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Angular distribution of photofragments along a Fano profile
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For incident linearly polarized light and randomly oriented molecules, the angular distribution of pho-
tofragments has a dipolar pattern.

'

It will be shown that along a Fano profile, the resonance, interfer-
ence, and continuum terms have different P parameters, each of which will be discussed in a form direct-
ly related to an experiment.

I. INTRODUCTION II. GENERAL FORMALISM

Recently, the angular distribution of photodissociated
fragments has been investigated along the Fano profile of
a well-resolved rotational predissociated line [1]. The
theoretical studies of angular distribution of photofrag-
ments refer to direct dissociations of a well-defined con-
tinuum [2—5]. The predissociation case had been con-
sidered formally by Mukamel and Jortner [6] and applied
in the case of broadband excitation for which predissoci-
ated rotational lines are not resolved [7]. They noted that
their equations could apply to a Fano profile [8] and
might be of experimental interest but did not go further.

According to Fano's approach [8], the total absorption
cross section for a line profile can be decomposed into a
part due to the continuum, a part due to the resonance
line, and a third part with a dispersion shape due to the
interference between the two channels, resulting in an
asymmetrical well-known profile. The differential cross
section for directional photodissociation can be decom-
posed in the same way. We will show below that each of
the contributing terms has a specific angular distribution.
For molecules that are initially randomly oriented and
for incident linearly polarized light, these distributions
have a dipolar behavior characterized by a P parameter:

dc' = (cr„„,/4n. )[1+P„„,Pz(cos8) ]

+ (o „,/4') [1+P„,P2(cosB) ]

+(o;„,/4')[l+P;„,P (cosB)]

where P2(cos6) is the second Legendre polynomial:

Let us consider the dissociation of a diatomic molecule
characterized by three electronic states: the initial bound
state li ), an excited bound state lr ), and a dissociative
state ld ).

The total dissociation cross section is given by [8,10]

E —EJ.o=(8~'./A)g, E E~.+i I —J./2
i

+ &ile& Mlr )

X(,rlH d )/(E E,, +tI, , /—2)

XpM /(2J, + 1)

where the unperturbed continuum ld ) state is assumed
energy normalized. Let A, be the wavelength of the in-
cident photon, e& its polarization vector, M the dipole
moment operator, 0 the coupling Hamiltonian, EJ the
energy of the bound excited level, and 1 J its width. The
cross sections for the various initial M; substates have to
be considered with their individual probabilities pM, as

t

well as the contributions from the various rotational tran-
sitions. The first energy factor comes from the phase
shift due to the coupling of the resonance state [8].

In Eq. (3), the molecular states are described in the
usual Born-Oppenheimer basis set:

P2 =
—,'(3 cos 6—1) . (2)

JMn pn(r, R)(1/R)y m(R)

X [(2J+ 1)/4m]'i DM*n(tP, 8,0). (4)
The aim of this paper is to verify Eq. (1) and to calculate
the p parameters, which will provide expressions easily
related to experiments.

The Fano formalism may be considered as somewhat
dated but is much easier to use for experimentalists than
more powerful formalisms like multichannel quantum-
defect theory (MQDT) which may be applied to the prob-
lem [9].

where r represents the electronic coordinates, and R, 0,
and y the polar coordinates of the internuclear axis with
respect to the laboratory-fixed frame. DM& is the Wigner
rotation matrix element [11]. The vibrational quantum
number U is replaced by e for the dissociating state. The
notation corresponds to Hund's case (a); for Hund's case
(b) J=N and A=A.
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For directional photodissociation, it is more appropri-
ate to consider dissociative wave functions which at
infinity behave like an outgoing plane wave moving in the
k direction with respect to the laboratory-6xed frame:

Ik, d)=(4m)' g (2J'+1)' i exp( i—5zn )
J', M'

Xe„, ,„D',„(y,6,0)

where P and 6 are the two polar angles defining the k

direction, and the factor 5J.& is the phase shift of the vi-

brational part of the dissociative wave function, which
has the asymptotic form at R ~~:

p/~ k)' sin(k~ +firn —~~J

The differential cross section for photodissociation into a
solid angle dk =sin6d6dg around the k direction, ac-
cording to Ref. [6] and taking into account the phase
shift due to the coupling is given by

dO 27T

M, ,J', Qd =+indi
l(i lei.Mlk, d )(E Ez. )/—(E EJ.+i—l ~ l2)

