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Finite-volume variational method for the Dirac equation
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A finite-volume variational principle based on the Dirac Hamiltonian is formulated in a way similar to
the Kohn variational principle for the logarithmic derivative used in nonrelativistic electron-atom
scattering. As in R-matrix methods, the essential idea is to solve the Dirac equation variationally within
a finite reaction volume for a given total energy of the system. In contrast to previous methods, we do
not need to impose any unphysical boundary conditions on the trial function. The continuation of the
variational solution into the outer region is represented by a standard close-coupling expansion. The IC

matrix is obtained by matching the variational solutions with the solutions in the outer region on the
surface enclosing the reaction volume.

I. INTRODUCTION

As in all R-matrix treatments, the total system, target
plus electron, is treated only within a finite reaction
volume. In the outer region the scattering wave function
is represented by the usual close-coupling expansion. The
scattering information is obtained by matching the inner
and outer solutions at the boundary. The traditional
nonrelativistic R-matrix theory of Wigner and Eisenbud
[1] was developed into an eff'ective method for the calcu-
lation of atomic and molecular collision processes [2,3].
In this method a complete set of discrete eigenstates of
the Hamiltonian, describing all the particles, are calculat-
ed by imposing as boundary condition on the wave func-
tion a fixed value for the logarithmic derivative normal
on the reaction surface; however, these restrictions are
artificial and unphysical.

An alternative nonrelativistic version, the R-matrix ei-
genvalue method [4] based on the Kohn variational prin-
ciple [5], provides an effective means for the determina-
tion of optimal electronic wave functions for the descrip-
tion of electron scattering processes for any fixed (low)
energy. In this version, the trial function is not required
to satisfy any specified boundary condition on the reac-
tion surface. Rather the logarithmic normal derivatives
are obtained as eigenvalues for any fixed total energy.
The use of the R-matrix eigenvalue method within the
framework of nonrelativistic configuration mixing calcu-
lations is widespread and yields excellent results [6—8].
For atoms and ions with atomic numbers larger than
=20, relativistic e6'ects in the scattering process become
more and more important. It is therefore desirable to
have a theory which starts with the Dirac Hamiltonian
instead of using merely relativistic corrections (spin-orbit
interactions, spin-other-orbit terms, etc.) to the nonrela-
tivistic formulation [9,10].

An R-matrix procedure for electron-atom scattering
using the Dirac Hamiltonian was formulated by Chang
[11] and applied [12] in a manner analogous to the
Wigner-Eisenbud method. The method of Chang and
also the traditional theory can be understood as an appli-

cation of the Ritz principle restricted to the finite reac-
tion volume. To achieve Hermiticity of the Dirac Hamil-
tonian within this volume, Chang imposes artificial fixed
boundary conditions to the variational wave function,
i.e., all continuum orbitals included in the calculation
must be constrained to have the same ratio of the large
and small components at the boundary. Applying the
Ritz variational principle then yields a set of discrete en-
ergy eigenvalues and eigenstates defined in the interior of
the reaction volume. The total scattering wave function
for any energy is expanded in terms of the variational
solutions, where the expansion coe ancients are deter-
mined by continuity requirements of the inner and outer
wave functions at the boundary.

As has been pointed out [13,14] the fixed boundary
condition basis expansion of the Wigner-Eisenbud treat-
ment is not uniformly convergent, while the absence of
fixed boundary conditions in the alternative R-matrix ei-
genvalue method provides greater Aexibility. With this
motivation we present on the basis of the Dirac Hamil-
tonian a relativistic version of this more Aexible method.
To this end we derive an alternative variational expres-
sion, where the total energy appears as a given parameter.
In contrast to Chang's formulation, the continuum orbit-
als and thus the total trial function need not have any
specified behavior at the reaction surface, allowing for
greater freedom of the trial function. Further it is shown
that the functions that give extremes are continuum solu-
tions of the Dirac equation optimized for the energy
desired. This is closer to the physical situation, where in
the scattering process the energy is given by the energy of
the initial channel plus the energy of the incident elec-
tron.

