow, which are based on a dis-
cussion in Ref. [45], we estimate that the uncertainty in
the effective gas-cell length is between 5% and 10%.

APPENDIX B

Here we present a brief overview of the Bevatron ex-
periment target-gas cell and its operation. The cell is 241
cm long and has a diamenter of 40 cm. The entrance and
exit apertures to the gas cell are 5-cm-long tubes, 6 mm
in diameter. The tubes can be sealed with flappers as de-
picted in Fig. 15. These flapper valves are opened with a
solenoid and closed by a spring. The whole arrangement
sits in vacuum and the solenoids can be controlled from
the outside. The flapper valves are ideal for the Bevatron
since a beam pulse comes only every 4 sec. Therefore,
the valves can be opened for about twice the duration of
the beam pulse, i.e., about 200 msec, and they can remain
closed for the rest of the time. This arrangement allows
for very high target-gas pressures to be used (up to 5 Torr
of H, and 6 Torr of N,), while the rest of the beam line
remains under high vacuum. The flapper valves are con-
trolled by an electronic circuit which is triggered by a sig-
nal from the Bevatron whenever the beam is directed into
the beam line. Figure 15 also shows the timing sequence
of the flapper valves. The timing circuit enables us to
continuously vary the duration of time for which the
flapper valves are open. The actual times for opening (2
msec) and closing (15 msec) have been measured with a
photodiode and a photomultiplier on either side of the
valve. The overall timing has been adjusted to assure
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FIG. 15. Sketch of the flapper valve and a schematic diagram
of the flapper-valve timing sequence.

that the beam will not hit the flapper.

The target gas enters the gas cell through a flow con-
trol valve and is evacuated from the gas cell on the oppo-
site side by a turbo-molecular-pump, not shown in Fig. 3,
whose effective pumping speed can be varied by a coarse
needle valve located between the pump and the cell. A
Baratron readout serves as an input to the flow controll-
er, where it is continuously compared with a reference
voltage which can be set by the experimenter. The result-
ing error signal either opens or closes the flow control
valve. After some adjustment to the internal timing con-
stants of the control unit, we have been able to stabilize
the pressure to better than 2% for values between 20 and
100 mTorr and to better than 1% for values above 100
mTorr. It takes this system approximately 5 min to
reach a stable pressure. The equilibrium pressure distri-
bution inside the gas cell has been determined experimen-
tally and was found to be uniform to better than 1%.
During the time when the flapper valves are open, gas
streams out of the entrance and exit tubes which will re-
sult in a pressure drop inside the gas cell. To minimize
this effect, we decided to give the cell a large volume. To
a first approximation the pressure inside the cell will fall
off exponentially with a time constant which is given by
the ratio of the cell volume V to the duty-cycle (Cg4yy)

averaged conductance of the two flapper valves C,,
P(I):Poexp(_ZCfUZ@dmy/V) . (Bl)

For a pressure of 5 Torr of H, gas, Eq. (B1) predicts a
drop in gas-cell pressure after 200 msec of less than 3%.
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