+ (i Iei M
I
r ) ( r IHI k, d ) l(E E~ +—i I I l2) I pM l(2J; + 1) (7a)

with

(iles Mlk, d)= g (iles Mld)(4m. )' (2J'+1)' i exp( i5Jn—)Dln ($,6,0) .
J', M'

(7b)

The polarization vector e& is expressed in spatial components:

eo=ei.z and e+i =+2'~ (ei x+iei y)

and the dipole matrix element is equal to [5]

(i lei.Mld ) = y ( —l)~e [(2J'+1)(2J,+1)/2]' '( —1)
q =0,+1

—M' q M;

p=0, +1

(9)

where the terms in large parentheses are 3j symbols. The definite parity P; of the bound state Ii ) has been taken into
account. For an incident light linearly polarized along the z direction, eo is the only nonzero component whereas e+&
describes circularly polarized light propagating along the z direction. According to the symmetry rules of the 3j
coefficients, the summation over p reduces to one term except when one of the states is a X state (in such a case only the
normalization factor difFers).

The second dipole matrix element of Eq. (7) can be written in a way similar to Eq. (9), taking into account the definite
parity of both Ii ) and Ir ) states.

We consider the case of an isolated rotational predissociated level J„', which means that

The energy denominator of Eq. (7) is resonant here only for J =J„and Eq. (7) can be written explicitly, taking into ac-
count the parity of the states (E„will be used instead of E, and I „ instead of I', for the sake of simplicity):

r
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dk
=(2n. /1, )

~g &d =+~&d ~

J( 1 J;
—M 0 M.

Jl l l
1

J] 1 J;
X M

J) 1 J,-
+( —1) " M„V„5(J„,J', ) —0, p' Q; (E E„+—i I, /2)

J2 1 J;
Xg '(2J2+1) —M 0 M.

Jl l
2

J' 1 J;
+( 1 )

"
M& V&*5(J&iJ2 ) —Q, p' Q;

I

XDM', n, (0 e 0»M', n„(4 e o) .

The following reduced notations have been used:

M„=(X,
, g nIM.~.(R)IX, g n ~ ~

(E E„iI—„/—2)

(10)

V„=i 'exp( i5, )(r~H—~d)
J„Qd

with

(1 la)

For J'= J„' according to Fano's approach [8], the phase shift due to the coupling with the resonance state has already
been taken into account and 5, is the unperturbed phase. The dipole matrix element of the continuum perturbed by

the coupling is

M, =(E E„)/(E E„+iI „—/2)—i "exp( i5, )(y„J—n ~M&(R)~g,z.n ) . (1 lb)

Far from the resonance energy, the perturbed value tends toward the unperturbed value. The perturbation of the phase
of the continuum explains the dip in the Fano profile with Q =0. It reduced to
M,z. =i exp( i5jn ) &—y, ~M (R)~y, Jn) for J'AJ„'as I J. &&~Ez. E,~.

—
d l d

According to Ref. [11],the product of the Wigner matrix elements of Eq. (10) reduces to

I J) J2 j J) J2 jD" „(y,e,O)D"'„(y,e, O) =y (
—1) ""P,(cose)(2J+1) (12)

d d i i

P denotes the Legendre polynomial of jth order. Then from Eq. (12), the differential cross section of Eq. (10) can be
easily analyzed in terms of Legendre polynomials.

Equation (10) includes a summation over jwhich leads to the angular distribution, and summations over J'„J2,M;,
and Qd. The last summation over Qd just compensates for the —, factor [in Eq. (10)] due to the symmetrization of the
bound wave function. For linearly polarized light (q =0), the summation over M, gives a simple expression if all the
M; sublevels are equally populated, i.e., if

g( —1) —M; 0 M; —M; 0 M; M; —M; 0

which means that the molecules are initially randomly oriented:

J,-' 1 J; J2 1 Ji J1 J2 j Jl+J2+J,. —Qd j000 (13)

with a 6j coeKcient. The above expression will not be zero if the j variable is equal to 0 or 2, according to the 3j
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coefficient properties [11]. The j=0 value, with Po, corresponds to the isotropic part of the difFerential cross section,
whereas the j =2 value leads to the P2(cose) expected contribution. It is important to notice that if the pM coefficients

I

are not all equal to 1, Eq. (13) is much more complicated, with j values from 0 to maybe 2J;+4, all even for linearly po-
larized light, odd and even for circularly polarized light.