In Sec. II we will give a description of the finite volume
variational principle. A comparison with the work of
Chang is also presented. As described in Secs. III and
IV, a generalized relativistic R matrix can be calculated
in terms of the variational solutions. This R matrix con-
nects the large and the small components of the close-
coupling solution linearly at the boundary. It will be
shown that, if terms of order O(1/r) are neglected, the
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generalized R matrix becomes the familiar R matrix in
the nonrelativistic limiting case. Finally the K matrix is
obtained by matching the R matrix on the boundary.

II. THE VARIATIONAL PRINCIPLE

The total number of electrons for the scattering system
is denoted by N, where the target atom consists of N —1

electrons, and the electronic spatial vectors and the spin
coordinates are r„, p = 1, . . . , N and s„,p = 1, . . . , N, re-
spectively. With this any spatial configuration of the
electrons in the 3N-dimensional configuration space R
is represented by the 3N-tuple r= [r„.. . , rz j E R

The essential idea in the R-matrix treatment for rela-
tivistic scattering systems is to solve the stationary mul-
tiparticle Dirac equation only within a reaction volume
V enclosed by a hypersurface 4 in configuration space.
For applications in electron-atom scattering, this situa-
tion may be visualized by a nucleus centered sphere in
physical space. The radius po of this sphere is chosen ap-
propriately large, so that the charge density of the target
states can be neglected on and outside the sphere surface.
Thus only the scattering electron can escape beyond the
radius po. In this case, exchange effects outside the
sphere are negligibly small and the interaction between
the scattering electron and the target can be treated as a
single-particle problem. If the scattering electron is in-
side the sphere, the motion of all electrons is highly
correlated; the many-body interactions are strong and re-

4=
t r, max(r „.. . , rz )=p 0) . (2)

It is emphasized, that the reaction volume V in the 3N
dimensional space R is different from the sphere with
radius po in physical space lR .

We are concerned with the Dirac Hamiltonian opera-
tor of the X-electron system,

N

HD = g hD(p)+ V . (3)

Here hD(p) is the one-electron operator acting on the pth
electronic coordinate

hD(p)= —ica(p, ) V„+P'(p)c —Z/r„ (4)

with the familiar Dirac matrices /3'(p) and
a(p)=(a„(p), a (p), a, (p)). The components a (p),
a~ (p), and a, (p) are given to be

quire the full X-electron treatment. This implies the
definition of the reaction volume V containing all
configuration space points r at which all electrons are lo-
cated within the sphere of radius po. Denoting the radial
coordinate of the pth electron with r„, the reaction
volume V is represented by the equation

V= (r, max(r„. . . , r~) ~poj,

and the corresponding reaction surface enclosing the
volume V is given by

a„(p)=
0 a (p)

0 ay(p)
( )cTy p

ay(p)
0

a, (p)
0

where o. (p), o (p), and cr, (p) are the Pauli matrices act-
ing on the pth spin variable. P'(p) represents the matrix

0 0~~=
O —2l,

where 12 denotes the two-dimensional unit matrix. Final-
ly

I

determinants constructed out of four-component one-
electron orbitals g„. For atomic scattering systems,

l l

these orbitals are chosen to be eigenfunctions of the
operators j, j„1,and s, where j=1+s is the sum of
the one-electron angular momentum 1 and spin s. Hence
we can separate the radial part of f„

l

P„,(r„)y (co„s„)
l I ~l

l l

is the Coulomb interaction potential between the elec-
trons thought to describe the dominant part of the
electron-electron interaction. In the definitions above
atomic units (A=e =m, = l) were used.