The differential cross section takes the form

do =(2m /A)g(2J' +1) M, ~ II +( —1) " MV5(J'Ji) —Q„p' Q; (E E„+—i I'„/2)

J2 1 J;
Xg (2Ji+1) M

2 d I 1

2

n„-n,+( —1) " M„*V,"5(J„J2) (E E„—ir„/—2)

y I

J'+J'+J 0 1 1 j J2 j'&+" ooo n —n o
J d d

1 1 jX, , P, (cose) (14)

from which one can easily separate the contribution from the continuum in M,M„ the resonant term in M,M, , and
the crossed term or interference contribution. %'e will study each of these in the following section.

III. RESULTS

A. The resonant contribution

do
dk

Because of the resonant denominator, the resonant contribution has no summation over J' and reduces to

J„' 1 J;
=(2~'/~) I IM, I'I V„I'/[(E —E„)'+I'„/4]](2J„'+1)' —Q„p' 0;

+J & 1 1 jXg ( —1) ' (2j+1) 0 0 0
J d

1 1 j
P,.(cose) .

r r i
(15)

Using the explicit forms of the 3j and 6j coefficients from Ref. [12],one obtains
r

with

dk res

=(o„,/4m)[1+P„,P2(cose)] (16)

J;(J;—1)—3Qd
for a P(J;) line

J; 2J;+1
J;(J;+1)—3Q~

for a Q(J;) line

(J;+1)(J;+2)—3Qd
for an R (J, ) line .

(17)

From these values one can see that no information can be obtained about the predissociated state or the nature of the
coupling, since it depends only on the rotational line and the 0 value of the continuum state.

The other part,

J,' 1 J;
/~)(2J, +1) ~ ~ f1 —,

' IM„I'I V, I'/[(E —E„)'+I '„/4]—A„p'
is really the resonance part of the total photodissociation cross section of Eq. (3).

(18)
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From Eq. (14), this term is

B. The interference term

847

dk
=(2~ /A, )g (2j+1)(—1) ' "(2J„'+1) &, & 0 0 0 P (cose)—Q„p' Q; 0 0 0

I

X g (
—1) ' "(2J', +1) —Qd p

J; J)
Q; Qd 0 J)

XM, M„' V„ /(E —E„—i I „/2)

J2 1 J; J„' j
+&( " ' "(~&+" n — n n n—o

2

X, , M', M„V„/(E E„+i—I „/2)
1 j

(19)

GO

dk

J', and Jz play similar roles and using the symmetry properties of the 3j and 6j coefficients [11]Eq. (19) reduces to

J'+J +J,.—0
J' 1 J.

=(2m'~/A, ) g ( —1) " ' "(2j + 1)(2J'+ 1)(2J„+1) 0 0 0 Pz
Jl

r 0 0 0 J —Q„p' Q;

J' 1 J; J' J„'
X —Qd p Q; Qd —Qd

j 1 1 j
J' J„' J;

X [M, .M„*V„*/(E E„—iI „/—2)+M,* M„V„/(E E„+iI „/2)]—. (20)

According to Fano's approach [8], the phase shift due to the coupling with the resonance state has already been taken
into account in Eqs. (3) and (7) and the unperturbed phase 5, must be used instead.

Far from threshold, the dissociation occurs in a time much shorter than the rotational time, and the molecule cannot
rotate before breaking: this is the axial recoil approximation. In quantum mechanics the axial recoil approximation
means that the M,J. matrix elements do not depend on J' (or very slightly), which implies

and

i exp( i 5J n—) = 1

M,J ——M, =M

(21)

(22)

for all values of J . This approximation is generally valid, and greatly simplifies the expressions. We will use it
throughout this part of the paper.

In axial recoil approximation Eq. (20) can be written

80
dk

=(2n /A, )g (2j+1) 0 0 0 Pi(cos8)( —1) ' "(2J„'+1) —Q„p' Q)

X 2M,M„V„/[(E E„) +I „/4]—
J' 1 J; J' J,'

X & (2~'+" n—n n —nd P i d d

1' 1 j J+JO, J J J( 1)
I

(23)

The summation over J' is straightforward [13]giving, for Eq. (23),

8cT

dk
=(2' /A, )g (2j+1) 0 0 0 P (cos6))( —1) ' '(2J„'+1)

T

J,. —n,. —&

X2M,M„V„/[(E E„) +I „/4]( —1) ' ' —
()o p

J,' 1 J;
—Qd p Q,.
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Using explicit expressions for the 3j coefticients with j, one obtains

d0
dk

J„' 1 J;
=(2' /A)( —1) " " " ' (2J'+1)

J„' 1 J;
—Qd p 0;

X —,'M, M„V„/[(E E„—) +I „l4][1+[2—3(Q„—0;) ]P (cos6)], (25)

which is easy to identify with

d0 = (o;„,/4~) [1+/3;„,P2(cos6) ]
int

(26)

with P;„,=2 for a parallel transition and —1 for a perpendicular one. This is the value obtained for the unperturbed
continuum in the axial recoil limit [2,3]. We can remark that for a parallel transition to the continuum P;„,=2, then at
90' the continuum term is zero; the interference contribution has to be zero as well and thus the angular dependence of
the interference term has to be the same as that of the continuum one.