Similar to the nonrelativistic case the total wave func-
tion 4 of the system, depending on all electronic spatial
vectors and spin variables, is represented as a linear com-
bination of configuration-state functions (CSF's),

4=+4&~Cl .
I

The @& themselves are minimal superpositions of Slater

where g is a two-component spinor eigenfunction of
the total angular momentum j belonging to the simul-
taneous eigenvalues ~ of the operator K = —1 —o".1. For
reasons of simplicity we use the abbreviations P; =P„„
and Q; =Q„ in the following discussion. One subset of

l l

the orbitals is defined to have zero amplitude at r =po
and another subset contains orbitals, which have nonvan-
ishing amplitude for r =pa (open-type orbitals). In addi-
tion the orbitals and thus the shell functions are required
to be orthonormal within the sphere of the radius po, i.e.,
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&I, II, &+& g, lg, &=5,, (10)

where P is an arbitrarily given constant and i denotes an

open-type shell. This boundary condition ensures hermi-

ticity of the Dirac Hamiltonian within the finite reaction
volume. Accordingly, the Ritz variational principle for
the energy eigenvalues can be applied. The variational
expression is

where ( I ) indicates radial integration up to po. The
CSF's are constructed in such a way, that all orbitals ex-
cept at most one in each CSF must satisfy the boundary
condition to be zero at r =po.

In the formulation of Chang [11],all open-type orbitals
are constrained to have the same ratio of the small and
large components at the boundary

Q;(po) =P=const,
~ (po)

(eIHD+a EI+—) —(+lb, lq ) =0 . (17)

We now introduce the (still unknown) parameter b by the
equation

(b, bT)%—=0 .

Here the operator T is given by

T =
—,'+5(r„—po)r(p)

(18)

with r(p) acts only on the large component

dix, 8D defined above is Hermitian in general within the
finite volume V without any restrictions on the wave
function on the reaction surface. With this, the deriva-
tion of the variational principle discussed in this paper
begins by rearranging the Ritz formula (12), which we
write by adding and subtracting 6,

(12)
12 0

(p) =
() ()

(20)

HD =K~+6 . (13)

Here 6 is defined as a sum of one-electron operators each
acting on the pth coordinate, i.e.,

b. =icg 5(r„—po)i)(p) (14)

with the matrix g(p) acting only on the small component

rI(du ) =
0 o„(p)

0

where

o.„(p)=o (p) r„/r„

where the scalar product ( I
) indicates summation over

all spin variables s„and spatial integration of all electron-
ic coordinates r„within the finite reaction volume V, i.e.,
radial integration of all radial coordinates up to the
boundary po. Variation with respect to the coefficients

CI, i.e., diagonalizing the Dirac Hamiltonian matrix in
the basis 4I, yields a set of discrete energy eigenvalues
and eigenstates of the Dirac Hamiltonian defined in the
interior of the reaction volume. Here, the total scattering
wave function for any energy is expanded in terms of the
energy eigenstates [see Eq. (14) of Ref. [11]],with expan-
sion coefficients determined by the matching conditions
of the inner and outer solutions at the boundary.

As outlined before, the Dirac Hamiltonian KD is in
general not Hermitian within the finite volume V, but
Hermiticity can be achieved by introducing restrictive
conditions on the open type at r =po, as done by Chang
[11]. In our formulation we need not impose any bound-
ary conditions at r =po on these orbitals and hence the
basis functions 41 have no specified behavior on the reac-
tion surface.

To this end we consider the extended Dirac Hamiltoni-

Equation (18) has to be understood as a boundary condi-
tion for the desired solution on the reaction surface 4,
where we concentrate on wave functions for which the
parameter b is constant for all points on S. Since b is not
known in advance for any fixed energy E, the goal of the
calculation is to find b. For the later discussion in Sec.
IV it should be remarked, that Eq. (18) is equivalent with

ic rj(N) r(N)——b
2 N PO

=0, (21)

Solving this for b yields the functional form

& +IHD+a Ee&-[']= (elTIv)
which is now defined for any arbitrary trial function, i.e.,
also for functions 4 not solving the Dirac equation and
not having the property (18). Note here, that the total
energy E appears as a fixed but arbitrary parameter in the
expression above. With the Hermiticity of the operators
HD+5 and T (see the Appendix) the functional expres-
sion for b is obviously real. The variation of b [%'] yields

&ti+IH +~—& bTI+&+C. C. —
&ZITI+&

(23)

(24)

where the remaining radial coordinates are constrained
by r; (po, i =1, . . . , N —1. This can be shown, if the an-
tisymmetry property of + is considered. But for formal
reasons, we will use Eq. (18) henceforth in this section.
It should also be noted that (18) or (21) follows from the
boundary condition (11) if P=bl2c; however, we do not
need to impose this boundary condition onto the trial
function, rather the variational principle yields it for the
solution function.

Applying definition (18) and using the condition that b

is constant over the reaction surface 4 we obtain from
Eq. (17),

&+I~D+~ EI+& b&+—ITI+ &=—0. (22)

is the radial component of u(p) As shown in the Appen- where the abbreviation c.c. denotes the conjugate of the
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explicit term in the numerator. From this identity we
can see the following. If 4 extremalizes the variational
expression (23), i.e., ob [qI]=0, then 4 is a solution of the
eigenvalue equation

X(HDIJ fiIJE )+JK XTIJ+JKbK
J J

with the Hermitian matrix elements

(28)

(HD+6 E—)+=bTQ, (25) (29)

where b appears as an eigenvalue and T plays the role of
a metric. For r, &po b'i the surface terms A% and T%' do
not contribute and the eigenequation above reads as the
Dirac equation

(HD —E)4=0 . (26)

For reasons of continuity, this equation is also satisfied
on the boundary, so that the boundary condition
(b, bT)%=—0 additionally follows from the eigenequa-
tion (25). On the other side, if qI satisfies Eqs. (26) and
(18), qI makes the variational expression b [4] stationary
[see Eq. (24)]. These two statements, which form the
finite volume variational principle for continuum solu-
tions of the Dirac equation, can be summarized in the fol-
lowing way:

(HD E)4=0—, r&V
(S bT)q =—0 (27)

We see that the variational principle (27) can be under-
stood as a method for solving the time independent Dirac
equation in the continuum. Accordingly the solutions
are determined by the stationary condition 5b [4]=0 for
any given energy E within the reaction volume V. It
should be emphasized, that no constraint needs to be im-
posed on the trial function in showing 5b =0.

In multichannel scattering problems having several de-
generate continuum solutions, the discussion above is
meant to hold for each independent variational solution
Vz and the corresponding boundary parameter b~. In-
serting the expansion (8) for the wave function into the
variational expression (23) and defining the expansion
coefFicients Czz for state E, the stationary condition
BbK /BCIK =0 leads to the set of algebraic eigenequations

TIJ=&C'I~T~+I & (30)

The desired boundary parameters bz and the expansion
coeKcients CI~ are obtained as the eigenvalues and eigen-
vectors of the eigenvalue problem (28), respectively.
From here it is clear, that the variational prin-
ciple can also be used for the determination of optimal
orbitals including the unbound scattering orbitals in
self-consistent-field (SCF) (Hartree-Pock) or even
multiconfiguration-self-consistent orbital (MCSCO) sense
[15]. To avoid the "variational collapse" [16, 17], which
may arise in relativistic calculations, one has to use the
same precaution as are necessary in relativistic bound-
state calculations [17]. Experience has shown, that the
problem of variational collapse is much more critical in
calculations, where basis functions are used to represent
the orbitals. For atoms, finite difference methods have
been used effectively, and these calculations are not
plagued by the collapse phenomenon.

III. SOLUTION IN THE OUTER REGION

Each individual target state considered in the scatter-
ing calculation is designed by 'II~JM, where J and M are
the quantum numbers of the total target angular momen-
tum and its projection onto the z axis, respectively. All
other quantum numbers characterizing the target state
are represented by I . With this we construct the channel
functions for the large and small components by coupling
the target atom states with the spin-angular function of
the scattered electron to form eigenstates of J,J, with
the quantum numbers J,M for the total angular momen-
tum of the system,

(N)
B =g qI —(1, . . . , N 1)—

m, M

(31)

(32)

~ r+vm +—~m (33)

and the definitions (15) and (20), it can be shown that the
following relations are satisfied by the channel functions:

where the composite index y=(l Jj) defines a scattering
channel. Using the general property [18]

i)(N)Br = —B~, g(N)B~ =0,
r(N)Br ——0, ~(N)B,=B, .