C. The continuum contribution

In the axial recoil approximation this contribution is equal to

d0
dk

1 1 j
=(2m /A) g(2j+1)

O O O
P/(cos8)

J', 1 J,
—Qd p 0;

17 2

J2 1 J; J) J2
—Qd p 0, Qd —Qd

1 1 j
0 J', Jz J

i I „!25(JIJ„')
X( —1) ' ' ' "(2J'+1)(2J'+1)M 1—

E E„+iI„/—2

iI /25(J„'J,')
X 1+ E E„iI „/2—— (27)

using Eqs. (21) and (22), which can be decomposed again into parts: one nonresonant (the unperturbed continuum) and
one resonant due to the perturbation. In the resonant contribution, the dispersive part is proportional to

(iI'„ /)2( E E„)[5(J2J„)——5(J',J„)]/[(E E„) +I „/4—] . (28)

As noted previously J', and Jz play symmetrical roles, and the above expression when summed over J& and J2 gives
zero. The other resonant contribution is proportional to

[
—5(J',J„')—5(J2J„')+5(J)J„')5(J2J„')](I„/4)l[(E E„) +I „l4]—. (29)

The term in 5(J',J„')5(J2J„') is similar to the resonant term whereas the others are similar to the interference term. All
calculations done, it reduces to

=(27r /A, )—,
' ~M, ~ I 1+[2—3(A„—0;) ]P (cos6)]

cont

J„' 1 J,-

—(2~ /A, )—, ~M, ~

(2J„'+1) ~ ~ (1+I2[2—3(fl —0;) ]
—P„]P (cos6))/[(E E„) +I „/4] . ——Qd p 0,-

(30)

This means that the continuum is decomposed into the
unperturbed part and the dip (observable for a Fano pa-
rameter Q=0, i.e., M„=O) has a composite signature
dependent on both transitions.

The right summation over +PL; and +Ad leads to
2 ~M, ~

instead of ~M, ~
in the case of a 'X —+'lI transi-

tion.

IV. CONCLUSION

We have described precisely the angular distribution of
photodissociation fragments along a Fano profile. We
carefully took into account the well-defined parity of the
bound levels, the possible degeneracy of the continuum,
and the Fano dip due to the perturbation of the discrete
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state. We showed that the dipolar form of the angular
distribution was true only for randomly oriented mole-
cules excited by linearly polarized light.

Nearby a resonance, the experimental photodissocia-
tion cross section was put in the form [1]

= A(8)[(E E„—) +I „/4]

and

J;(J;—1)—3Qd
for a P(J; ) line

J;(J;+1)—3Qd
for a Q(J,. ) line (34)

+8 (8)(E E„)—/[(E E„)—+I'„/4]+ C(8)

(31)

(J;+1)(J;+2)—3Qd
for an R (J; ) line

from the energy variations (resonant, dispersion shaped,
and constant). Then to compare the theoretical values to
experimental ones, it is more convenient to gather the
resonant part of the continuum with the resonance signal.

Letting o.„„,be the total cross section of the unper-
turbed continuum far from the resonance, interactive
(J'=J„') and noninteractive (J'AJ„'), and letting Q be the
usual Fano parameter, the difFerential photodissociation
cross section can be written

de =o„„,[1+13„„,P (cos8)]+o;„,[1+P;„,P (cose)]

which is valid in the axial recoil limit (i.e., for dissocia-
tion energy much larger than the continuum rotational
energy) for incident linearly polarized light and for mole-
cules initially randomly oriented.

The P;„„f3„„„andP„,values can be directly compared
to the experimental parameters.

The "interference" term observed in Ref. [1] corre-
sponding to the dispersive part of the photodissociation
variations with E presents clearly a cosO behavior in
agreement with the theoretical P;„,=2 value (in this case
Qd =Q; = 1).

with

+ cr„,[1+P„,P (cos8) ] (32)
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