(34)

The solutions of the Dirac equation in the outer region,
i.e., when the radial coordinate r& of the scattering elec-
tron exceeds the boundary po, are usually expanded in the
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following way:

M
4 = g r~'(Byyr. +i6 .z ~ ), r~ po,

y'=1
(35)

1 1
Ayy = hyy+0 32c c

and dropping all terms of order 0(l/c ) Eq. (40) can be
written as

where M is the number of open and closed channels and
the functions yy. r and zy. y depending only on the radial
coordinate rN are the large and small components
describing the radial motion of the scattered electron.
There exist maximally M linearly independent solutions
of the Dirac equation regular in the origin and having the
form given in expansion (35), so y= 1, . . . , M. Inserting
the ansatz (35) into the Dirac equation and projecting
onto the channel functions yields the set of 2M coupled
first-order differential equations:

yy' y 1 2 Z+ yyy 2c +cy+ zyy~
TN P'N C

M

where c is the kinetic energy of the electron in channel y
and

v„,=&e,
~ ve, .)

and

v„,= & 6, i vi6, , )

are the local coupling potentials depending only on rN.
By definition, the R matrix in relativistic scattering con-
nects the solutions for the large and small components at
po in the following way:

y r (pp)=2c+R „z „,(pp) . (37)

To make the meaning of the relativistic R matrix intro-
duced above more clear, we formally solve for the small
component in the first part of Eq. (36), i.e.,

C

(36)
dz ~ v 1 Z 1 M

rr'+ r+ yry' + Vrr"yr"r' '
u TN I"N C C r

y (p )=JR
y"

dy - ~

(pp)+Kr pp yy y (pp) . (41)
dl N

Thus, up to the terms of order 0(1/po) this equation
reduces to the definition for the familiar R matrix in the
nonrelativistic limit. With the help of the R matrix, the
scattering information can be obtained as outlined below.
For low energy scattering and small residual charge, the
system (36) can be approximated by substituting the for-
mal solution (38) into the second part of (36) and neglect-
ing all terms of order 0 (1/c ). This yields

d2

drN

zr(my+1) 2Z+ +2e yyy (r~)
N

=2+ V»-(r~)yy„(r~) .
y"

(42)

These equations are the same asymptotic radial equations
as occur in the nonrelativistic theory. It should be em-
phasized, that in the inner region no such approximation
was made and it is here, that the major relativistic effects
are expected to arise. In view of this, a stationary com-
puter package [19]can be used to solve (42). For reasons
of consistency, the reactance matrix or K matrix, which
contains the total scattering information, is obtained by
matching the solutions using Eq. (41). The matching pro-
cess is then very similar to that used in the nonrelativistic
R-matrix method.

IV. CALCULATION OF THE R MATRIX

M
'Px"'= g r& '(Brwrx+i6yvrx ), rz ~ po (43)

An explicit expression to calculate the R matrix can be
derived in the following way. The continuation of the
variational solutions 'Pz discussed in Sec. II into the
outer region, denoted by %z"', is expanded as

with

1 4,
' Z 1—

Ayy
——2c'-'+Br+ 6rr ——Vrr

C 7N C

(38)

(39)

where the functions mrz and Urz are the large and small
components of the scattering electrons, respectively.
They depend only on the radial coordinate rN and are
also solutions of (36). As noted before, there exist M
linearly independent solutions of the Dirac equation, so
K =1, . . . , M. The continuity condition on the bound-
ary reads

Inserting the formal solution (38) into the R-matrix rela-
tion (37) we obtain

y, (pp) =2c g R A

(44)

We now consider Eq. (21) satisfied by the variational
solutions %z,

(40)X (po)+~ po y- (po)-dy— —1

7N

&ac
icy)(N) — y(N) 0'x =0 .

2 f~ —po
(45)

Considering the property of the inverse of the matrix A, Because of the continuity condition (44) we can insert ex-
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g ey vy» (Po) — wyK(PO) =0
y

2c
(46)

pansion (43) into the equation above. Using the relations
(34) yields
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APPENDIX

where the projections of the variational solutions onto
the channel functions at po are

(po)=&& I p» &, =, , (47)

v, (po)= —i&6, l%' (48)

After multiplying Eq. (46) with the complex conjugate of
the channel functions ez and integrating over all target
coordinates and spin-angular variables of the scattering
electron, we obtain

To show the Hermiticity of the extended Hamiltonian
H, Eq. (13), and the operator T, Eq. (19), with respect to
the finite volume scalar product & I &, it is sufficient to
show the Hermiticity of the matrix elements in the basis
of the CSF's 4I, Eqs. (29) and (30). The latter are ex-
pressed in terms of one- and two-electron integrals, i.e.,
A A. IJ

HDII X Dij 7 ij
/, J

+ y (&P, lv„„IP,&+&g,. lv„„lg, &)r",„,.
i,j,k, l, v

bee
vy»(po) wy»(p—o) =0 . (49) (A2)

Using this result we write the R-matrix relation (37) as

w, »(po)=2c XR„',K(po)=XR„w, »b»

M —1 —1R yy
—g wyKbK wK

K=1
(51)

Solving for R
&

yields the explicit expression in terms of
the known quantities wy»(po) and b» '

where the sums are performed over all shell indices.
Here the angular brackets indicate integration of the ra-
dial coordinate up to the boundary po. The structure fac-
tors y," and I;.kl, independent on the shell functions, are
the reduced transition matrix elements of the first and
second order between CSF's in the space spanned up by
the shell functions, and they depend on the shell occupa-
tions, the symmetry coupling, and the reduction from or-
bitals to shell functions achieved by integration over spin
and the angles. For the structure factors, the following
symmetry properties can be shown:

This is the spectral representation of the relativistic R
matrix, which has the same form as obtained in previous
works [4,8,20].

IJ yJI+ Z
IJ pJIe"kl "lk

The one-electron matrix elements are given by [21]

(A3)

d && d &&i Z
hc, = Q, c + I', + p; —c + Q» +( il &P(» c—pcllQ»)+ P; ——P, + Q; 2c'

Q»)

which is easily shown to be Hermitian by partial integra-
tion of the terms containing the first derivative d/dr,

"Dij Dji

Additionally, we can write

satisfying

&P, I v„,.lP, &
= &P, I v,„.lP, &* (A7)

&P;I5(r —p )IP &=&P I5(r —p )IP; &*, (A5)

because of the Hermiticity of the Dirac 5 function. The
two-electron potentials in (Al) are given by [21]

& g; I vpi. l g, &
=

& g, I vik. l Q; &
* . (AS)

~»r i»| (~»,„~r)+(Q.»=, , Qi) (A6)

Considering Eqs. (A3), (A4), (A5), (A7), and (AS) in the
explicit expressions for the matrix elements HDIJ and TIJ,
we obtain by renaming the summation indices
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=g~; y;. + g ( ( P; l U„„lP ) + ( Q,. l U„„lQ ) )I,"„
ij i j,k, I, ~

=gf „y,", + g ((P lU„ lP, )+(Q lU,„ lQ, ))l ...„,
=yh*,,y',,'*+ y (&P,. lU„,„lP, )'+(g, lU„„lg, &*)r',,',*,.

i,j,k, l, v

DJI

Tt~= ,'g&P-; l~{r po)I—IP, &y;','= ,'g&P-, I&(r —po)IP; &y,", = ,'&&P-; l&(r po)I—P, &*y;','*=TJI

Hence, the operators 8 and T are Hermitian in the space spanned by the basis functions @I.
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